blob: fda58d1c4874f08361510ca8df621565d34c104a [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VirtualCamera.h"
#include "HalCamera.h"
#include "Enumerator.h"
#include <android/hardware_buffer.h>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
using ::android::base::StringAppendF;
using ::android::base::StringPrintf;
using ::android::base::WriteStringToFd;
using ::android::hardware::automotive::evs::V1_0::DisplayState;
namespace android {
namespace automotive {
namespace evs {
namespace V1_1 {
namespace implementation {
VirtualCamera::VirtualCamera(const std::vector<sp<HalCamera>>& halCameras) :
mStreamState(STOPPED) {
for (auto&& cam : halCameras) {
mHalCamera.try_emplace(cam->getId(), cam);
}
}
VirtualCamera::~VirtualCamera() {
shutdown();
}
void VirtualCamera::shutdown() {
// In normal operation, the stream should already be stopped by the time we get here
if (mStreamState == RUNNING) {
// Note that if we hit this case, no terminating frame will be sent to the client,
// but they're probably already dead anyway.
LOG(WARNING) << "Virtual camera being shutdown while stream is running";
// Tell the frame delivery pipeline we don't want any more frames
mStreamState = STOPPING;
for (auto&& [key, hwCamera] : mHalCamera) {
auto pHwCamera = hwCamera.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Camera device " << key << " is not alive.";
continue;
}
if (mFramesHeld[key].size() > 0) {
LOG(WARNING) << "VirtualCamera destructing with frames in flight.";
// Return to the underlying hardware camera any buffers the client was holding
for (auto&& heldBuffer : mFramesHeld[key]) {
// Tell our parent that we're done with this buffer
pHwCamera->doneWithFrame(heldBuffer);
}
mFramesHeld[key].clear();
}
// Retire from a master client
pHwCamera->unsetMaster(this);
// Give the underlying hardware camera the heads up that it might be time to stop
pHwCamera->clientStreamEnding(this);
}
// Join a capture thread
if (mCaptureThread.joinable()) {
mCaptureThread.join();
}
mFramesHeld.clear();
// Drop our reference to our associated hardware camera
mHalCamera.clear();
}
}
std::vector<sp<HalCamera>> VirtualCamera::getHalCameras() {
std::vector<sp<HalCamera>> cameras;
for (auto&& [key, cam] : mHalCamera) {
auto ptr = cam.promote();
if (ptr != nullptr) {
cameras.emplace_back(ptr);
}
}
return cameras;
}
bool VirtualCamera::deliverFrame(const BufferDesc_1_1& bufDesc) {
if (mStreamState == STOPPED) {
// A stopped stream gets no frames
LOG(ERROR) << "A stopped stream should not get any frames";
return false;
} else if (mFramesHeld[bufDesc.deviceId].size() >= mFramesAllowed) {
// Indicate that we declined to send the frame to the client because they're at quota
LOG(INFO) << "Skipping new frame as we hold " << mFramesHeld[bufDesc.deviceId].size()
<< " of " << mFramesAllowed;
if (mStream_1_1 != nullptr) {
// Report a frame drop to v1.1 client.
EvsEventDesc event;
event.deviceId = bufDesc.deviceId;
event.aType = EvsEventType::FRAME_DROPPED;
auto result = mStream_1_1->notify(event);
if (!result.isOk()) {
LOG(ERROR) << "Error delivering end of stream event";
}
}
return false;
} else {
// Keep a record of this frame so we can clean up if we have to in case of client death
mFramesHeld[bufDesc.deviceId].emplace_back(bufDesc);
// v1.0 client uses an old frame-delivery mechanism.
if (mStream_1_1 == nullptr) {
// Forward a frame to v1.0 client
BufferDesc_1_0 frame_1_0 = {};
const AHardwareBuffer_Desc* pDesc =
reinterpret_cast<const AHardwareBuffer_Desc *>(&bufDesc.buffer.description);
frame_1_0.width = pDesc->width;
frame_1_0.height = pDesc->height;
frame_1_0.format = pDesc->format;
frame_1_0.usage = pDesc->usage;
frame_1_0.stride = pDesc->stride;
frame_1_0.memHandle = bufDesc.buffer.nativeHandle;
frame_1_0.pixelSize = bufDesc.pixelSize;
frame_1_0.bufferId = bufDesc.bufferId;
mStream->deliverFrame(frame_1_0);
} else if (!mCaptureThread.joinable()) {
// A capture thread does not run only it failed to create a
// timeline.
if (mFramesHeld.size() > 0 && mStream_1_1 != nullptr) {
// Pass this buffer through to our client
hardware::hidl_vec<BufferDesc_1_1> frames;
frames.resize(1);
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera != nullptr) {
frames[0] = mFramesHeld[mHalCamera.begin()->first].back();
}
mStream_1_1->deliverFrame_1_1(frames);
}
}
return true;
}
}
bool VirtualCamera::notify(const EvsEventDesc& event) {
switch(event.aType) {
case EvsEventType::STREAM_STOPPED:
if (mStreamState != STOPPING) {
// Warn if we got an unexpected stream termination
LOG(WARNING) << "Stream unexpectedly stopped, current status "
<< mStreamState;
// Clean up the resource and forward an event to the client
stopVideoStream();
// This event is handled properly.
return true;
}
if (mStream_1_1 == nullptr) {
// Send a null frame instead, for v1.0 client
auto result = mStream->deliverFrame({});
if (!result.isOk()) {
LOG(ERROR) << "Error delivering end of stream marker";
}
}
break;
// v1.0 client will ignore all other events.
case EvsEventType::PARAMETER_CHANGED:
LOG(DEBUG) << "A camera parameter " << event.payload[0]
<< " is set to " << event.payload[1];
break;
case EvsEventType::MASTER_RELEASED:
LOG(DEBUG) << "The master client has been released";
break;
default:
LOG(WARNING) << "Unknown event id " << static_cast<int32_t>(event.aType);
break;
}
if (mStream_1_1 != nullptr) {
// Forward a received event to the v1.1 client
auto result = mStream_1_1->notify(event);
if (!result.isOk()) {
LOG(ERROR) << "Failed to forward an event";
return false;
}
}
return true;
}
// Methods from ::android::hardware::automotive::evs::V1_0::IEvsCamera follow.
Return<void> VirtualCamera::getCameraInfo(getCameraInfo_cb info_cb) {
// Straight pass through to hardware layer
if (mHalCamera.size() > 1) {
LOG(ERROR) << __FUNCTION__
<< " must NOT be called on a logical camera object.";
info_cb({});
return Void();
}
auto halCamera = mHalCamera.begin()->second.promote();
if (halCamera != nullptr) {
return halCamera->getHwCamera()->getCameraInfo(info_cb);
} else {
info_cb({});
return Void();
}
}
Return<EvsResult> VirtualCamera::setMaxFramesInFlight(uint32_t bufferCount) {
// How many buffers are we trying to add (or remove if negative)
int bufferCountChange = bufferCount - mFramesAllowed;
// Ask our parent for more buffers
bool result = true;
std::vector<sp<HalCamera>> changedCameras;
for (auto&& [key, hwCamera] : mHalCamera) {
auto pHwCam = hwCamera.promote();
if (pHwCam == nullptr) {
continue;
}
result = pHwCam->changeFramesInFlight(bufferCountChange);
if (!result) {
LOG(ERROR) << key
<< ": Failed to change buffer count by " << bufferCountChange
<< " to " << bufferCount;
break;
}
changedCameras.emplace_back(pHwCam);
}
// Update our notion of how many frames we're allowed
mFramesAllowed = bufferCount;
if (!result) {
// Rollback changes because we failed to update all cameras
for (auto&& hwCamera : changedCameras) {
LOG(WARNING) << "Rollback a change on " << hwCamera->getId();
hwCamera->changeFramesInFlight(-bufferCountChange);
}
// Restore the original buffer count
mFramesAllowed -= bufferCountChange;
return EvsResult::BUFFER_NOT_AVAILABLE;
} else {
return EvsResult::OK;
}
}
Return<EvsResult> VirtualCamera::startVideoStream(const ::android::sp<IEvsCameraStream_1_0>& stream) {
// We only support a single stream at a time
if (mStreamState != STOPPED) {
LOG(ERROR) << "Ignoring startVideoStream call when a stream is already running.";
return EvsResult::STREAM_ALREADY_RUNNING;
}
// Validate our held frame count is starting out at zero as we expect
assert(mFramesHeld.size() == 0);
// Record the user's callback for use when we have a frame ready
mStream = stream;
mStream_1_1 = IEvsCameraStream_1_1::castFrom(stream).withDefault(nullptr);
if (mStream_1_1 == nullptr) {
LOG(INFO) << "Start video stream for v1.0 client.";
} else {
LOG(INFO) << "Start video stream for v1.1 client.";
}
mStreamState = RUNNING;
// Tell the underlying camera hardware that we want to stream
auto iter = mHalCamera.begin();
while (iter != mHalCamera.end()) {
auto pHwCamera = iter->second.promote();
if (pHwCamera == nullptr) {
LOG(ERROR) << "Failed to start a video stream on " << iter->first;
continue;
}
LOG(INFO) << __FUNCTION__
<< " starts a video stream on " << iter->first;
Return<EvsResult> result = pHwCamera->clientStreamStarting();
if ((!result.isOk()) || (result != EvsResult::OK)) {
// If we failed to start the underlying stream, then we're not actually running
mStream = mStream_1_1 = nullptr;
mStreamState = STOPPED;
// Request to stop streams started by this client.
auto rb = mHalCamera.begin();
while (rb != iter) {
auto ptr = rb->second.promote();
if (ptr != nullptr) {
ptr->clientStreamEnding(this);
}
++rb;
}
return EvsResult::UNDERLYING_SERVICE_ERROR;
}
++iter;
}
// Start a thread that waits on the fence and forwards collected frames
// to the v1.1 client.
// If the system does not support a sw sync, EVS does not support a logical
// camera device and, therefore, VirtualCamera will subscribe only to a
// single hw camera.
auto pHwCamera = mHalCamera.begin()->second.promote();
if (mStream_1_1 != nullptr && pHwCamera != nullptr && pHwCamera->isSyncSupported()) {
mCaptureThread = std::thread([this]() {
// TODO(b/145466570): With a proper camera hang handler, we may want
// to reduce an amount of timeout.
constexpr int kFrameTimeoutMs = 5000; // timeout in ms.
int64_t lastFrameTimestamp = -1;
while (mStreamState == RUNNING) {
UniqueFence fence;
unsigned count = 0;
for (auto&& [key, hwCamera] : mHalCamera) {
auto pHwCamera = hwCamera.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Invalid camera " << key << " is ignored.";
continue;
}
UniqueFence another = pHwCamera->requestNewFrame(this, lastFrameTimestamp);
if (!another) {
LOG(WARNING) << key << " returned an invalid fence.";
continue;
}
fence = UniqueFence::Merge("MergedFrameFence",
fence,
another);
++count;
}
if (fence.Wait(kFrameTimeoutMs) < 0) {
// TODO(b/145466570): Replace this temporarily camera hang
// handler.
PLOG(ERROR) << this << ": Camera hangs?";
break;
} else if (mStreamState == RUNNING) {
// Fetch frames and forward to the client
if (mFramesHeld.size() > 0 && mStream_1_1 != nullptr) {
// Pass this buffer through to our client
hardware::hidl_vec<BufferDesc_1_1> frames;
frames.resize(count);
unsigned i = 0;
for (auto&& [key, hwCamera] : mHalCamera) {
auto pHwCamera = hwCamera.promote();
if (pHwCamera == nullptr) {
continue;
}
const auto frame = mFramesHeld[key].back();
if (frame.timestamp > lastFrameTimestamp) {
lastFrameTimestamp = frame.timestamp;
}
frames[i++] = frame;
}
mStream_1_1->deliverFrame_1_1(frames);
}
}
}
});
}
// TODO(changyeon):
// Detect and exit if we encounter a stalled stream or unresponsive driver?
// Consider using a timer and watching for frame arrival?
return EvsResult::OK;
}
Return<void> VirtualCamera::doneWithFrame(const BufferDesc_1_0& buffer) {
if (buffer.memHandle == nullptr) {
LOG(ERROR) << "Ignoring doneWithFrame called with invalid handle";
} else if (mFramesHeld.size() > 1) {
LOG(ERROR) << __FUNCTION__
<< " must NOT be called on a logical camera object.";
} else {
// Find this buffer in our "held" list
auto& frameQueue = mFramesHeld.begin()->second;
auto it = frameQueue.begin();
while (it != frameQueue.end()) {
if (it->bufferId == buffer.bufferId) {
// found it!
break;
}
++it;
}
if (it == frameQueue.end()) {
// We should always find the frame in our "held" list
LOG(ERROR) << "Ignoring doneWithFrame called with unrecognized frameID "
<< buffer.bufferId;
} else {
// Take this frame out of our "held" list
frameQueue.erase(it);
// Tell our parent that we're done with this buffer
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera != nullptr) {
pHwCamera->doneWithFrame(buffer);
} else {
LOG(WARNING) << "Possible memory leak because a device "
<< mHalCamera.begin()->first
<< " is not valid.";
}
}
}
return Void();
}
Return<void> VirtualCamera::stopVideoStream() {
if (mStreamState == RUNNING) {
// Tell the frame delivery pipeline we don't want any more frames
mStreamState = STOPPING;
// Deliver an empty frame to close out the frame stream
if (mStream_1_1 != nullptr) {
// v1.1 client waits for a stream stopped event
EvsEventDesc event;
event.aType = EvsEventType::STREAM_STOPPED;
auto result = mStream_1_1->notify(event);
if (!result.isOk()) {
LOG(ERROR) << "Error delivering end of stream event";
}
} else {
// v1.0 client expects a null frame at the end of the stream
auto result = mStream->deliverFrame({});
if (!result.isOk()) {
LOG(ERROR) << "Error delivering end of stream marker";
}
}
// Since we are single threaded, no frame can be delivered while this function is running,
// so we can go directly to the STOPPED state here on the server.
// Note, however, that there still might be frames already queued that client will see
// after returning from the client side of this call.
mStreamState = STOPPED;
// Give the underlying hardware camera the heads up that it might be time to stop
for (auto&& [key, hwCamera] : mHalCamera) {
auto pHwCamera = hwCamera.promote();
if (pHwCamera != nullptr) {
pHwCamera->clientStreamEnding(this);
}
}
// Join a thread
if (mCaptureThread.joinable()) {
mCaptureThread.join();
}
}
return Void();
}
Return<int32_t> VirtualCamera::getExtendedInfo(uint32_t opaqueIdentifier) {
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
return 0;
}
// Pass straight through to the hardware device
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera != nullptr) {
return pHwCamera->getHwCamera()->getExtendedInfo(opaqueIdentifier);
} else {
LOG(WARNING) << mHalCamera.begin()->first << " is invalid.";
return 0;
}
}
Return<EvsResult> VirtualCamera::setExtendedInfo(uint32_t opaqueIdentifier, int32_t opaqueValue) {
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
return EvsResult::INVALID_ARG;
}
// Pass straight through to the hardware device
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera != nullptr) {
return pHwCamera->getHwCamera()->setExtendedInfo(opaqueIdentifier, opaqueValue);
} else {
LOG(WARNING) << mHalCamera.begin()->first << " is invalid.";
return EvsResult::INVALID_ARG;
}
}
// Methods from ::android::hardware::automotive::evs::V1_1::IEvsCamera follow.
Return<void> VirtualCamera::getCameraInfo_1_1(getCameraInfo_1_1_cb info_cb) {
if (mHalCamera.size() > 1) {
// Logical camera description is stored in VirtualCamera object.
info_cb(*mDesc);
return Void();
}
// Straight pass through to hardware layer
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera == nullptr) {
// Return an empty list
info_cb({});
return Void();
}
auto hwCamera_1_1 =
IEvsCamera_1_1::castFrom(pHwCamera->getHwCamera()).withDefault(nullptr);
if (hwCamera_1_1 != nullptr) {
return hwCamera_1_1->getCameraInfo_1_1(info_cb);
} else {
// Return an empty list
info_cb({});
return Void();
}
}
Return<void> VirtualCamera::getPhysicalCameraInfo(const hidl_string& deviceId,
getPhysicalCameraInfo_cb info_cb) {
auto device = mHalCamera.find(deviceId);
if (device != mHalCamera.end()) {
// Straight pass through to hardware layer
auto pHwCamera = device->second.promote();
if (pHwCamera != nullptr) {
auto hwCamera_1_1 =
IEvsCamera_1_1::castFrom(pHwCamera->getHwCamera()).withDefault(nullptr);
if (hwCamera_1_1 != nullptr) {
return hwCamera_1_1->getCameraInfo_1_1(info_cb);
} else {
LOG(WARNING) << "Failed to promote HW camera to v1.1.";
}
} else {
LOG(WARNING) << "Camera device " << deviceId << " is not alive.";
}
} else {
LOG(WARNING) << " Requested device " << deviceId
<< " does not back this device.";
}
// Return an empty list
info_cb({});
return Void();
}
Return<EvsResult> VirtualCamera::doneWithFrame_1_1(
const hardware::hidl_vec<BufferDesc_1_1>& buffers) {
for (auto&& buffer : buffers) {
if (buffer.buffer.nativeHandle == nullptr) {
LOG(WARNING) << "Ignoring doneWithFrame called with invalid handle";
} else {
// Find this buffer in our "held" list
auto it = mFramesHeld[buffer.deviceId].begin();
while (it != mFramesHeld[buffer.deviceId].end()) {
if (it->bufferId == buffer.bufferId) {
// found it!
break;
}
++it;
}
if (it == mFramesHeld[buffer.deviceId].end()) {
// We should always find the frame in our "held" list
LOG(ERROR) << "Ignoring doneWithFrame called with unrecognized frameID "
<< buffer.bufferId;
} else {
// Take this frame out of our "held" list
mFramesHeld[buffer.deviceId].erase(it);
// Tell our parent that we're done with this buffer
auto pHwCamera = mHalCamera[buffer.deviceId].promote();
if (pHwCamera != nullptr) {
pHwCamera->doneWithFrame(buffer);
} else {
LOG(WARNING) << "Possible memory leak; "
<< buffer.deviceId << " is not valid.";
}
}
}
}
return EvsResult::OK;
}
Return<EvsResult> VirtualCamera::setMaster() {
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
return EvsResult::INVALID_ARG;
}
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera != nullptr) {
return pHwCamera->setMaster(this);
} else {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
return EvsResult::INVALID_ARG;
}
}
Return<EvsResult> VirtualCamera::forceMaster(const sp<IEvsDisplay_1_0>& display) {
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
return EvsResult::INVALID_ARG;
}
if (display.get() == nullptr) {
LOG(ERROR) << __FUNCTION__
<< ": Passed display is invalid";
return EvsResult::INVALID_ARG;
}
DisplayState state = display->getDisplayState();
if (state == DisplayState::NOT_OPEN ||
state == DisplayState::DEAD ||
state >= DisplayState::NUM_STATES) {
LOG(ERROR) << __FUNCTION__
<< ": Passed display is in invalid state";
return EvsResult::INVALID_ARG;
}
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera != nullptr) {
return pHwCamera->forceMaster(this);
} else {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
return EvsResult::INVALID_ARG;
}
}
Return<EvsResult> VirtualCamera::unsetMaster() {
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
return EvsResult::INVALID_ARG;
}
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera != nullptr) {
return pHwCamera->unsetMaster(this);
} else {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
return EvsResult::INVALID_ARG;
}
}
Return<void> VirtualCamera::getParameterList(getParameterList_cb _hidl_cb) {
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
// Return an empty list
_hidl_cb({});
return Void();
}
// Straight pass through to hardware layer
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
// Return an empty list
_hidl_cb({});
return Void();
}
auto hwCamera_1_1 =
IEvsCamera_1_1::castFrom(pHwCamera->getHwCamera()).withDefault(nullptr);
if (hwCamera_1_1 != nullptr) {
return hwCamera_1_1->getParameterList(_hidl_cb);
} else {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first
<< " does not support a parameter programming.";
// Return an empty list
_hidl_cb({});
return Void();
}
}
Return<void> VirtualCamera::getIntParameterRange(CameraParam id,
getIntParameterRange_cb _hidl_cb) {
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
// Return [0, 0, 0]
_hidl_cb(0, 0, 0);
return Void();
}
// Straight pass through to hardware layer
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
// Return [0, 0, 0]
_hidl_cb(0, 0, 0);
return Void();
}
auto hwCamera_1_1 =
IEvsCamera_1_1::castFrom(pHwCamera->getHwCamera()).withDefault(nullptr);
if (hwCamera_1_1 != nullptr) {
return hwCamera_1_1->getIntParameterRange(id, _hidl_cb);
} else {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first
<< " does not support a parameter programming.";
// Return [0, 0, 0]
_hidl_cb(0, 0, 0);
return Void();
}
return Void();
}
Return<void> VirtualCamera::setIntParameter(CameraParam id,
int32_t value,
setIntParameter_cb _hidl_cb) {
hardware::hidl_vec<int32_t> values;
EvsResult status = EvsResult::INVALID_ARG;
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
_hidl_cb(status, values);
return Void();
}
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
_hidl_cb(status, values);
return Void();
}
status = pHwCamera->setParameter(this, id, value);
values.resize(1);
values[0] = value;
_hidl_cb(status, values);
return Void();
}
Return<void> VirtualCamera::getIntParameter(CameraParam id,
getIntParameter_cb _hidl_cb) {
hardware::hidl_vec<int32_t> values;
EvsResult status = EvsResult::INVALID_ARG;
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
_hidl_cb(status, values);
return Void();
}
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
_hidl_cb(status, values);
return Void();
}
int32_t value;
status = pHwCamera->getParameter(id, value);
values.resize(1);
values[0] = value;
_hidl_cb(status, values);
return Void();
}
Return<EvsResult> VirtualCamera::setExtendedInfo_1_1(uint32_t opaqueIdentifier,
const hidl_vec<uint8_t>& opaqueValue) {
hardware::hidl_vec<int32_t> values;
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
return EvsResult::INVALID_ARG;
}
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
return EvsResult::INVALID_ARG;
} else {
auto hwCamera = IEvsCamera_1_1::castFrom(pHwCamera->getHwCamera()).withDefault(nullptr);
if (hwCamera != nullptr) {
return hwCamera->setExtendedInfo_1_1(opaqueIdentifier, opaqueValue);
} else {
LOG(ERROR) << "Underlying hardware camera does not implement v1.1 interfaces.";
return EvsResult::INVALID_ARG;
}
}
}
Return<void> VirtualCamera::getExtendedInfo_1_1(uint32_t opaqueIdentifier,
getExtendedInfo_1_1_cb _hidl_cb) {
hardware::hidl_vec<uint8_t> values;
EvsResult status = EvsResult::INVALID_ARG;
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
_hidl_cb(status, values);
return Void();
}
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
_hidl_cb(status, values);
} else {
auto hwCamera = IEvsCamera_1_1::castFrom(pHwCamera->getHwCamera()).withDefault(nullptr);
if (hwCamera != nullptr) {
hwCamera->getExtendedInfo_1_1(opaqueIdentifier, _hidl_cb);
} else {
LOG(ERROR) << "Underlying hardware camera does not implement v1.1 interfaces.";
_hidl_cb(status, values);
}
}
return Void();
}
Return<void>
VirtualCamera::importExternalBuffers(const hidl_vec<BufferDesc_1_1>& buffers,
importExternalBuffers_cb _hidl_cb) {
if (mHalCamera.size() > 1) {
LOG(WARNING) << "Logical camera device does not support " << __FUNCTION__;
_hidl_cb(EvsResult::UNDERLYING_SERVICE_ERROR, 0);
return {};
}
auto pHwCamera = mHalCamera.begin()->second.promote();
if (pHwCamera == nullptr) {
LOG(WARNING) << "Camera device " << mHalCamera.begin()->first << " is not alive.";
_hidl_cb(EvsResult::UNDERLYING_SERVICE_ERROR, 0);
return {};
}
int delta = 0;
if (!pHwCamera->changeFramesInFlight(buffers, &delta)) {
LOG(ERROR) << "Failed to add extenral capture buffers.";
_hidl_cb(EvsResult::UNDERLYING_SERVICE_ERROR, 0);
return {};
}
mFramesAllowed += delta;
_hidl_cb(EvsResult::OK, delta);
return {};
}
std::string VirtualCamera::toString(const char* indent) const {
std::string buffer;
StringAppendF(&buffer, "%sLogical camera device: %s\n"
"%sFramesAllowed: %u\n"
"%sFrames in use:\n",
indent, mHalCamera.size() > 1 ? "T" : "F",
indent, mFramesAllowed,
indent);
std::string next_indent(indent);
next_indent += "\t";
for (auto&& [id, queue] : mFramesHeld) {
StringAppendF(&buffer, "%s%s: %d\n",
next_indent.c_str(),
id.c_str(),
static_cast<int>(queue.size()));
}
StringAppendF(&buffer, "%sCurrent stream state: %d\n",
indent, mStreamState);
return buffer;
}
} // namespace implementation
} // namespace V1_1
} // namespace evs
} // namespace automotive
} // namespace android