blob: 8402ab2d871cd0ab957ec84a3d10f8e22e8b3519 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.util;
import android.annotation.NonNull;
import android.os.Parcel;
import com.android.internal.util.ArrayUtils;
import com.android.internal.util.GrowingArrayUtils;
import com.android.internal.util.Preconditions;
import com.android.internal.util.function.LongObjPredicate;
import java.util.Arrays;
import java.util.Objects;
/**
* SparseArray mapping longs to Objects. Unlike a normal array of Objects,
* there can be gaps in the indices. It is intended to be more memory efficient
* than using a HashMap to map Longs to Objects, both because it avoids
* auto-boxing keys and its data structure doesn't rely on an extra entry object
* for each mapping.
*
* <p>Note that this container keeps its mappings in an array data structure,
* using a binary search to find keys. The implementation is not intended to be appropriate for
* data structures
* that may contain large numbers of items. It is generally slower than a traditional
* HashMap, since lookups require a binary search and adds and removes require inserting
* and deleting entries in the array. For containers holding up to hundreds of items,
* the performance difference is not significant, less than 50%.</p>
*
* <p>To help with performance, the container includes an optimization when removing
* keys: instead of compacting its array immediately, it leaves the removed entry marked
* as deleted. The entry can then be re-used for the same key, or compacted later in
* a single garbage collection step of all removed entries. This garbage collection will
* need to be performed at any time the array needs to be grown or the the map size or
* entry values are retrieved.</p>
*
* <p>It is possible to iterate over the items in this container using
* {@link #keyAt(int)} and {@link #valueAt(int)}. Iterating over the keys using
* <code>keyAt(int)</code> with ascending values of the index will return the
* keys in ascending order, or the values corresponding to the keys in ascending
* order in the case of <code>valueAt(int)</code>.</p>
*/
public class LongSparseArray<E> implements Cloneable {
private static final Object DELETED = new Object();
private boolean mGarbage = false;
private long[] mKeys;
private Object[] mValues;
private int mSize;
/**
* Creates a new LongSparseArray containing no mappings.
*/
public LongSparseArray() {
this(10);
}
/**
* Creates a new LongSparseArray containing no mappings that will not
* require any additional memory allocation to store the specified
* number of mappings. If you supply an initial capacity of 0, the
* sparse array will be initialized with a light-weight representation
* not requiring any additional array allocations.
*/
public LongSparseArray(int initialCapacity) {
if (initialCapacity == 0) {
mKeys = EmptyArray.LONG;
mValues = EmptyArray.OBJECT;
} else {
mKeys = ArrayUtils.newUnpaddedLongArray(initialCapacity);
mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);
}
mSize = 0;
}
@Override
@SuppressWarnings("unchecked")
public LongSparseArray<E> clone() {
LongSparseArray<E> clone = null;
try {
clone = (LongSparseArray<E>) super.clone();
clone.mKeys = mKeys.clone();
clone.mValues = mValues.clone();
} catch (CloneNotSupportedException cnse) {
/* ignore */
}
return clone;
}
/**
* Gets the Object mapped from the specified key, or <code>null</code>
* if no such mapping has been made.
*/
public E get(long key) {
return get(key, null);
}
/**
* Gets the Object mapped from the specified key, or the specified Object
* if no such mapping has been made.
*/
@SuppressWarnings("unchecked")
public E get(long key, E valueIfKeyNotFound) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i < 0 || mValues[i] == DELETED) {
return valueIfKeyNotFound;
} else {
return (E) mValues[i];
}
}
/**
* Removes the mapping from the specified key, if there was any.
*/
public void delete(long key) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
if (mValues[i] != DELETED) {
mValues[i] = DELETED;
mGarbage = true;
}
}
}
/**
* Alias for {@link #delete(long)}.
*/
public void remove(long key) {
delete(key);
}
/** @hide */
@SuppressWarnings("unchecked")
public void removeIf(@NonNull LongObjPredicate<? super E> filter) {
Objects.requireNonNull(filter);
for (int i = 0; i < mSize; ++i) {
if (mValues[i] != DELETED && filter.test(mKeys[i], (E) mValues[i])) {
mValues[i] = DELETED;
mGarbage = true;
}
}
}
/**
* Removes the mapping at the specified index.
*
* <p>For indices outside of the range <code>0...size()-1</code>, the behavior is undefined for
* apps targeting {@link android.os.Build.VERSION_CODES#P} and earlier, and an
* {@link ArrayIndexOutOfBoundsException} is thrown for apps targeting
* {@link android.os.Build.VERSION_CODES#Q} and later.</p>
*/
public void removeAt(int index) {
if (index >= mSize && UtilConfig.sThrowExceptionForUpperArrayOutOfBounds) {
// The array might be slightly bigger than mSize, in which case, indexing won't fail.
// Check if exception should be thrown outside of the critical path.
throw new ArrayIndexOutOfBoundsException(index);
}
if (mValues[index] != DELETED) {
mValues[index] = DELETED;
mGarbage = true;
}
}
private void gc() {
// Log.e("SparseArray", "gc start with " + mSize);
int n = mSize;
int o = 0;
long[] keys = mKeys;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
Object val = values[i];
if (val != DELETED) {
if (i != o) {
keys[o] = keys[i];
values[o] = val;
values[i] = null;
}
o++;
}
}
mGarbage = false;
mSize = o;
// Log.e("SparseArray", "gc end with " + mSize);
}
/**
* Returns the index of the first element whose key is greater than or equal to the given key.
*
* @param key The key for which to search the array.
* @return The smallest {@code index} for which {@code (keyAt(index) >= key)} is
* {@code true}, or {@link #size() size} if no such {@code index} exists.
* @hide
*/
public int firstIndexOnOrAfter(long key) {
if (mGarbage) {
gc();
}
final int index = Arrays.binarySearch(mKeys, 0, size(), key);
return (index >= 0) ? index : -index - 1;
}
/**
* Returns the index of the last element whose key is less than or equal to the given key.
*
* @param key The key for which to search the array.
* @return The largest {@code index} for which {@code (keyAt(index) <= key)} is
* {@code true}, or {@code -1} if no such {@code index} exists.
* @hide
*/
public int lastIndexOnOrBefore(long key) {
final int index = firstIndexOnOrAfter(key);
if (index < size() && keyAt(index) == key) {
return index;
}
return index - 1;
}
/**
* Adds a mapping from the specified key to the specified value,
* replacing the previous mapping from the specified key if there
* was one.
*/
public void put(long key, E value) {
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
mValues[i] = value;
} else {
i = ~i;
if (i < mSize && mValues[i] == DELETED) {
mKeys[i] = key;
mValues[i] = value;
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
// Search again because indices may have changed.
i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);
}
mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key);
mValues = GrowingArrayUtils.insert(mValues, mSize, i, value);
mSize++;
}
}
/**
* Returns the number of key-value mappings that this LongSparseArray
* currently stores.
*/
public int size() {
if (mGarbage) {
gc();
}
return mSize;
}
/**
* Given an index in the range <code>0...size()-1</code>, returns
* the key from the <code>index</code>th key-value mapping that this
* LongSparseArray stores.
*
* <p>The keys corresponding to indices in ascending order are guaranteed to
* be in ascending order, e.g., <code>keyAt(0)</code> will return the
* smallest key and <code>keyAt(size()-1)</code> will return the largest
* key.</p>
*
* <p>For indices outside of the range <code>0...size()-1</code>, the behavior is undefined for
* apps targeting {@link android.os.Build.VERSION_CODES#P} and earlier, and an
* {@link ArrayIndexOutOfBoundsException} is thrown for apps targeting
* {@link android.os.Build.VERSION_CODES#Q} and later.</p>
*/
public long keyAt(int index) {
if (index >= mSize && UtilConfig.sThrowExceptionForUpperArrayOutOfBounds) {
// The array might be slightly bigger than mSize, in which case, indexing won't fail.
// Check if exception should be thrown outside of the critical path.
throw new ArrayIndexOutOfBoundsException(index);
}
if (mGarbage) {
gc();
}
return mKeys[index];
}
/**
* Given an index in the range <code>0...size()-1</code>, returns
* the value from the <code>index</code>th key-value mapping that this
* LongSparseArray stores.
*
* <p>The values corresponding to indices in ascending order are guaranteed
* to be associated with keys in ascending order, e.g.,
* <code>valueAt(0)</code> will return the value associated with the
* smallest key and <code>valueAt(size()-1)</code> will return the value
* associated with the largest key.</p>
*
* <p>For indices outside of the range <code>0...size()-1</code>, the behavior is undefined for
* apps targeting {@link android.os.Build.VERSION_CODES#P} and earlier, and an
* {@link ArrayIndexOutOfBoundsException} is thrown for apps targeting
* {@link android.os.Build.VERSION_CODES#Q} and later.</p>
*/
@SuppressWarnings("unchecked")
public E valueAt(int index) {
if (index >= mSize && UtilConfig.sThrowExceptionForUpperArrayOutOfBounds) {
// The array might be slightly bigger than mSize, in which case, indexing won't fail.
// Check if exception should be thrown outside of the critical path.
throw new ArrayIndexOutOfBoundsException(index);
}
if (mGarbage) {
gc();
}
return (E) mValues[index];
}
/**
* Given an index in the range <code>0...size()-1</code>, sets a new
* value for the <code>index</code>th key-value mapping that this
* LongSparseArray stores.
*
* <p>For indices outside of the range <code>0...size()-1</code>, the behavior is undefined for
* apps targeting {@link android.os.Build.VERSION_CODES#P} and earlier, and an
* {@link ArrayIndexOutOfBoundsException} is thrown for apps targeting
* {@link android.os.Build.VERSION_CODES#Q} and later.</p>
*/
public void setValueAt(int index, E value) {
if (index >= mSize && UtilConfig.sThrowExceptionForUpperArrayOutOfBounds) {
// The array might be slightly bigger than mSize, in which case, indexing won't fail.
// Check if exception should be thrown outside of the critical path.
throw new ArrayIndexOutOfBoundsException(index);
}
if (mGarbage) {
gc();
}
mValues[index] = value;
}
/**
* Returns the index for which {@link #keyAt} would return the
* specified key, or a negative number if the specified
* key is not mapped.
*/
public int indexOfKey(long key) {
if (mGarbage) {
gc();
}
return ContainerHelpers.binarySearch(mKeys, mSize, key);
}
/**
* Returns an index for which {@link #valueAt} would return the
* specified key, or a negative number if no keys map to the
* specified value.
* Beware that this is a linear search, unlike lookups by key,
* and that multiple keys can map to the same value and this will
* find only one of them.
*/
public int indexOfValue(E value) {
if (mGarbage) {
gc();
}
for (int i = 0; i < mSize; i++) {
if (mValues[i] == value) {
return i;
}
}
return -1;
}
/**
* Returns an index for which {@link #valueAt} would return the
* specified key, or a negative number if no keys map to the
* specified value.
* <p>Beware that this is a linear search, unlike lookups by key,
* and that multiple keys can map to the same value and this will
* find only one of them.
* <p>Note also that this method uses {@code equals} unlike {@code indexOfValue}.
* @hide
*/
public int indexOfValueByValue(E value) {
if (mGarbage) {
gc();
}
for (int i = 0; i < mSize; i++) {
if (value == null) {
if (mValues[i] == null) {
return i;
}
} else {
if (value.equals(mValues[i])) {
return i;
}
}
}
return -1;
}
/**
* Removes all key-value mappings from this LongSparseArray.
*/
public void clear() {
int n = mSize;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
values[i] = null;
}
mSize = 0;
mGarbage = false;
}
/**
* Puts a key/value pair into the array, optimizing for the case where
* the key is greater than all existing keys in the array.
*/
public void append(long key, E value) {
if (mSize != 0 && key <= mKeys[mSize - 1]) {
put(key, value);
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
}
mKeys = GrowingArrayUtils.append(mKeys, mSize, key);
mValues = GrowingArrayUtils.append(mValues, mSize, value);
mSize++;
}
/**
* {@inheritDoc}
*
* <p>This implementation composes a string by iterating over its mappings. If
* this map contains itself as a value, the string "(this Map)"
* will appear in its place.
*/
@Override
public String toString() {
if (size() <= 0) {
return "{}";
}
StringBuilder buffer = new StringBuilder(mSize * 28);
buffer.append('{');
for (int i=0; i<mSize; i++) {
if (i > 0) {
buffer.append(", ");
}
long key = keyAt(i);
buffer.append(key);
buffer.append('=');
Object value = valueAt(i);
if (value != this) {
buffer.append(value);
} else {
buffer.append("(this Map)");
}
}
buffer.append('}');
return buffer.toString();
}
/**
* @hide
*/
public static class StringParcelling implements
com.android.internal.util.Parcelling<LongSparseArray<String>> {
@Override
public void parcel(LongSparseArray<String> array, Parcel dest, int parcelFlags) {
if (array == null) {
dest.writeInt(-1);
return;
}
int size = array.mSize;
dest.writeInt(size);
dest.writeLongArray(array.mKeys);
dest.writeStringArray(Arrays.copyOfRange(array.mValues, 0, size, String[].class));
}
@Override
public LongSparseArray<String> unparcel(Parcel source) {
int size = source.readInt();
if (size == -1) {
return null;
}
LongSparseArray<String> array = new LongSparseArray<>(0);
array.mSize = size;
array.mKeys = source.createLongArray();
array.mValues = source.createStringArray();
// Make sure array is valid
Preconditions.checkArgument(array.mKeys.length >= size);
Preconditions.checkArgument(array.mValues.length >= size);
if (size > 0) {
long last = array.mKeys[0];
for (int i = 1; i < size; i++) {
Preconditions.checkArgument(last < array.mKeys[i]);
}
}
return array;
}
}
}