| # Copyright 2018 The TensorFlow Authors. All Rights Reserved. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # ============================================================================== |
| """Strategy combinations for combinations.combine().""" |
| |
| from __future__ import absolute_import |
| from __future__ import division |
| from __future__ import print_function |
| |
| from tensorflow.python import tf2 |
| from tensorflow.python.distribute import central_storage_strategy |
| from tensorflow.python.distribute import cluster_resolver |
| from tensorflow.python.distribute import collective_all_reduce_strategy |
| from tensorflow.python.distribute import combinations |
| from tensorflow.python.distribute import distribution_strategy_context |
| from tensorflow.python.distribute import mirrored_strategy as mirrored_lib |
| from tensorflow.python.distribute import multi_process_runner |
| from tensorflow.python.distribute import one_device_strategy as one_device_lib |
| from tensorflow.python.distribute import tpu_strategy as tpu_lib |
| from tensorflow.python.distribute.cluster_resolver import tpu_cluster_resolver |
| from tensorflow.python.eager import context |
| from tensorflow.python.eager import remote |
| from tensorflow.python.framework import config |
| from tensorflow.python.platform import flags |
| from tensorflow.python.tpu import device_assignment as device_assignment_lib |
| from tensorflow.python.tpu import tpu_strategy_util |
| |
| FLAGS = flags.FLAGS |
| |
| _did_connect_to_cluster = False |
| CollectiveAllReduceExtended = ( |
| collective_all_reduce_strategy.CollectiveAllReduceExtended) |
| |
| |
| # pylint: disable=missing-docstring |
| def _get_tpu_strategy_creator(steps_per_run, |
| use_single_core=False, |
| enable_packed_variable=False, |
| **kwargs): |
| |
| def _create_tpu_strategy(): |
| global _did_connect_to_cluster |
| |
| try: |
| # Attempt to locally discover the TPU. This will fail for Cloud TPU, in |
| # which case we fall back to the values passed as flags. |
| resolver = tpu_cluster_resolver.TPUClusterResolver() |
| did_automatically_resolve = True |
| except ValueError: |
| did_automatically_resolve = False |
| |
| # These flags will be defined by tpu_test_wrapper.py. |
| resolver = tpu_cluster_resolver.TPUClusterResolver( |
| tpu=hasattr(FLAGS, "tpu") and FLAGS.tpu or "", |
| zone=hasattr(FLAGS, "zone") and FLAGS.zone or None, |
| project=hasattr(FLAGS, "project") and FLAGS.project or None, |
| ) |
| |
| # Only connect once per process, rather than per test method. |
| if getattr(FLAGS, "tpu", "") or did_automatically_resolve: |
| if not _did_connect_to_cluster: |
| remote.connect_to_cluster(resolver) |
| _did_connect_to_cluster = True |
| |
| topology = tpu_strategy_util.initialize_tpu_system(resolver) |
| device_assignment = None |
| if use_single_core: |
| device_assignment = device_assignment_lib.DeviceAssignment( |
| topology, core_assignment=device_assignment_lib. |
| SINGLE_CORE_ASSIGNMENT) |
| |
| # Steps per run is only supported in TF 1.x |
| if tf2.enabled(): |
| strategy = tpu_lib.TPUStrategy(resolver, device_assignment, **kwargs) |
| else: |
| strategy = tpu_lib.TPUStrategyV1(resolver, steps_per_run, |
| device_assignment, **kwargs) |
| strategy._enable_packed_variable_in_eager_mode = enable_packed_variable # pylint: disable=protected-access |
| return strategy |
| |
| return _create_tpu_strategy |
| |
| |
| def _get_multi_worker_mirrored_creator(required_gpus): |
| |
| def _create_multi_worker_mirrored(): |
| tf_config = cluster_resolver.TFConfigClusterResolver() |
| master = tf_config.master() |
| if tf_config.rpc_layer: |
| # Strip off the rpc_layer suffix. |
| master = master[len("%s://" % tf_config.rpc_layer):] |
| resolver = cluster_resolver.SimpleClusterResolver( |
| cluster_spec=tf_config.cluster_spec(), |
| task_type=tf_config.task_type, |
| task_id=tf_config.task_id, |
| master=master, |
| environment=tf_config.environment, |
| num_accelerators={"GPU": required_gpus}, |
| rpc_layer=tf_config.rpc_layer or "grpc", |
| ) |
| # Disable health check. We don't have a reliable to shutdown the strategy |
| # (and thus the health check) at the end of a test. Turning on health check |
| # causes some flakiness since we re-create part of the server when creating |
| # a strategy, and our tests are capable of handling failures. |
| CollectiveAllReduceExtended._enable_check_health = False # pylint: disable=protected-access |
| # Always create the strategy in eager mode so that it starts the server and |
| # configures the eager context. The eager context can no longer be |
| # configured after initialization. |
| with context.eager_mode(): |
| strategy = collective_all_reduce_strategy.CollectiveAllReduceStrategy( |
| cluster_resolver=resolver) |
| # TODO(b/152320929): Wait for the cluster before proceeding, otherwise |
| # collectives may hang if any worker launches collectives before the chief |
| # creates the strategy. |
| try: |
| multi_process_runner.barrier().wait() |
| except ValueError: |
| # If the creator is called in the main process, |
| # multi_process_runner.barrier() raises ValueError, which is safe to |
| # ignore. |
| pass |
| return strategy |
| |
| return _create_multi_worker_mirrored |
| |
| |
| # pylint: disable=g-long-lambda |
| default_strategy = combinations.NamedDistribution( |
| "Default", |
| distribution_strategy_context._get_default_strategy, # pylint: disable=protected-access |
| required_gpus=None) |
| one_device_strategy = combinations.NamedDistribution( |
| "OneDeviceCPU", |
| lambda: one_device_lib.OneDeviceStrategy("/cpu:0"), |
| required_gpus=None) |
| one_device_strategy_gpu = combinations.NamedDistribution( |
| "OneDeviceGPU", |
| lambda: one_device_lib.OneDeviceStrategy("/gpu:0"), |
| required_gpus=1) |
| one_device_strategy_on_worker_1 = combinations.NamedDistribution( |
| "OneDeviceOnWorker1CPU", |
| lambda: one_device_lib.OneDeviceStrategy("/job:worker/replica:0/task:1/cpu:0"), # pylint: disable=line-too-long |
| required_gpus=None) |
| one_device_strategy_gpu_on_worker_1 = combinations.NamedDistribution( |
| "OneDeviceOnWorker1GPU", |
| lambda: one_device_lib.OneDeviceStrategy("/job:worker/replica:0/task:1/gpu:0"), # pylint: disable=line-too-long |
| required_gpus=1) |
| tpu_strategy = combinations.NamedDistribution( |
| "TPU", _get_tpu_strategy_creator(steps_per_run=2), required_tpu=True) |
| tpu_strategy_packed_var = combinations.NamedDistribution( |
| "TPUPackedVar", |
| _get_tpu_strategy_creator(steps_per_run=2, enable_packed_variable=True), |
| required_tpu=True) |
| tpu_strategy_one_step = combinations.NamedDistribution( |
| "TPUOneStep", _get_tpu_strategy_creator(steps_per_run=1), required_tpu=True) |
| tpu_strategy_one_core = combinations.NamedDistribution( |
| "TPUOneCore", |
| _get_tpu_strategy_creator(steps_per_run=2, use_single_core=True), |
| required_tpu=True) |
| tpu_strategy_one_step_one_core = combinations.NamedDistribution( |
| "TPUOneStepOneCore", |
| _get_tpu_strategy_creator(steps_per_run=1, use_single_core=True), |
| required_tpu=True) |
| cloud_tpu_strategy = combinations.NamedDistribution( |
| "CloudTPU", |
| _get_tpu_strategy_creator(steps_per_run=2), |
| required_tpu=True, |
| use_cloud_tpu=True) |
| mirrored_strategy_with_one_cpu = combinations.NamedDistribution( |
| "Mirrored1CPU", lambda: mirrored_lib.MirroredStrategy(["/cpu:0"])) |
| mirrored_strategy_with_one_gpu = combinations.NamedDistribution( |
| "Mirrored1GPU", |
| lambda: mirrored_lib.MirroredStrategy(["/gpu:0"]), |
| required_gpus=1) |
| mirrored_strategy_with_gpu_and_cpu = combinations.NamedDistribution( |
| "MirroredCPUAndGPU", |
| lambda: mirrored_lib.MirroredStrategy(["/gpu:0", "/cpu:0"]), |
| required_gpus=1) |
| mirrored_strategy_with_two_gpus = combinations.NamedDistribution( |
| "Mirrored2GPUs", |
| lambda: mirrored_lib.MirroredStrategy(["/gpu:0", "/gpu:1"]), |
| required_gpus=2) |
| # Should call set_virtual_cpus_to_at_least(3) in your test's setUp methods. |
| mirrored_strategy_with_cpu_1_and_2 = combinations.NamedDistribution( |
| "Mirrored2CPU", lambda: mirrored_lib.MirroredStrategy(["/cpu:1", "/cpu:2"])) |
| central_storage_strategy_with_two_gpus = combinations.NamedDistribution( |
| "CentralStorage2GPUs", |
| lambda: central_storage_strategy.CentralStorageStrategy._from_num_gpus(2), # pylint: disable=protected-access |
| required_gpus=2) |
| central_storage_strategy_with_gpu_and_cpu = combinations.NamedDistribution( |
| "CentralStorageCPUAndGPU", |
| lambda: central_storage_strategy.CentralStorageStrategy( |
| ["/gpu:0", "/cpu:0"]), |
| required_gpus=1) |
| # chief + 1 worker, with CPU. |
| multi_worker_mirrored_2x1_cpu = combinations.NamedDistribution( |
| "MultiWorkerMirrored2x1CPU", |
| _get_multi_worker_mirrored_creator(required_gpus=0), |
| has_chief=True, |
| num_workers=1, |
| use_pool_runner=True, |
| no_xla=True, |
| ) |
| # chief + 1 worker, with 1 GPU each. |
| multi_worker_mirrored_2x1_gpu = combinations.NamedDistribution( |
| "MultiWorkerMirrored2x1GPU", |
| _get_multi_worker_mirrored_creator(required_gpus=1), |
| has_chief=True, |
| num_workers=1, |
| required_gpus=1, |
| use_pool_runner=True, |
| no_xla=True, |
| ) |
| # chief + 1 worker, with 2 GPU each. |
| multi_worker_mirrored_2x2_gpu = combinations.NamedDistribution( |
| "MultiWorkerMirrored2x2GPU", |
| _get_multi_worker_mirrored_creator(required_gpus=2), |
| has_chief=True, |
| num_workers=1, |
| required_gpus=2, |
| use_pool_runner=True, |
| no_xla=True, |
| ) |
| # chief + 3 workers, with CPU. |
| multi_worker_mirrored_4x1_cpu = combinations.NamedDistribution( |
| "MultiWorkerMirrored4x1CPU", |
| _get_multi_worker_mirrored_creator(required_gpus=0), |
| has_chief=True, |
| num_workers=3, |
| use_pool_runner=True, |
| no_xla=True, |
| ) |
| |
| |
| graph_and_eager_modes = ["graph", "eager"] |
| |
| |
| # This function should be called in a test's `setUp` method with the |
| # maximum value needed in any test. |
| def set_virtual_cpus_to_at_least(num_virtual_cpus): |
| """Create virtual CPU devices if they haven't yet been created.""" |
| if num_virtual_cpus < 1: |
| raise ValueError("`num_virtual_cpus` must be at least 1 not %r" % |
| (num_virtual_cpus,)) |
| physical_devices = config.list_physical_devices("CPU") |
| if not physical_devices: |
| raise RuntimeError("No CPUs found") |
| configs = config.get_logical_device_configuration(physical_devices[0]) |
| if configs is None: |
| logical_devices = [ |
| context.LogicalDeviceConfiguration() for _ in range(num_virtual_cpus) |
| ] |
| config.set_logical_device_configuration(physical_devices[0], |
| logical_devices) |
| else: |
| if len(configs) < num_virtual_cpus: |
| raise RuntimeError("Already configured with %d < %d virtual CPUs" % |
| (len(configs), num_virtual_cpus)) |
| |
| |
| strategies_minus_tpu = [ |
| default_strategy, |
| one_device_strategy, |
| one_device_strategy_gpu, |
| mirrored_strategy_with_gpu_and_cpu, |
| mirrored_strategy_with_two_gpus, |
| central_storage_strategy_with_gpu_and_cpu, |
| ] |
| |
| strategies_minus_default_and_tpu = [ |
| one_device_strategy, |
| one_device_strategy_gpu, |
| mirrored_strategy_with_gpu_and_cpu, |
| mirrored_strategy_with_two_gpus, |
| ] |
| |
| tpu_strategies = [ |
| tpu_strategy, # steps_per_run=2 |
| tpu_strategy_one_step, |
| tpu_strategy_packed_var, |
| cloud_tpu_strategy, |
| ] |
| |
| all_strategies_minus_default = strategies_minus_default_and_tpu + tpu_strategies |
| |
| all_strategies = strategies_minus_tpu + tpu_strategies |
| |
| two_replica_strategies = [ |
| mirrored_strategy_with_gpu_and_cpu, |
| mirrored_strategy_with_two_gpus, |
| multi_worker_mirrored_2x1_cpu, |
| multi_worker_mirrored_2x1_gpu, |
| tpu_strategy, # steps_per_run=2 |
| tpu_strategy_one_step, |
| central_storage_strategy_with_gpu_and_cpu, |
| ] |
| |
| four_replica_strategies = [ |
| multi_worker_mirrored_2x2_gpu, |
| multi_worker_mirrored_4x1_cpu, |
| ] |
| |
| # TODO(b/159831907): replace with two_replica_strategies after the tests using |
| # it work with MWMS. |
| multidevice_strategies = [ |
| mirrored_strategy_with_gpu_and_cpu, |
| mirrored_strategy_with_two_gpus, |
| tpu_strategy, # steps_per_run=2 |
| tpu_strategy_one_step |
| ] |
| |
| multiworker_strategies = [ |
| multi_worker_mirrored_2x1_cpu, |
| multi_worker_mirrored_2x1_gpu, |
| multi_worker_mirrored_2x2_gpu |
| ] |
| |
| |
| def strategy_minus_tpu_combinations(): |
| return combinations.combine( |
| distribution=strategies_minus_tpu, mode=["graph", "eager"]) |
| |
| |
| def tpu_strategy_combinations(): |
| return combinations.combine(distribution=tpu_strategies, mode=["graph"]) |
| |
| |
| def all_strategy_combinations(): |
| return strategy_minus_tpu_combinations() + tpu_strategy_combinations() |
| |
| |
| def all_strategy_minus_default_and_tpu_combinations(): |
| return combinations.combine( |
| distribution=[ |
| one_device_strategy, one_device_strategy_gpu, |
| mirrored_strategy_with_gpu_and_cpu, mirrored_strategy_with_two_gpus |
| ], |
| mode=["graph", "eager"]) |
| |
| |
| def all_strategy_combinations_minus_default(): |
| return (all_strategy_minus_default_and_tpu_combinations() + |
| tpu_strategy_combinations()) |