Support global and nested MultiProcessRunnerPool

We used to launch MultiProcessRunnerPool as daemon processes to blocking the
program from exiting. We also requires whoever creates global
MultiProcessRunnerPool to register atexit callbacks to shut them down to avoid
thread sanitizer complaints.

This change avoids such pitfalls and allows nested MultiProcessRunnerPool. One
use case of nested pools is that we need to spawn a new process with
accelerators hidden to test saving/loading logics. We already use a pool for
multi worker testing, we need a nested pool of CPU only processes to test the
loading part.

As you can see this is tricky for two reasons:
1) processes spawned by multiprocessing don't execute atexit callbacks [1]. Even
if they do, the multiprocessing exit hook that waits for all processes executes
before atexit callbacks. [2]
2) multiprocessing doesn't register the hook as an atexit callback when being
imported. We need to make sure our callback is registered after the exit hook of
multiprocessing library.

[1] https://bugs.python.org/issue39675
[2] https://github.com/python/cpython/blob/069b8d20be8018fbd49ed5aaf64c4caba311e48f/Lib/multiprocessing/process.py#L261

PiperOrigin-RevId: 333843641
Change-Id: I8305ef8b8e76aa0e9a9623c70ea1c026fb501f15
4 files changed
tree: de87d8320efd71350948b211cf2073d8a57eed95
  1. .github/
  2. tensorflow/
  3. third_party/
  4. tools/
  5. .bazelrc
  6. .bazelversion
  7. .gitignore
  8. ACKNOWLEDGMENTS
  9. arm_compiler.BUILD
  10. AUTHORS
  11. BUILD
  12. CODE_OF_CONDUCT.md
  13. CODEOWNERS
  14. configure
  15. configure.cmd
  16. configure.py
  17. CONTRIBUTING.md
  18. ISSUE_TEMPLATE.md
  19. ISSUES.md
  20. LICENSE
  21. models.BUILD
  22. README.md
  23. RELEASE.md
  24. SECURITY.md
  25. WORKSPACE
README.md

Python PyPI

Documentation
Documentation

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.

TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization to conduct machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.

TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed backward compatible API for other languages.

Keep up-to-date with release announcements and security updates by subscribing to announce@tensorflow.org. See all the mailing lists.

Install

See the TensorFlow install guide for the pip package, to enable GPU support, use a Docker container, and build from source.

To install the current release, which includes support for CUDA-enabled GPU cards (Ubuntu and Windows):

$ pip install tensorflow

A smaller CPU-only package is also available:

$ pip install tensorflow-cpu

To update TensorFlow to the latest version, add --upgrade flag to the above commands.

Nightly binaries are available for testing using the tf-nightly and tf-nightly-cpu packages on PyPi.

Try your first TensorFlow program

$ python
>>> import tensorflow as tf
>>> tf.add(1, 2).numpy()
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
b'Hello, TensorFlow!'

For more examples, see the TensorFlow tutorials.

Contribution guidelines

If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

We use GitHub issues for tracking requests and bugs, please see TensorFlow Discuss for general questions and discussion, and please direct specific questions to Stack Overflow.

The TensorFlow project strives to abide by generally accepted best practices in open-source software development:

Fuzzing Status CII Best Practices Contributor Covenant

Continuous build status

Official Builds

Build TypeStatusArtifacts
Linux CPUStatusPyPI
Linux GPUStatusPyPI
Linux XLAStatusTBA
macOSStatusPyPI
Windows CPUStatusPyPI
Windows GPUStatusPyPI
AndroidStatusDownload
Raspberry Pi 0 and 1StatusPy3
Raspberry Pi 2 and 3StatusPy3
Libtensorflow MacOS CPUStatusGCS
Libtensorflow Linux CPUStatusGCS
Libtensorflow Linux GPUStatusGCS
Libtensorflow Windows CPUStatusGCS
Libtensorflow Windows GPUStatusGCS

Community Supported Builds

Build TypeStatusArtifacts
Linux AMD ROCm GPU NightlyBuild StatusNightly
Linux AMD ROCm GPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux s390x NightlyBuild StatusNightly
Linux s390x CPU Stable ReleaseBuild StatusRelease
Linux ppc64le CPU NightlyBuild StatusNightly
Linux ppc64le CPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux ppc64le GPU NightlyBuild StatusNightly
Linux ppc64le GPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux aarch64 CPU Nightly
Python 3.6
Build StatusNightly
Linux aarch64 CPU Stable ReleaseBuild StatusRelease 1.15 / 2.x
Linux CPU with Intel oneAPI Deep Neural Network Library (oneDNN) NightlyBuild StatusNightly
Linux CPU with Intel oneAPI Deep Neural Network Library (oneDNN) Stable ReleaseBuild StatusRelease 1.15 / 2.x
Red Hat® Enterprise Linux® 7.6 CPU & GPU
Python 2.7, 3.6
Build Status1.13.1 PyPI

Resources

Learn more about the TensorFlow community and how to contribute.

License

Apache License 2.0