blob: 0ba81288bb779e14646c3ba94c9b7b5e88dce3d8 [file] [log] [blame]
#![allow(unused_variables)]
#![allow(missing_docs)]
use super::*;
/// A slice-backed vector-like data structure.
///
/// This is a very similar concept to `ArrayVec`, but instead
/// of the backing memory being an owned array, the backing
/// memory is a unique-borrowed slice. You can thus create
/// one of these structures "around" some slice that you're
/// working with to make it easier to manipulate.
///
/// * Has a fixed capacity (the initial slice size).
/// * Has a variable length.
pub struct SliceVec<'s, T> {
data: &'s mut [T],
len: usize,
}
impl<'s, T> Default for SliceVec<'s, T> {
#[inline(always)]
#[must_use]
fn default() -> Self {
Self { data: &mut [], len: 0 }
}
}
impl<'s, T> Deref for SliceVec<'s, T> {
type Target = [T];
#[inline(always)]
#[must_use]
fn deref(&self) -> &Self::Target {
&self.data[..self.len]
}
}
impl<'s, T> DerefMut for SliceVec<'s, T> {
#[inline(always)]
#[must_use]
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.data[..self.len]
}
}
impl<'s, T, I> Index<I> for SliceVec<'s, T>
where
I: SliceIndex<[T]>,
{
type Output = <I as SliceIndex<[T]>>::Output;
#[inline(always)]
#[must_use]
fn index(&self, index: I) -> &Self::Output {
&self.deref()[index]
}
}
impl<'s, T, I> IndexMut<I> for SliceVec<'s, T>
where
I: SliceIndex<[T]>,
{
#[inline(always)]
#[must_use]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
&mut self.deref_mut()[index]
}
}
impl<'s, T> SliceVec<'s, T> {
#[inline]
pub fn append(&mut self, other: &mut Self)
where
T: Default,
{
for item in other.drain(..) {
self.push(item)
}
}
/// A `*mut` pointer to the backing slice.
///
/// ## Safety
///
/// This pointer has provenance over the _entire_ backing slice.
#[inline(always)]
#[must_use]
pub fn as_mut_ptr(&mut self) -> *mut T {
self.data.as_mut_ptr()
}
/// Performs a `deref_mut`, into unique slice form.
#[inline(always)]
#[must_use]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self.deref_mut()
}
/// A `*const` pointer to the backing slice.
///
/// ## Safety
///
/// This pointer has provenance over the _entire_ backing slice.
#[inline(always)]
#[must_use]
pub fn as_ptr(&self) -> *const T {
self.data.as_ptr()
}
/// Performs a `deref`, into shared slice form.
#[inline(always)]
#[must_use]
pub fn as_slice(&self) -> &[T] {
self.deref()
}
/// The capacity of the `SliceVec`.
///
/// This the length of the initial backing slice.
#[inline(always)]
#[must_use]
pub fn capacity(&self) -> usize {
self.data.len()
}
/// Truncates the `SliceVec` down to length 0.
#[inline(always)]
pub fn clear(&mut self)
where
T: Default,
{
self.truncate(0)
}
/// Creates a draining iterator that removes the specified range in the vector
/// and yields the removed items.
///
/// ## Panics
/// * If the start is greater than the end
/// * If the end is past the edge of the vec.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [6, 7, 8];
/// let mut sv = SliceVec::from(&mut arr);
/// let drained_values: ArrayVec<[i32; 4]> = sv.drain(1..).collect();
/// assert_eq!(sv.as_slice(), &[6][..]);
/// assert_eq!(drained_values.as_slice(), &[7, 8][..]);
///
/// sv.drain(..);
/// assert_eq!(sv.as_slice(), &[]);
/// ```
#[inline]
pub fn drain<'p, R: RangeBounds<usize>>(
&'p mut self, range: R,
) -> SliceVecDrain<'p, 's, T>
where
T: Default,
{
use core::ops::Bound;
let start = match range.start_bound() {
Bound::Included(x) => *x,
Bound::Excluded(x) => x.saturating_add(1),
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(x) => x.saturating_add(1),
Bound::Excluded(x) => *x,
Bound::Unbounded => self.len,
};
assert!(
start <= end,
"SliceVec::drain> Illegal range, {} to {}",
start,
end
);
assert!(
end <= self.len,
"SliceVec::drain> Range ends at {} but length is only {}!",
end,
self.len
);
SliceVecDrain {
parent: self,
target_start: start,
target_index: start,
target_end: end,
}
}
#[inline]
pub fn extend_from_slice(&mut self, sli: &[T])
where
T: Clone,
{
if sli.is_empty() {
return;
}
let new_len = self.len + sli.len();
if new_len > self.capacity() {
panic!(
"SliceVec::extend_from_slice> total length {} exceeds capacity {}",
new_len,
self.capacity()
)
}
let target = &mut self.data[self.len..new_len];
target.clone_from_slice(sli);
self.set_len(new_len);
}
/// Fill the vector until its capacity has been reached.
///
/// Successively fills unused space in the spare slice of the vector with
/// elements from the iterator. It then returns the remaining iterator
/// without exhausting it. This also allows appending the head of an
/// infinite iterator.
///
/// This is an alternative to `Extend::extend` method for cases where the
/// length of the iterator can not be checked. Since this vector can not
/// reallocate to increase its capacity, it is unclear what to do with
/// remaining elements in the iterator and the iterator itself. The
/// interface also provides no way to communicate this to the caller.
///
/// ## Panics
/// * If the `next` method of the provided iterator panics.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [7, 7, 7, 7];
/// let mut sv = SliceVec::from_slice_len(&mut arr, 0);
/// let mut to_inf = sv.fill(0..);
/// assert_eq!(&sv[..], [0, 1, 2, 3]);
/// assert_eq!(to_inf.next(), Some(4));
/// ```
#[inline]
pub fn fill<I: IntoIterator<Item = T>>(&mut self, iter: I) -> I::IntoIter {
let mut iter = iter.into_iter();
for element in iter.by_ref().take(self.capacity() - self.len()) {
self.push(element);
}
iter
}
/// Wraps up a slice and uses the given length as the initial length.
///
/// If you want to simply use the full slice, use `from` instead.
///
/// ## Panics
///
/// * The length specified must be less than or equal to the capacity of the
/// slice.
#[inline]
#[must_use]
#[allow(clippy::match_wild_err_arm)]
pub fn from_slice_len(data: &'s mut [T], len: usize) -> Self {
assert!(len <= data.len());
Self { data, len }
}
/// Inserts an item at the position given, moving all following elements +1
/// index.
///
/// ## Panics
/// * If `index` > `len`
/// * If the capacity is exhausted
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [1, 2, 3, 0, 0];
/// let mut sv = SliceVec::from_slice_len(&mut arr, 3);
/// sv.insert(1, 4);
/// assert_eq!(sv.as_slice(), &[1, 4, 2, 3]);
/// sv.insert(4, 5);
/// assert_eq!(sv.as_slice(), &[1, 4, 2, 3, 5]);
/// ```
#[inline]
pub fn insert(&mut self, index: usize, item: T) {
if index > self.len {
panic!("SliceVec::insert> index {} is out of bounds {}", index, self.len);
}
// Try to push the element.
self.push(item);
// And move it into its place.
self.as_mut_slice()[index..].rotate_right(1);
}
/// Checks if the length is 0.
#[inline(always)]
#[must_use]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// The length of the `SliceVec` (in elements).
#[inline(always)]
#[must_use]
pub fn len(&self) -> usize {
self.len
}
/// Remove and return the last element of the vec, if there is one.
///
/// ## Failure
/// * If the vec is empty you get `None`.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [1, 2];
/// let mut sv = SliceVec::from(&mut arr);
/// assert_eq!(sv.pop(), Some(2));
/// assert_eq!(sv.pop(), Some(1));
/// assert_eq!(sv.pop(), None);
/// ```
#[inline]
pub fn pop(&mut self) -> Option<T>
where
T: Default,
{
if self.len > 0 {
self.len -= 1;
let out = take(&mut self.data[self.len]);
Some(out)
} else {
None
}
}
/// Place an element onto the end of the vec.
///
/// ## Panics
/// * If the length of the vec would overflow the capacity.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [0, 0];
/// let mut sv = SliceVec::from_slice_len(&mut arr, 0);
/// assert_eq!(&sv[..], []);
/// sv.push(1);
/// assert_eq!(&sv[..], [1]);
/// sv.push(2);
/// assert_eq!(&sv[..], [1, 2]);
/// // sv.push(3); this would overflow the ArrayVec and panic!
/// ```
#[inline(always)]
pub fn push(&mut self, val: T) {
if self.len < self.capacity() {
self.data[self.len] = val;
self.len += 1;
} else {
panic!("SliceVec::push> capacity overflow")
}
}
/// Removes the item at `index`, shifting all others down by one index.
///
/// Returns the removed element.
///
/// ## Panics
///
/// * If the index is out of bounds.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [1, 2, 3];
/// let mut sv = SliceVec::from(&mut arr);
/// assert_eq!(sv.remove(1), 2);
/// assert_eq!(&sv[..], [1, 3]);
/// ```
#[inline]
pub fn remove(&mut self, index: usize) -> T
where
T: Default,
{
let targets: &mut [T] = &mut self.deref_mut()[index..];
let item = take(&mut targets[0]);
targets.rotate_left(1);
self.len -= 1;
item
}
/// As [`resize_with`](SliceVec::resize_with)
/// and it clones the value as the closure.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
/// // bigger
/// let mut arr = ["hello", "", "", "", ""];
/// let mut sv = SliceVec::from_slice_len(&mut arr, 1);
/// sv.resize(3, "world");
/// assert_eq!(&sv[..], ["hello", "world", "world"]);
///
/// // smaller
/// let mut arr = ['a', 'b', 'c', 'd'];
/// let mut sv = SliceVec::from(&mut arr);
/// sv.resize(2, 'z');
/// assert_eq!(&sv[..], ['a', 'b']);
/// ```
#[inline]
pub fn resize(&mut self, new_len: usize, new_val: T)
where
T: Clone,
{
self.resize_with(new_len, || new_val.clone())
}
/// Resize the vec to the new length.
///
/// * If it needs to be longer, it's filled with repeated calls to the
/// provided function.
/// * If it needs to be shorter, it's truncated.
/// * If the type needs to drop the truncated slots are filled with calls to
/// the provided function.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [1, 2, 3, 7, 7, 7, 7];
/// let mut sv = SliceVec::from_slice_len(&mut arr, 3);
/// sv.resize_with(5, Default::default);
/// assert_eq!(&sv[..], [1, 2, 3, 0, 0]);
///
/// let mut arr = [0, 0, 0, 0];
/// let mut sv = SliceVec::from_slice_len(&mut arr, 0);
/// let mut p = 1;
/// sv.resize_with(4, || {
/// p *= 2;
/// p
/// });
/// assert_eq!(&sv[..], [2, 4, 8, 16]);
/// ```
#[inline]
pub fn resize_with<F: FnMut() -> T>(&mut self, new_len: usize, mut f: F) {
match new_len.checked_sub(self.len) {
None => {
if needs_drop::<T>() {
while self.len() > new_len {
self.len -= 1;
self.data[self.len] = f();
}
} else {
self.len = new_len;
}
}
Some(new_elements) => {
for _ in 0..new_elements {
self.push(f());
}
}
}
}
/// Walk the vec and keep only the elements that pass the predicate given.
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
///
/// let mut arr = [1, 1, 2, 3, 3, 4];
/// let mut sv = SliceVec::from(&mut arr);
/// sv.retain(|&x| x % 2 == 0);
/// assert_eq!(&sv[..], [2, 4]);
/// ```
#[inline]
pub fn retain<F: FnMut(&T) -> bool>(&mut self, mut acceptable: F)
where
T: Default,
{
// Drop guard to contain exactly the remaining elements when the test
// panics.
struct JoinOnDrop<'vec, Item> {
items: &'vec mut [Item],
done_end: usize,
// Start of tail relative to `done_end`.
tail_start: usize,
}
impl<Item> Drop for JoinOnDrop<'_, Item> {
fn drop(&mut self) {
self.items[self.done_end..].rotate_left(self.tail_start);
}
}
let mut rest = JoinOnDrop { items: self.data, done_end: 0, tail_start: 0 };
for idx in 0..self.len {
// Loop start invariant: idx = rest.done_end + rest.tail_start
if !acceptable(&rest.items[idx]) {
let _ = take(&mut rest.items[idx]);
self.len -= 1;
rest.tail_start += 1;
} else {
rest.items.swap(rest.done_end, idx);
rest.done_end += 1;
}
}
}
/// Forces the length of the vector to `new_len`.
///
/// ## Panics
/// * If `new_len` is greater than the vec's capacity.
///
/// ## Safety
/// * This is a fully safe operation! The inactive memory already counts as
/// "initialized" by Rust's rules.
/// * Other than "the memory is initialized" there are no other guarantees
/// regarding what you find in the inactive portion of the vec.
#[inline(always)]
pub fn set_len(&mut self, new_len: usize) {
if new_len > self.capacity() {
// Note(Lokathor): Technically we don't have to panic here, and we could
// just let some other call later on trigger a panic on accident when the
// length is wrong. However, it's a lot easier to catch bugs when things
// are more "fail-fast".
panic!(
"SliceVec::set_len> new length {} exceeds capacity {}",
new_len,
self.capacity()
)
} else {
self.len = new_len;
}
}
/// Splits the collection at the point given.
///
/// * `[0, at)` stays in this vec (and this vec is now full).
/// * `[at, len)` ends up in the new vec (with any spare capacity).
///
/// ## Panics
/// * if `at` > `self.len()`
///
/// ## Example
///
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [1, 2, 3];
/// let mut sv = SliceVec::from(&mut arr);
/// let sv2 = sv.split_off(1);
/// assert_eq!(&sv[..], [1]);
/// assert_eq!(&sv2[..], [2, 3]);
/// ```
#[inline]
pub fn split_off<'a>(&'a mut self, at: usize) -> SliceVec<'s, T> {
let mut new = Self::default();
let backing: &'s mut [T] = replace(&mut self.data, &mut []);
let (me, other) = backing.split_at_mut(at);
new.len = self.len - at;
new.data = other;
self.len = me.len();
self.data = me;
new
}
/// Remove an element, swapping the end of the vec into its place.
///
/// ## Panics
/// * If the index is out of bounds.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = ["foo", "bar", "quack", "zap"];
/// let mut sv = SliceVec::from(&mut arr);
///
/// assert_eq!(sv.swap_remove(1), "bar");
/// assert_eq!(&sv[..], ["foo", "zap", "quack"]);
///
/// assert_eq!(sv.swap_remove(0), "foo");
/// assert_eq!(&sv[..], ["quack", "zap"]);
/// ```
#[inline]
pub fn swap_remove(&mut self, index: usize) -> T
where
T: Default,
{
assert!(
index < self.len,
"SliceVec::swap_remove> index {} is out of bounds {}",
index,
self.len
);
if index == self.len - 1 {
self.pop().unwrap()
} else {
let i = self.pop().unwrap();
replace(&mut self[index], i)
}
}
/// Reduces the vec's length to the given value.
///
/// If the vec is already shorter than the input, nothing happens.
#[inline]
pub fn truncate(&mut self, new_len: usize)
where
T: Default,
{
if needs_drop::<T>() {
while self.len > new_len {
self.pop();
}
} else {
self.len = self.len.min(new_len);
}
}
/// Wraps a slice, using the given length as the starting length.
///
/// If you want to use the whole length of the slice, you can just use the
/// `From` impl.
///
/// ## Failure
///
/// If the given length is greater than the length of the slice you get
/// `None`.
#[inline]
pub fn try_from_slice_len(data: &'s mut [T], len: usize) -> Option<Self> {
if len <= data.len() {
Some(Self { data, len })
} else {
None
}
}
}
#[cfg(feature = "grab_spare_slice")]
impl<'s, T> SliceVec<'s, T> {
/// Obtain the shared slice of the array _after_ the active memory.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [0; 4];
/// let mut sv = SliceVec::from_slice_len(&mut arr, 0);
/// assert_eq!(sv.grab_spare_slice().len(), 4);
/// sv.push(10);
/// sv.push(11);
/// sv.push(12);
/// sv.push(13);
/// assert_eq!(sv.grab_spare_slice().len(), 0);
/// ```
#[inline(always)]
pub fn grab_spare_slice(&self) -> &[T] {
&self.data[self.len..]
}
/// Obtain the mutable slice of the array _after_ the active memory.
///
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [0; 4];
/// let mut sv = SliceVec::from_slice_len(&mut arr, 0);
/// assert_eq!(sv.grab_spare_slice_mut().len(), 4);
/// sv.push(10);
/// sv.push(11);
/// assert_eq!(sv.grab_spare_slice_mut().len(), 2);
/// ```
#[inline(always)]
pub fn grab_spare_slice_mut(&mut self) -> &mut [T] {
&mut self.data[self.len..]
}
}
impl<'s, T> From<&'s mut [T]> for SliceVec<'s, T> {
/// Uses the full slice as the initial length.
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [0_i32; 2];
/// let mut sv = SliceVec::from(&mut arr[..]);
/// ```
fn from(data: &'s mut [T]) -> Self {
let len = data.len();
Self { data, len }
}
}
impl<'s, T, A> From<&'s mut A> for SliceVec<'s, T>
where
A: AsMut<[T]>,
{
/// Calls `AsRef::as_mut` then uses the full slice as the initial length.
/// ## Example
/// ```rust
/// # use tinyvec::*;
/// let mut arr = [0, 0];
/// let mut sv = SliceVec::from(&mut arr);
/// ```
fn from(a: &'s mut A) -> Self {
let data = a.as_mut();
let len = data.len();
Self { data, len }
}
}
/// Draining iterator for [`SliceVec`]
///
/// See [`SliceVec::drain`](SliceVec::drain)
pub struct SliceVecDrain<'p, 's, T: Default> {
parent: &'p mut SliceVec<'s, T>,
target_start: usize,
target_index: usize,
target_end: usize,
}
impl<'p, 's, T: Default> Iterator for SliceVecDrain<'p, 's, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.target_index != self.target_end {
let out = take(&mut self.parent[self.target_index]);
self.target_index += 1;
Some(out)
} else {
None
}
}
}
impl<'p, 's, T: Default> FusedIterator for SliceVecDrain<'p, 's, T> {}
impl<'p, 's, T: Default> Drop for SliceVecDrain<'p, 's, T> {
#[inline]
fn drop(&mut self) {
// Changed because it was moving `self`, it's also more clear and the std
// does the same
self.for_each(drop);
// Implementation very similar to [`SliceVec::remove`](SliceVec::remove)
let count = self.target_end - self.target_start;
let targets: &mut [T] = &mut self.parent.deref_mut()[self.target_start..];
targets.rotate_left(count);
self.parent.len -= count;
}
}
impl<'s, T> AsMut<[T]> for SliceVec<'s, T> {
#[inline(always)]
#[must_use]
fn as_mut(&mut self) -> &mut [T] {
&mut *self
}
}
impl<'s, T> AsRef<[T]> for SliceVec<'s, T> {
#[inline(always)]
#[must_use]
fn as_ref(&self) -> &[T] {
&*self
}
}
impl<'s, T> Borrow<[T]> for SliceVec<'s, T> {
#[inline(always)]
#[must_use]
fn borrow(&self) -> &[T] {
&*self
}
}
impl<'s, T> BorrowMut<[T]> for SliceVec<'s, T> {
#[inline(always)]
#[must_use]
fn borrow_mut(&mut self) -> &mut [T] {
&mut *self
}
}
impl<'s, T> Extend<T> for SliceVec<'s, T> {
#[inline]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
for t in iter {
self.push(t)
}
}
}
impl<'s, T> IntoIterator for SliceVec<'s, T> {
type Item = &'s mut T;
type IntoIter = core::slice::IterMut<'s, T>;
#[inline(always)]
#[must_use]
fn into_iter(self) -> Self::IntoIter {
self.data.iter_mut()
}
}
impl<'s, T> PartialEq for SliceVec<'s, T>
where
T: PartialEq,
{
#[inline]
#[must_use]
fn eq(&self, other: &Self) -> bool {
self.as_slice().eq(other.as_slice())
}
}
impl<'s, T> Eq for SliceVec<'s, T> where T: Eq {}
impl<'s, T> PartialOrd for SliceVec<'s, T>
where
T: PartialOrd,
{
#[inline]
#[must_use]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
self.as_slice().partial_cmp(other.as_slice())
}
}
impl<'s, T> Ord for SliceVec<'s, T>
where
T: Ord,
{
#[inline]
#[must_use]
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
self.as_slice().cmp(other.as_slice())
}
}
impl<'s, T> PartialEq<&[T]> for SliceVec<'s, T>
where
T: PartialEq,
{
#[inline]
#[must_use]
fn eq(&self, other: &&[T]) -> bool {
self.as_slice().eq(*other)
}
}
impl<'s, T> Hash for SliceVec<'s, T>
where
T: Hash,
{
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.as_slice().hash(state)
}
}
#[cfg(feature = "experimental_write_impl")]
impl<'s> core::fmt::Write for SliceVec<'s, u8> {
fn write_str(&mut self, s: &str) -> core::fmt::Result {
let my_len = self.len();
let str_len = s.as_bytes().len();
if my_len + str_len <= self.capacity() {
let remainder = &mut self.data[my_len..];
let target = &mut remainder[..str_len];
target.copy_from_slice(s.as_bytes());
Ok(())
} else {
Err(core::fmt::Error)
}
}
}
// // // // // // // //
// Formatting impls
// // // // // // // //
impl<'s, T> Binary for SliceVec<'s, T>
where
T: Binary,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
Binary::fmt(elem, f)?;
}
write!(f, "]")
}
}
impl<'s, T> Debug for SliceVec<'s, T>
where
T: Debug,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
Debug::fmt(elem, f)?;
}
write!(f, "]")
}
}
impl<'s, T> Display for SliceVec<'s, T>
where
T: Display,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
Display::fmt(elem, f)?;
}
write!(f, "]")
}
}
impl<'s, T> LowerExp for SliceVec<'s, T>
where
T: LowerExp,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
LowerExp::fmt(elem, f)?;
}
write!(f, "]")
}
}
impl<'s, T> LowerHex for SliceVec<'s, T>
where
T: LowerHex,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
LowerHex::fmt(elem, f)?;
}
write!(f, "]")
}
}
impl<'s, T> Octal for SliceVec<'s, T>
where
T: Octal,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
Octal::fmt(elem, f)?;
}
write!(f, "]")
}
}
impl<'s, T> Pointer for SliceVec<'s, T>
where
T: Pointer,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
Pointer::fmt(elem, f)?;
}
write!(f, "]")
}
}
impl<'s, T> UpperExp for SliceVec<'s, T>
where
T: UpperExp,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
UpperExp::fmt(elem, f)?;
}
write!(f, "]")
}
}
impl<'s, T> UpperHex for SliceVec<'s, T>
where
T: UpperHex,
{
#[allow(clippy::missing_inline_in_public_items)]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
write!(f, "[")?;
for (i, elem) in self.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
UpperHex::fmt(elem, f)?;
}
write!(f, "]")
}
}