| """distutils.ccompiler |
| |
| Contains CCompiler, an abstract base class that defines the interface |
| for the Distutils compiler abstraction model.""" |
| |
| import sys, os, re |
| from distutils.errors import ( |
| DistutilsModuleError, DistutilsPlatformError, |
| ) |
| from distutils.util import split_quoted |
| |
| class CCompiler: |
| """Abstract base class to define the interface that must be implemented |
| by real compiler classes. Also has some utility methods used by |
| several compiler classes. |
| |
| The basic idea behind a compiler abstraction class is that each |
| instance can be used for all the compile/link steps in building a |
| single project. Thus, attributes common to all of those compile and |
| link steps -- include directories, macros to define, libraries to link |
| against, etc. -- are attributes of the compiler instance. To allow for |
| variability in how individual files are treated, most of those |
| attributes may be varied on a per-compilation or per-link basis. |
| """ |
| |
| # 'compiler_type' is a class attribute that identifies this class. It |
| # keeps code that wants to know what kind of compiler it's dealing with |
| # from having to import all possible compiler classes just to do an |
| # 'isinstance'. In concrete CCompiler subclasses, 'compiler_type' |
| # should really, really be one of the keys of the 'compiler_class' |
| # dictionary (see below -- used by the 'new_compiler()' factory |
| # function) -- authors of new compiler interface classes are |
| # responsible for updating 'compiler_class'! |
| compiler_type = None |
| |
| # XXX things not handled by this compiler abstraction model: |
| # * client can't provide additional options for a compiler, |
| # e.g. warning, optimization, debugging flags. Perhaps this |
| # should be the domain of concrete compiler abstraction classes |
| # (UnixCCompiler, MSVCCompiler, etc.) -- or perhaps the base |
| # class should have methods for the common ones. |
| # * can't completely override the include or library searchg |
| # path, ie. no "cc -I -Idir1 -Idir2" or "cc -L -Ldir1 -Ldir2". |
| # I'm not sure how widely supported this is even by Unix |
| # compilers, much less on other platforms. And I'm even less |
| # sure how useful it is; maybe for cross-compiling, but |
| # support for that is a ways off. (And anyways, cross |
| # compilers probably have a dedicated binary with the |
| # right paths compiled in. I hope.) |
| # * can't do really freaky things with the library list/library |
| # dirs, e.g. "-Ldir1 -lfoo -Ldir2 -lfoo" to link against |
| # different versions of libfoo.a in different locations. I |
| # think this is useless without the ability to null out the |
| # library search path anyways. |
| |
| |
| # Subclasses that rely on the standard filename generation methods |
| # implemented below should override these; see the comment near |
| # those methods ('object_filenames()' et. al.) for details: |
| src_extensions = None # list of strings |
| obj_extension = None # string |
| static_lib_extension = None |
| shared_lib_extension = None # string |
| static_lib_format = None # format string |
| shared_lib_format = None # prob. same as static_lib_format |
| exe_extension = None # string |
| |
| # Default language settings. language_map is used to detect a source |
| # file or Extension target language, checking source filenames. |
| # language_order is used to detect the language precedence, when deciding |
| # what language to use when mixing source types. For example, if some |
| # extension has two files with ".c" extension, and one with ".cpp", it |
| # is still linked as c++. |
| language_map = {".c" : "c", |
| ".cc" : "c++", |
| ".cpp" : "c++", |
| ".cxx" : "c++", |
| ".m" : "objc", |
| } |
| language_order = ["c++", "objc", "c"] |
| |
| def __init__(self, verbose=0, dry_run=0, force=0): |
| self.dry_run = dry_run |
| self.force = force |
| self.verbose = verbose |
| |
| # 'output_dir': a common output directory for object, library, |
| # shared object, and shared library files |
| self.output_dir = None |
| |
| # 'macros': a list of macro definitions (or undefinitions). A |
| # macro definition is a 2-tuple (name, value), where the value is |
| # either a string or None (no explicit value). A macro |
| # undefinition is a 1-tuple (name,). |
| self.macros = [] |
| |
| # 'include_dirs': a list of directories to search for include files |
| self.include_dirs = [] |
| |
| # 'libraries': a list of libraries to include in any link |
| # (library names, not filenames: eg. "foo" not "libfoo.a") |
| self.libraries = [] |
| |
| # 'library_dirs': a list of directories to search for libraries |
| self.library_dirs = [] |
| |
| # 'runtime_library_dirs': a list of directories to search for |
| # shared libraries/objects at runtime |
| self.runtime_library_dirs = [] |
| |
| # 'objects': a list of object files (or similar, such as explicitly |
| # named library files) to include on any link |
| self.objects = [] |
| |
| for key in self.executables.keys(): |
| self.set_executable(key, self.executables[key]) |
| |
| def set_executables(self, **kwargs): |
| """Define the executables (and options for them) that will be run |
| to perform the various stages of compilation. The exact set of |
| executables that may be specified here depends on the compiler |
| class (via the 'executables' class attribute), but most will have: |
| compiler the C/C++ compiler |
| linker_so linker used to create shared objects and libraries |
| linker_exe linker used to create binary executables |
| archiver static library creator |
| |
| On platforms with a command-line (Unix, DOS/Windows), each of these |
| is a string that will be split into executable name and (optional) |
| list of arguments. (Splitting the string is done similarly to how |
| Unix shells operate: words are delimited by spaces, but quotes and |
| backslashes can override this. See |
| 'distutils.util.split_quoted()'.) |
| """ |
| |
| # Note that some CCompiler implementation classes will define class |
| # attributes 'cpp', 'cc', etc. with hard-coded executable names; |
| # this is appropriate when a compiler class is for exactly one |
| # compiler/OS combination (eg. MSVCCompiler). Other compiler |
| # classes (UnixCCompiler, in particular) are driven by information |
| # discovered at run-time, since there are many different ways to do |
| # basically the same things with Unix C compilers. |
| |
| for key in kwargs: |
| if key not in self.executables: |
| raise ValueError("unknown executable '%s' for class %s" % |
| (key, self.__class__.__name__)) |
| self.set_executable(key, kwargs[key]) |
| |
| def set_executable(self, key, value): |
| if isinstance(value, str): |
| setattr(self, key, split_quoted(value)) |
| else: |
| setattr(self, key, value) |
| |
| def _find_macro(self, name): |
| i = 0 |
| for defn in self.macros: |
| if defn[0] == name: |
| return i |
| i += 1 |
| return None |
| |
| def _check_macro_definitions(self, definitions): |
| """Ensures that every element of 'definitions' is a valid macro |
| definition, ie. either (name,value) 2-tuple or a (name,) tuple. Do |
| nothing if all definitions are OK, raise TypeError otherwise. |
| """ |
| for defn in definitions: |
| if not (isinstance(defn, tuple) and |
| (len(defn) in (1, 2) and |
| (isinstance (defn[1], str) or defn[1] is None)) and |
| isinstance (defn[0], str)): |
| raise TypeError(("invalid macro definition '%s': " % defn) + \ |
| "must be tuple (string,), (string, string), or " + \ |
| "(string, None)") |
| |
| |
| # -- Bookkeeping methods ------------------------------------------- |
| |
| def define_macro(self, name, value=None): |
| """Define a preprocessor macro for all compilations driven by this |
| compiler object. The optional parameter 'value' should be a |
| string; if it is not supplied, then the macro will be defined |
| without an explicit value and the exact outcome depends on the |
| compiler used (XXX true? does ANSI say anything about this?) |
| """ |
| # Delete from the list of macro definitions/undefinitions if |
| # already there (so that this one will take precedence). |
| i = self._find_macro (name) |
| if i is not None: |
| del self.macros[i] |
| |
| self.macros.append((name, value)) |
| |
| def undefine_macro(self, name): |
| """Undefine a preprocessor macro for all compilations driven by |
| this compiler object. If the same macro is defined by |
| 'define_macro()' and undefined by 'undefine_macro()' the last call |
| takes precedence (including multiple redefinitions or |
| undefinitions). If the macro is redefined/undefined on a |
| per-compilation basis (ie. in the call to 'compile()'), then that |
| takes precedence. |
| """ |
| # Delete from the list of macro definitions/undefinitions if |
| # already there (so that this one will take precedence). |
| i = self._find_macro (name) |
| if i is not None: |
| del self.macros[i] |
| |
| undefn = (name,) |
| self.macros.append(undefn) |
| |
| def add_include_dir(self, dir): |
| """Add 'dir' to the list of directories that will be searched for |
| header files. The compiler is instructed to search directories in |
| the order in which they are supplied by successive calls to |
| 'add_include_dir()'. |
| """ |
| self.include_dirs.append(dir) |
| |
| def set_include_dirs(self, dirs): |
| """Set the list of directories that will be searched to 'dirs' (a |
| list of strings). Overrides any preceding calls to |
| 'add_include_dir()'; subsequence calls to 'add_include_dir()' add |
| to the list passed to 'set_include_dirs()'. This does not affect |
| any list of standard include directories that the compiler may |
| search by default. |
| """ |
| self.include_dirs = dirs[:] |
| |
| |
| # -- Private utility methods -------------------------------------- |
| # (here for the convenience of subclasses) |
| |
| # Helper method to prep compiler in subclass compile() methods |
| |
| def _fix_compile_args(self, output_dir, macros, include_dirs): |
| """Typecheck and fix-up some of the arguments to the 'compile()' |
| method, and return fixed-up values. Specifically: if 'output_dir' |
| is None, replaces it with 'self.output_dir'; ensures that 'macros' |
| is a list, and augments it with 'self.macros'; ensures that |
| 'include_dirs' is a list, and augments it with 'self.include_dirs'. |
| Guarantees that the returned values are of the correct type, |
| i.e. for 'output_dir' either string or None, and for 'macros' and |
| 'include_dirs' either list or None. |
| """ |
| if output_dir is None: |
| output_dir = self.output_dir |
| elif not isinstance(output_dir, str): |
| raise TypeError("'output_dir' must be a string or None") |
| |
| if macros is None: |
| macros = self.macros |
| elif isinstance(macros, list): |
| macros = macros + (self.macros or []) |
| else: |
| raise TypeError("'macros' (if supplied) must be a list of tuples") |
| |
| if include_dirs is None: |
| include_dirs = self.include_dirs |
| elif isinstance(include_dirs, (list, tuple)): |
| include_dirs = list(include_dirs) + (self.include_dirs or []) |
| else: |
| raise TypeError( |
| "'include_dirs' (if supplied) must be a list of strings") |
| |
| return output_dir, macros, include_dirs |
| |
| |
| # -- Worker methods ------------------------------------------------ |
| # (must be implemented by subclasses) |
| |
| def preprocess(self, source, output_file=None, macros=None, |
| include_dirs=None, extra_preargs=None, extra_postargs=None): |
| """Preprocess a single C/C++ source file, named in 'source'. |
| Output will be written to file named 'output_file', or stdout if |
| 'output_file' not supplied. 'macros' is a list of macro |
| definitions as for 'compile()', which will augment the macros set |
| with 'define_macro()' and 'undefine_macro()'. 'include_dirs' is a |
| list of directory names that will be added to the default list. |
| |
| Raises PreprocessError on failure. |
| """ |
| pass |
| |
| |
| # -- Miscellaneous methods ----------------------------------------- |
| # These are all used by the 'gen_lib_options() function; there is |
| # no appropriate default implementation so subclasses should |
| # implement all of these. |
| |
| # def library_dir_option(self, dir): |
| # """Return the compiler option to add 'dir' to the list of |
| # directories searched for libraries. |
| # """ |
| # raise NotImplementedError |
| # |
| # def runtime_library_dir_option(self, dir): |
| # """Return the compiler option to add 'dir' to the list of |
| # directories searched for runtime libraries. |
| # """ |
| # raise NotImplementedError |
| # |
| # def library_option(self, lib): |
| # """Return the compiler option to add 'lib' to the list of libraries |
| # linked into the shared library or executable. |
| # """ |
| # raise NotImplementedError |
| # |
| # def find_library_file (self, dirs, lib, debug=0): |
| # """Search the specified list of directories for a static or shared |
| # library file 'lib' and return the full path to that file. If |
| # 'debug' true, look for a debugging version (if that makes sense on |
| # the current platform). Return None if 'lib' wasn't found in any of |
| # the specified directories. |
| # """ |
| # raise NotImplementedError |
| |
| |
| # -- Utility methods ----------------------------------------------- |
| |
| def spawn(self, cmd): |
| raise NotImplementedError |
| |
| |
| # Map a sys.platform/os.name ('posix', 'nt') to the default compiler |
| # type for that platform. Keys are interpreted as re match |
| # patterns. Order is important; platform mappings are preferred over |
| # OS names. |
| _default_compilers = ( |
| |
| # Platform string mappings |
| |
| # on a cygwin built python we can use gcc like an ordinary UNIXish |
| # compiler |
| ('cygwin.*', 'unix'), |
| |
| # OS name mappings |
| ('posix', 'unix'), |
| ('nt', 'msvc'), |
| |
| ) |
| |
| def get_default_compiler(osname=None, platform=None): |
| """Determine the default compiler to use for the given platform. |
| |
| osname should be one of the standard Python OS names (i.e. the |
| ones returned by os.name) and platform the common value |
| returned by sys.platform for the platform in question. |
| |
| The default values are os.name and sys.platform in case the |
| parameters are not given. |
| """ |
| if osname is None: |
| osname = os.name |
| if platform is None: |
| platform = sys.platform |
| for pattern, compiler in _default_compilers: |
| if re.match(pattern, platform) is not None or \ |
| re.match(pattern, osname) is not None: |
| return compiler |
| # Default to Unix compiler |
| return 'unix' |
| |
| # Map compiler types to (module_name, class_name) pairs -- ie. where to |
| # find the code that implements an interface to this compiler. (The module |
| # is assumed to be in the 'distutils' package.) |
| compiler_class = { 'unix': ('unixccompiler', 'UnixCCompiler', |
| "standard UNIX-style compiler"), |
| 'msvc': ('_msvccompiler', 'MSVCCompiler', |
| "Microsoft Visual C++"), |
| 'cygwin': ('cygwinccompiler', 'CygwinCCompiler', |
| "Cygwin port of GNU C Compiler for Win32"), |
| 'mingw32': ('cygwinccompiler', 'Mingw32CCompiler', |
| "Mingw32 port of GNU C Compiler for Win32"), |
| 'bcpp': ('bcppcompiler', 'BCPPCompiler', |
| "Borland C++ Compiler"), |
| } |
| |
| |
| def new_compiler(plat=None, compiler=None, verbose=0, dry_run=0, force=0): |
| """Generate an instance of some CCompiler subclass for the supplied |
| platform/compiler combination. 'plat' defaults to 'os.name' |
| (eg. 'posix', 'nt'), and 'compiler' defaults to the default compiler |
| for that platform. Currently only 'posix' and 'nt' are supported, and |
| the default compilers are "traditional Unix interface" (UnixCCompiler |
| class) and Visual C++ (MSVCCompiler class). Note that it's perfectly |
| possible to ask for a Unix compiler object under Windows, and a |
| Microsoft compiler object under Unix -- if you supply a value for |
| 'compiler', 'plat' is ignored. |
| """ |
| if plat is None: |
| plat = os.name |
| |
| try: |
| if compiler is None: |
| compiler = get_default_compiler(plat) |
| |
| (module_name, class_name, long_description) = compiler_class[compiler] |
| except KeyError: |
| msg = "don't know how to compile C/C++ code on platform '%s'" % plat |
| if compiler is not None: |
| msg = msg + " with '%s' compiler" % compiler |
| raise DistutilsPlatformError(msg) |
| |
| try: |
| module_name = "distutils." + module_name |
| __import__ (module_name) |
| module = sys.modules[module_name] |
| klass = vars(module)[class_name] |
| except ImportError: |
| raise |
| raise DistutilsModuleError( |
| "can't compile C/C++ code: unable to load module '%s'" % \ |
| module_name) |
| except KeyError: |
| raise DistutilsModuleError( |
| "can't compile C/C++ code: unable to find class '%s' " |
| "in module '%s'" % (class_name, module_name)) |
| |
| # XXX The None is necessary to preserve backwards compatibility |
| # with classes that expect verbose to be the first positional |
| # argument. |
| return klass(None, dry_run, force) |
| |
| |
| def gen_preprocess_options(macros, include_dirs): |
| """Generate C pre-processor options (-D, -U, -I) as used by at least |
| two types of compilers: the typical Unix compiler and Visual C++. |
| 'macros' is the usual thing, a list of 1- or 2-tuples, where (name,) |
| means undefine (-U) macro 'name', and (name,value) means define (-D) |
| macro 'name' to 'value'. 'include_dirs' is just a list of directory |
| names to be added to the header file search path (-I). Returns a list |
| of command-line options suitable for either Unix compilers or Visual |
| C++. |
| """ |
| # XXX it would be nice (mainly aesthetic, and so we don't generate |
| # stupid-looking command lines) to go over 'macros' and eliminate |
| # redundant definitions/undefinitions (ie. ensure that only the |
| # latest mention of a particular macro winds up on the command |
| # line). I don't think it's essential, though, since most (all?) |
| # Unix C compilers only pay attention to the latest -D or -U |
| # mention of a macro on their command line. Similar situation for |
| # 'include_dirs'. I'm punting on both for now. Anyways, weeding out |
| # redundancies like this should probably be the province of |
| # CCompiler, since the data structures used are inherited from it |
| # and therefore common to all CCompiler classes. |
| pp_opts = [] |
| for macro in macros: |
| if not (isinstance(macro, tuple) and 1 <= len(macro) <= 2): |
| raise TypeError( |
| "bad macro definition '%s': " |
| "each element of 'macros' list must be a 1- or 2-tuple" |
| % macro) |
| |
| if len(macro) == 1: # undefine this macro |
| pp_opts.append("-U%s" % macro[0]) |
| elif len(macro) == 2: |
| if macro[1] is None: # define with no explicit value |
| pp_opts.append("-D%s" % macro[0]) |
| else: |
| # XXX *don't* need to be clever about quoting the |
| # macro value here, because we're going to avoid the |
| # shell at all costs when we spawn the command! |
| pp_opts.append("-D%s=%s" % macro) |
| |
| for dir in include_dirs: |
| pp_opts.append("-I%s" % dir) |
| return pp_opts |