blob: c9dc1b38859c53baa4d552dc27597420011c8196 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "perfetto/ext/trace_processor/export_json.h"
#include "src/trace_processor/export_json.h"
#include <inttypes.h>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <deque>
#include <limits>
#include "perfetto/base/build_config.h"
#include "perfetto/ext/base/string_splitter.h"
#include "perfetto/ext/base/string_utils.h"
#include "src/trace_processor/importers/json/json_utils.h"
#include "src/trace_processor/storage/metadata.h"
#include "src/trace_processor/storage/trace_storage.h"
#include "src/trace_processor/trace_processor_storage_impl.h"
#include "src/trace_processor/types/trace_processor_context.h"
#if PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
#include <json/reader.h>
#include <json/writer.h>
#endif
namespace perfetto {
namespace trace_processor {
namespace json {
namespace {
class FileWriter : public OutputWriter {
public:
FileWriter(FILE* file) : file_(file) {}
~FileWriter() override { fflush(file_); }
util::Status AppendString(const std::string& s) override {
size_t written =
fwrite(s.data(), sizeof(std::string::value_type), s.size(), file_);
if (written != s.size())
return util::ErrStatus("Error writing to file: %d", ferror(file_));
return util::OkStatus();
}
private:
FILE* file_;
};
#if PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
using IndexMap = perfetto::trace_processor::TraceStorage::Stats::IndexMap;
const char kLegacyEventArgsKey[] = "legacy_event";
const char kLegacyEventPassthroughUtidKey[] = "passthrough_utid";
const char kLegacyEventCategoryKey[] = "category";
const char kLegacyEventNameKey[] = "name";
const char kLegacyEventPhaseKey[] = "phase";
const char kLegacyEventDurationNsKey[] = "duration_ns";
const char kLegacyEventThreadTimestampNsKey[] = "thread_timestamp_ns";
const char kLegacyEventThreadDurationNsKey[] = "thread_duration_ns";
const char kLegacyEventThreadInstructionCountKey[] = "thread_instruction_count";
const char kLegacyEventThreadInstructionDeltaKey[] = "thread_instruction_delta";
const char kLegacyEventUseAsyncTtsKey[] = "use_async_tts";
const char kLegacyEventUnscopedIdKey[] = "unscoped_id";
const char kLegacyEventGlobalIdKey[] = "global_id";
const char kLegacyEventLocalIdKey[] = "local_id";
const char kLegacyEventIdScopeKey[] = "id_scope";
const char kLegacyEventBindIdKey[] = "bind_id";
const char kLegacyEventBindToEnclosingKey[] = "bind_to_enclosing";
const char kLegacyEventFlowDirectionKey[] = "flow_direction";
const char kFlowDirectionValueIn[] = "in";
const char kFlowDirectionValueOut[] = "out";
const char kFlowDirectionValueInout[] = "inout";
const char kStrippedArgument[] = "__stripped__";
const char* GetNonNullString(const TraceStorage* storage, StringId id) {
return id == kNullStringId ? "" : storage->GetString(id).c_str();
}
std::string PrintUint64(uint64_t x) {
char hex_str[19];
sprintf(hex_str, "0x%" PRIx64, x);
return hex_str;
}
void ConvertLegacyFlowEventArgs(const Json::Value& legacy_args,
Json::Value* event) {
if (legacy_args.isMember(kLegacyEventBindIdKey)) {
(*event)["bind_id"] =
PrintUint64(legacy_args[kLegacyEventBindIdKey].asUInt64());
}
if (legacy_args.isMember(kLegacyEventBindToEnclosingKey))
(*event)["bp"] = "e";
if (legacy_args.isMember(kLegacyEventFlowDirectionKey)) {
const char* val = legacy_args[kLegacyEventFlowDirectionKey].asCString();
if (strcmp(val, kFlowDirectionValueIn) == 0) {
(*event)["flow_in"] = true;
} else if (strcmp(val, kFlowDirectionValueOut) == 0) {
(*event)["flow_out"] = true;
} else {
PERFETTO_DCHECK(strcmp(val, kFlowDirectionValueInout) == 0);
(*event)["flow_in"] = true;
(*event)["flow_out"] = true;
}
}
}
class JsonExporter {
public:
JsonExporter(const TraceStorage* storage,
OutputWriter* output,
ArgumentFilterPredicate argument_filter,
MetadataFilterPredicate metadata_filter,
LabelFilterPredicate label_filter)
: storage_(storage),
args_builder_(storage_),
writer_(output, argument_filter, metadata_filter, label_filter) {}
util::Status Export() {
util::Status status = MapUniquePidsAndTids();
if (!status.ok())
return status;
status = ExportThreadNames();
if (!status.ok())
return status;
status = ExportProcessNames();
if (!status.ok())
return status;
status = ExportSlices();
if (!status.ok())
return status;
status = ExportRawEvents();
if (!status.ok())
return status;
status = ExportCpuProfileSamples();
if (!status.ok())
return status;
status = ExportMetadata();
if (!status.ok())
return status;
status = ExportStats();
if (!status.ok())
return status;
return util::OkStatus();
}
private:
class TraceFormatWriter {
public:
TraceFormatWriter(OutputWriter* output,
ArgumentFilterPredicate argument_filter,
MetadataFilterPredicate metadata_filter,
LabelFilterPredicate label_filter)
: output_(output),
argument_filter_(argument_filter),
metadata_filter_(metadata_filter),
label_filter_(label_filter),
first_event_(true) {
WriteHeader();
}
~TraceFormatWriter() { WriteFooter(); }
void WriteCommonEvent(const Json::Value& event) {
if (label_filter_ && !label_filter_("traceEvents"))
return;
DoWriteEvent(event);
}
void AddAsyncBeginEvent(const Json::Value& event) {
if (label_filter_ && !label_filter_("traceEvents"))
return;
async_begin_events_.push_back(event);
}
void AddAsyncInstantEvent(const Json::Value& event) {
if (label_filter_ && !label_filter_("traceEvents"))
return;
async_instant_events_.push_back(event);
}
void AddAsyncEndEvent(const Json::Value& event) {
if (label_filter_ && !label_filter_("traceEvents"))
return;
async_end_events_.push_back(event);
}
void SortAndEmitAsyncEvents() {
// Catapult doesn't handle out-of-order begin/end events well, especially
// when their timestamps are the same, but their order is incorrect. Since
// we process events sorted by begin timestamp, |async_begin_events_| and
// |async_instant_events_| are already sorted. We now only have to sort
// |async_end_events_| and merge-sort all events into a single sequence.
// Sort |async_end_events_|. Note that we should order by ascending
// timestamp, but in reverse-stable order. This way, a child slices's end
// is emitted before its parent's end event, even if both end events have
// the same timestamp. To accomplish this, we perform a stable sort in
// descending order and later iterate via reverse iterators.
struct {
bool operator()(const Json::Value& a, const Json::Value& b) const {
return a["ts"].asInt64() > b["ts"].asInt64();
}
} CompareEvents;
std::stable_sort(async_end_events_.begin(), async_end_events_.end(),
CompareEvents);
// Merge sort by timestamp. If events share the same timestamp, prefer
// instant events, then end events, so that old slices close before new
// ones are opened, but instant events remain in their deepest nesting
// level.
auto instant_event_it = async_instant_events_.begin();
auto end_event_it = async_end_events_.rbegin();
auto begin_event_it = async_begin_events_.begin();
auto has_instant_event = instant_event_it != async_instant_events_.end();
auto has_end_event = end_event_it != async_end_events_.rend();
auto has_begin_event = begin_event_it != async_begin_events_.end();
auto emit_next_instant = [&instant_event_it, &has_instant_event, this]() {
DoWriteEvent(*instant_event_it);
instant_event_it++;
has_instant_event = instant_event_it != async_instant_events_.end();
};
auto emit_next_end = [&end_event_it, &has_end_event, this]() {
DoWriteEvent(*end_event_it);
end_event_it++;
has_end_event = end_event_it != async_end_events_.rend();
};
auto emit_next_begin = [&begin_event_it, &has_begin_event, this]() {
DoWriteEvent(*begin_event_it);
begin_event_it++;
has_begin_event = begin_event_it != async_begin_events_.end();
};
auto emit_next_instant_or_end = [&instant_event_it, &end_event_it,
&emit_next_instant, &emit_next_end]() {
if ((*instant_event_it)["ts"].asInt64() <=
(*end_event_it)["ts"].asInt64()) {
emit_next_instant();
} else {
emit_next_end();
}
};
auto emit_next_instant_or_begin = [&instant_event_it, &begin_event_it,
&emit_next_instant,
&emit_next_begin]() {
if ((*instant_event_it)["ts"].asInt64() <=
(*begin_event_it)["ts"].asInt64()) {
emit_next_instant();
} else {
emit_next_begin();
}
};
auto emit_next_end_or_begin = [&end_event_it, &begin_event_it,
&emit_next_end, &emit_next_begin]() {
if ((*end_event_it)["ts"].asInt64() <=
(*begin_event_it)["ts"].asInt64()) {
emit_next_end();
} else {
emit_next_begin();
}
};
// While we still have events in all iterators, consider each.
while (has_instant_event && has_end_event && has_begin_event) {
if ((*instant_event_it)["ts"].asInt64() <=
(*end_event_it)["ts"].asInt64()) {
emit_next_instant_or_begin();
} else {
emit_next_end_or_begin();
}
}
// Only instant and end events left.
while (has_instant_event && has_end_event) {
emit_next_instant_or_end();
}
// Only instant and begin events left.
while (has_instant_event && has_begin_event) {
emit_next_instant_or_begin();
}
// Only end and begin events left.
while (has_end_event && has_begin_event) {
emit_next_end_or_begin();
}
// Remaining instant events.
while (has_instant_event) {
emit_next_instant();
}
// Remaining end events.
while (has_end_event) {
emit_next_end();
}
// Remaining begin events.
while (has_begin_event) {
emit_next_begin();
}
}
void WriteMetadataEvent(const char* metadata_type,
const char* metadata_value,
uint32_t pid,
uint32_t tid) {
if (label_filter_ && !label_filter_("traceEvents"))
return;
if (!first_event_)
output_->AppendString(",\n");
Json::FastWriter writer;
writer.omitEndingLineFeed();
Json::Value value;
value["ph"] = "M";
value["cat"] = "__metadata";
value["ts"] = 0;
value["name"] = metadata_type;
value["pid"] = Json::Int(pid);
value["tid"] = Json::Int(tid);
Json::Value args;
args["name"] = metadata_value;
value["args"] = args;
output_->AppendString(writer.write(value));
first_event_ = false;
}
void MergeMetadata(const Json::Value& value) {
for (const auto& member : value.getMemberNames()) {
metadata_[member] = value[member];
}
}
void AppendTelemetryMetadataString(const char* key, const char* value) {
metadata_["telemetry"][key].append(value);
}
void AppendTelemetryMetadataInt(const char* key, int64_t value) {
metadata_["telemetry"][key].append(Json::Int64(value));
}
void AppendTelemetryMetadataBool(const char* key, bool value) {
metadata_["telemetry"][key].append(value);
}
void SetTelemetryMetadataTimestamp(const char* key, int64_t value) {
metadata_["telemetry"][key] = value / 1000.0;
}
void SetStats(const char* key, int64_t value) {
metadata_["trace_processor_stats"][key] = Json::Int64(value);
}
void SetStats(const char* key, const IndexMap& indexed_values) {
constexpr const char* kBufferStatsPrefix = "traced_buf_";
// Stats for the same buffer should be grouped together in the JSON.
if (strncmp(kBufferStatsPrefix, key, strlen(kBufferStatsPrefix)) == 0) {
for (const auto& value : indexed_values) {
metadata_["trace_processor_stats"]["traced_buf"][value.first]
[key + strlen(kBufferStatsPrefix)] =
Json::Int64(value.second);
}
return;
}
// Other indexed value stats are exported as array under their key.
for (const auto& value : indexed_values) {
metadata_["trace_processor_stats"][key][value.first] =
Json::Int64(value.second);
}
}
void AddSystemTraceData(const std::string& data) {
system_trace_data_ += data;
}
void AddUserTraceData(const std::string& data) {
if (user_trace_data_.empty())
user_trace_data_ = "[";
user_trace_data_ += data;
}
private:
void WriteHeader() {
if (!label_filter_)
output_->AppendString("{\"traceEvents\":[\n");
}
void WriteFooter() {
SortAndEmitAsyncEvents();
// Filter metadata entries.
if (metadata_filter_) {
for (const auto& member : metadata_.getMemberNames()) {
if (!metadata_filter_(member.c_str()))
metadata_[member] = kStrippedArgument;
}
}
Json::FastWriter writer;
writer.omitEndingLineFeed();
if ((!label_filter_ || label_filter_("traceEvents")) &&
!user_trace_data_.empty()) {
user_trace_data_ += "]";
Json::Reader reader;
Json::Value result;
if (reader.parse(user_trace_data_, result)) {
for (const auto& event : result) {
WriteCommonEvent(event);
}
} else {
PERFETTO_DLOG(
"can't parse legacy user json trace export, skipping. data: %s",
user_trace_data_.c_str());
}
}
if (!label_filter_)
output_->AppendString("]");
if ((!label_filter_ || label_filter_("systemTraceEvents")) &&
!system_trace_data_.empty()) {
output_->AppendString(",\"systemTraceEvents\":\n");
output_->AppendString(writer.write(Json::Value(system_trace_data_)));
}
if ((!label_filter_ || label_filter_("metadata")) && !metadata_.empty()) {
output_->AppendString(",\"metadata\":\n");
output_->AppendString(writer.write(metadata_));
}
if (!label_filter_)
output_->AppendString("}");
}
void DoWriteEvent(const Json::Value& event) {
if (!first_event_)
output_->AppendString(",\n");
Json::FastWriter writer;
writer.omitEndingLineFeed();
ArgumentNameFilterPredicate argument_name_filter;
bool strip_args =
argument_filter_ &&
!argument_filter_(event["cat"].asCString(), event["name"].asCString(),
&argument_name_filter);
if ((strip_args || argument_name_filter) && event.isMember("args")) {
Json::Value event_copy = event;
if (strip_args) {
event_copy["args"] = kStrippedArgument;
} else {
auto& args = event_copy["args"];
for (const auto& member : event["args"].getMemberNames()) {
if (!argument_name_filter(member.c_str()))
args[member] = kStrippedArgument;
}
}
output_->AppendString(writer.write(event_copy));
} else {
output_->AppendString(writer.write(event));
}
first_event_ = false;
}
OutputWriter* output_;
ArgumentFilterPredicate argument_filter_;
MetadataFilterPredicate metadata_filter_;
LabelFilterPredicate label_filter_;
bool first_event_;
Json::Value metadata_;
std::string system_trace_data_;
std::string user_trace_data_;
std::vector<Json::Value> async_begin_events_;
std::vector<Json::Value> async_instant_events_;
std::vector<Json::Value> async_end_events_;
};
class ArgsBuilder {
public:
explicit ArgsBuilder(const TraceStorage* storage)
: storage_(storage),
empty_value_(Json::objectValue),
nan_value_(Json::StaticString("NaN")),
inf_value_(Json::StaticString("Infinity")),
neg_inf_value_(Json::StaticString("-Infinity")) {
const auto& arg_table = storage_->arg_table();
uint32_t count = arg_table.row_count();
if (count == 0) {
args_sets_.resize(1, empty_value_);
return;
}
args_sets_.resize(arg_table.arg_set_id()[count - 1] + 1, empty_value_);
for (uint32_t i = 0; i < count; ++i) {
ArgSetId set_id = arg_table.arg_set_id()[i];
const char* key = arg_table.key().GetString(i).c_str();
Variadic value = storage_->GetArgValue(i);
AppendArg(set_id, key, VariadicToJson(value));
}
PostprocessArgs();
}
const Json::Value& GetArgs(ArgSetId set_id) const {
// If |set_id| was empty and added to the storage last, it may not be in
// args_sets_.
if (set_id > args_sets_.size())
return empty_value_;
return args_sets_[set_id];
}
private:
Json::Value VariadicToJson(Variadic variadic) {
switch (variadic.type) {
case Variadic::kInt:
return Json::Int64(variadic.int_value);
case Variadic::kUint:
return Json::UInt64(variadic.uint_value);
case Variadic::kString:
return GetNonNullString(storage_, variadic.string_value);
case Variadic::kReal:
if (std::isnan(variadic.real_value)) {
return nan_value_;
} else if (std::isinf(variadic.real_value) &&
variadic.real_value > 0) {
return inf_value_;
} else if (std::isinf(variadic.real_value) &&
variadic.real_value < 0) {
return neg_inf_value_;
} else {
return variadic.real_value;
}
case Variadic::kPointer:
return PrintUint64(variadic.pointer_value);
case Variadic::kBool:
return variadic.bool_value;
case Variadic::kJson:
Json::Reader reader;
Json::Value result;
reader.parse(GetNonNullString(storage_, variadic.json_value), result);
return result;
}
PERFETTO_FATAL("Not reached"); // For gcc.
}
void AppendArg(ArgSetId set_id,
const std::string& key,
const Json::Value& value) {
Json::Value* target = &args_sets_[set_id];
for (base::StringSplitter parts(key, '.'); parts.Next();) {
if (PERFETTO_UNLIKELY(!target->isNull() && !target->isObject())) {
PERFETTO_DLOG("Malformed arguments. Can't append %s to %s.",
key.c_str(),
args_sets_[set_id].toStyledString().c_str());
return;
}
std::string key_part = parts.cur_token();
size_t bracketpos = key_part.find('[');
if (bracketpos == key_part.npos) { // A single item
target = &(*target)[key_part];
} else { // A list item
target = &(*target)[key_part.substr(0, bracketpos)];
while (bracketpos != key_part.npos) {
// We constructed this string from an int earlier in trace_processor
// so it shouldn't be possible for this (or the StringToUInt32
// below) to fail.
std::string s =
key_part.substr(bracketpos + 1, key_part.find(']', bracketpos) -
bracketpos - 1);
if (PERFETTO_UNLIKELY(!target->isNull() && !target->isArray())) {
PERFETTO_DLOG("Malformed arguments. Can't append %s to %s.",
key.c_str(),
args_sets_[set_id].toStyledString().c_str());
return;
}
base::Optional<uint32_t> index = base::StringToUInt32(s);
if (PERFETTO_UNLIKELY(!index)) {
PERFETTO_ELOG("Expected to be able to extract index from %s",
key_part.c_str());
return;
}
target = &(*target)[index.value()];
bracketpos = key_part.find('[', bracketpos + 1);
}
}
}
*target = value;
}
void PostprocessArgs() {
for (Json::Value& args : args_sets_) {
// Move all fields from "debug" key to upper level.
if (args.isMember("debug")) {
Json::Value debug = args["debug"];
args.removeMember("debug");
for (const auto& member : debug.getMemberNames()) {
args[member] = debug[member];
}
}
// Rename source fields.
if (args.isMember("task")) {
if (args["task"].isMember("posted_from")) {
Json::Value posted_from = args["task"]["posted_from"];
args["task"].removeMember("posted_from");
if (posted_from.isMember("function_name")) {
args["src_func"] = posted_from["function_name"];
args["src_file"] = posted_from["file_name"];
} else if (posted_from.isMember("file_name")) {
args["src"] = posted_from["file_name"];
}
}
if (args["task"].empty())
args.removeMember("task");
}
}
}
const TraceStorage* storage_;
std::vector<Json::Value> args_sets_;
const Json::Value empty_value_;
const Json::Value nan_value_;
const Json::Value inf_value_;
const Json::Value neg_inf_value_;
};
util::Status MapUniquePidsAndTids() {
const auto& process_table = storage_->process_table();
for (UniquePid upid = 0; upid < process_table.row_count(); upid++) {
uint32_t exported_pid = process_table.pid()[upid];
auto it_and_inserted =
exported_pids_to_upids_.emplace(exported_pid, upid);
if (!it_and_inserted.second) {
exported_pid = NextExportedPidOrTidForDuplicates();
it_and_inserted = exported_pids_to_upids_.emplace(exported_pid, upid);
}
upids_to_exported_pids_.emplace(upid, exported_pid);
}
const auto& thread_table = storage_->thread_table();
for (UniqueTid utid = 0; utid < thread_table.row_count(); utid++) {
uint32_t exported_pid = 0;
base::Optional<UniquePid> upid = thread_table.upid()[utid];
if (upid) {
auto exported_pid_it = upids_to_exported_pids_.find(*upid);
PERFETTO_DCHECK(exported_pid_it != upids_to_exported_pids_.end());
exported_pid = exported_pid_it->second;
}
uint32_t exported_tid = thread_table.tid()[utid];
auto it_and_inserted = exported_pids_and_tids_to_utids_.emplace(
std::make_pair(exported_pid, exported_tid), utid);
if (!it_and_inserted.second) {
exported_tid = NextExportedPidOrTidForDuplicates();
it_and_inserted = exported_pids_and_tids_to_utids_.emplace(
std::make_pair(exported_pid, exported_tid), utid);
}
utids_to_exported_pids_and_tids_.emplace(
utid, std::make_pair(exported_pid, exported_tid));
}
return util::OkStatus();
}
util::Status ExportThreadNames() {
const auto& thread_table = storage_->thread_table();
for (UniqueTid utid = 0; utid < thread_table.row_count(); ++utid) {
auto opt_name = thread_table.name()[utid];
if (!opt_name.is_null()) {
const char* thread_name = GetNonNullString(storage_, opt_name);
auto pid_and_tid = UtidToPidAndTid(utid);
writer_.WriteMetadataEvent("thread_name", thread_name,
pid_and_tid.first, pid_and_tid.second);
}
}
return util::OkStatus();
}
util::Status ExportProcessNames() {
const auto& process_table = storage_->process_table();
for (UniquePid upid = 0; upid < process_table.row_count(); ++upid) {
auto opt_name = process_table.name()[upid];
if (!opt_name.is_null()) {
const char* process_name = GetNonNullString(storage_, opt_name);
writer_.WriteMetadataEvent("process_name", process_name,
UpidToPid(upid), /*tid=*/0);
}
}
return util::OkStatus();
}
util::Status ExportSlices() {
const auto& slices = storage_->slice_table();
for (uint32_t i = 0; i < slices.row_count(); ++i) {
// Skip slices with empty category - these are ftrace/system slices that
// were also imported into the raw table and will be exported from there
// by trace_to_text.
// TODO(b/153609716): Add a src column or do_not_export flag instead.
auto cat = slices.category().GetString(i);
if (cat.c_str() == nullptr || cat == "binder")
continue;
Json::Value event;
event["ts"] = Json::Int64(slices.ts()[i] / 1000);
event["cat"] = GetNonNullString(storage_, slices.category()[i]);
event["name"] = GetNonNullString(storage_, slices.name()[i]);
event["pid"] = 0;
event["tid"] = 0;
base::Optional<UniqueTid> legacy_utid;
event["args"] =
args_builder_.GetArgs(slices.arg_set_id()[i]); // Makes a copy.
if (event["args"].isMember(kLegacyEventArgsKey)) {
ConvertLegacyFlowEventArgs(event["args"][kLegacyEventArgsKey], &event);
if (event["args"][kLegacyEventArgsKey].isMember(
kLegacyEventPassthroughUtidKey)) {
legacy_utid =
event["args"][kLegacyEventArgsKey][kLegacyEventPassthroughUtidKey]
.asUInt();
}
event["args"].removeMember(kLegacyEventArgsKey);
}
// To prevent duplicate export of slices, only export slices on descriptor
// or chrome tracks (i.e. TrackEvent slices). Slices on other tracks may
// also be present as raw events and handled by trace_to_text. Only add
// more track types here if they are not already covered by trace_to_text.
TrackId track_id = slices.track_id()[i];
const auto& track_table = storage_->track_table();
uint32_t track_row = *track_table.id().IndexOf(track_id);
auto track_args_id = track_table.source_arg_set_id()[track_row];
const Json::Value* track_args = nullptr;
bool legacy_chrome_track = false;
bool is_child_track = false;
if (track_args_id) {
track_args = &args_builder_.GetArgs(*track_args_id);
legacy_chrome_track = (*track_args)["source"].asString() == "chrome";
is_child_track = track_args->isMember("parent_track_id");
}
const auto& thread_track = storage_->thread_track_table();
const auto& process_track = storage_->process_track_table();
const auto& thread_slices = storage_->thread_slices();
const auto& virtual_track_slices = storage_->virtual_track_slices();
int64_t duration_ns = slices.dur()[i];
int64_t thread_ts_ns = 0;
int64_t thread_duration_ns = 0;
int64_t thread_instruction_count = 0;
int64_t thread_instruction_delta = 0;
base::Optional<uint32_t> thread_slice_row =
thread_slices.FindRowForSliceId(i);
if (thread_slice_row) {
thread_ts_ns = thread_slices.thread_timestamp_ns()[*thread_slice_row];
thread_duration_ns =
thread_slices.thread_duration_ns()[*thread_slice_row];
thread_instruction_count =
thread_slices.thread_instruction_counts()[*thread_slice_row];
thread_instruction_delta =
thread_slices.thread_instruction_deltas()[*thread_slice_row];
} else {
base::Optional<uint32_t> vtrack_slice_row =
virtual_track_slices.FindRowForSliceId(i);
if (vtrack_slice_row) {
thread_ts_ns =
virtual_track_slices.thread_timestamp_ns()[*vtrack_slice_row];
thread_duration_ns =
virtual_track_slices.thread_duration_ns()[*vtrack_slice_row];
thread_instruction_count =
virtual_track_slices
.thread_instruction_counts()[*vtrack_slice_row];
thread_instruction_delta =
virtual_track_slices
.thread_instruction_deltas()[*vtrack_slice_row];
}
}
auto opt_thread_track_row = thread_track.id().IndexOf(TrackId{track_id});
if (opt_thread_track_row && !is_child_track) {
// Synchronous (thread) slice or instant event.
UniqueTid utid = thread_track.utid()[*opt_thread_track_row];
auto pid_and_tid = UtidToPidAndTid(utid);
event["pid"] = Json::Int(pid_and_tid.first);
event["tid"] = Json::Int(pid_and_tid.second);
if (duration_ns == 0) {
// Use "I" instead of "i" phase for backwards-compat with old
// consumers.
event["ph"] = "I";
if (thread_ts_ns > 0) {
event["tts"] = Json::Int64(thread_ts_ns / 1000);
}
if (thread_instruction_count > 0) {
event["ticount"] = Json::Int64(thread_instruction_count);
}
event["s"] = "t";
} else {
if (duration_ns > 0) {
event["ph"] = "X";
event["dur"] = Json::Int64(duration_ns / 1000);
} else {
// If the slice didn't finish, the duration may be negative. Only
// write a begin event without end event in this case.
event["ph"] = "B";
}
if (thread_ts_ns > 0) {
event["tts"] = Json::Int64(thread_ts_ns / 1000);
// Only write thread duration for completed events.
if (duration_ns > 0)
event["tdur"] = Json::Int64(thread_duration_ns / 1000);
}
if (thread_instruction_count > 0) {
event["ticount"] = Json::Int64(thread_instruction_count);
// Only write thread instruction delta for completed events.
if (duration_ns > 0)
event["tidelta"] = Json::Int64(thread_instruction_delta);
}
}
writer_.WriteCommonEvent(event);
} else if (is_child_track ||
(legacy_chrome_track && track_args->isMember("source_id"))) {
// Async event slice.
auto opt_process_row = process_track.id().IndexOf(TrackId{track_id});
if (legacy_chrome_track) {
// Legacy async tracks are always process-associated and have args.
PERFETTO_DCHECK(opt_process_row);
PERFETTO_DCHECK(track_args);
uint32_t upid = process_track.upid()[*opt_process_row];
uint32_t exported_pid = UpidToPid(upid);
event["pid"] = Json::Int(exported_pid);
event["tid"] =
Json::Int(legacy_utid ? UtidToPidAndTid(*legacy_utid).second
: exported_pid);
// Preserve original event IDs for legacy tracks. This is so that e.g.
// memory dump IDs show up correctly in the JSON trace.
PERFETTO_DCHECK(track_args->isMember("source_id"));
PERFETTO_DCHECK(track_args->isMember("source_id_is_process_scoped"));
PERFETTO_DCHECK(track_args->isMember("source_scope"));
uint64_t source_id =
static_cast<uint64_t>((*track_args)["source_id"].asInt64());
std::string source_scope = (*track_args)["source_scope"].asString();
if (!source_scope.empty())
event["scope"] = source_scope;
bool source_id_is_process_scoped =
(*track_args)["source_id_is_process_scoped"].asBool();
if (source_id_is_process_scoped) {
event["id2"]["local"] = PrintUint64(source_id);
} else {
// Some legacy importers don't understand "id2" fields, so we use
// the "usually" global "id" field instead. This works as long as
// the event phase is not in {'N', 'D', 'O', '(', ')'}, see
// "LOCAL_ID_PHASES" in catapult.
event["id"] = PrintUint64(source_id);
}
} else {
if (opt_thread_track_row) {
UniqueTid utid = thread_track.utid()[*opt_thread_track_row];
auto pid_and_tid = UtidToPidAndTid(utid);
event["pid"] = Json::Int(pid_and_tid.first);
event["tid"] = Json::Int(pid_and_tid.second);
event["id2"]["local"] = PrintUint64(track_id.value);
} else if (opt_process_row) {
uint32_t upid = process_track.upid()[*opt_process_row];
uint32_t exported_pid = UpidToPid(upid);
event["pid"] = Json::Int(exported_pid);
event["tid"] =
Json::Int(legacy_utid ? UtidToPidAndTid(*legacy_utid).second
: exported_pid);
event["id2"]["local"] = PrintUint64(track_id.value);
} else {
if (legacy_utid) {
auto pid_and_tid = UtidToPidAndTid(*legacy_utid);
event["pid"] = Json::Int(pid_and_tid.first);
event["tid"] = Json::Int(pid_and_tid.second);
}
// Some legacy importers don't understand "id2" fields, so we use
// the "usually" global "id" field instead. This works as long as
// the event phase is not in {'N', 'D', 'O', '(', ')'}, see
// "LOCAL_ID_PHASES" in catapult.
event["id"] = PrintUint64(track_id.value);
}
}
if (thread_ts_ns > 0) {
event["tts"] = Json::Int64(thread_ts_ns / 1000);
event["use_async_tts"] = Json::Int(1);
}
if (thread_instruction_count > 0) {
event["ticount"] = Json::Int64(thread_instruction_count);
event["use_async_tts"] = Json::Int(1);
}
if (duration_ns == 0) { // Instant async event.
event["ph"] = "n";
writer_.AddAsyncInstantEvent(event);
} else { // Async start and end.
event["ph"] = "b";
writer_.AddAsyncBeginEvent(event);
// If the slice didn't finish, the duration may be negative. Don't
// write the end event in this case.
if (duration_ns > 0) {
event["ph"] = "e";
event["ts"] = Json::Int64((slices.ts()[i] + duration_ns) / 1000);
if (thread_ts_ns > 0) {
event["tts"] =
Json::Int64((thread_ts_ns + thread_duration_ns) / 1000);
}
if (thread_instruction_count > 0) {
event["ticount"] = Json::Int64(
(thread_instruction_count + thread_instruction_delta));
}
event["args"].clear();
writer_.AddAsyncEndEvent(event);
}
}
} else {
// Global or process-scoped instant event.
PERFETTO_DCHECK(legacy_chrome_track || !is_child_track);
if (duration_ns != 0) {
// We don't support exporting slices on the default global or process
// track to JSON (JSON only supports instant events on these tracks).
PERFETTO_DLOG(
"skipping non-instant slice on global or process track");
} else {
// Use "I" instead of "i" phase for backwards-compat with old
// consumers.
event["ph"] = "I";
auto opt_process_row = process_track.id().IndexOf(TrackId{track_id});
if (opt_process_row.has_value()) {
uint32_t upid = process_track.upid()[*opt_process_row];
uint32_t exported_pid = UpidToPid(upid);
event["pid"] = Json::Int(exported_pid);
event["tid"] =
Json::Int(legacy_utid ? UtidToPidAndTid(*legacy_utid).second
: exported_pid);
event["s"] = "p";
} else {
event["s"] = "g";
}
writer_.WriteCommonEvent(event);
}
}
}
return util::OkStatus();
}
Json::Value ConvertLegacyRawEventToJson(uint32_t index) {
const auto& events = storage_->raw_table();
Json::Value event;
event["ts"] = Json::Int64(events.ts()[index] / 1000);
UniqueTid utid = static_cast<UniqueTid>(events.utid()[index]);
auto pid_and_tid = UtidToPidAndTid(utid);
event["pid"] = Json::Int(pid_and_tid.first);
event["tid"] = Json::Int(pid_and_tid.second);
// Raw legacy events store all other params in the arg set. Make a copy of
// the converted args here, parse, and then remove the legacy params.
event["args"] = args_builder_.GetArgs(events.arg_set_id()[index]);
const Json::Value& legacy_args = event["args"][kLegacyEventArgsKey];
PERFETTO_DCHECK(legacy_args.isMember(kLegacyEventCategoryKey));
event["cat"] = legacy_args[kLegacyEventCategoryKey];
PERFETTO_DCHECK(legacy_args.isMember(kLegacyEventNameKey));
event["name"] = legacy_args[kLegacyEventNameKey];
PERFETTO_DCHECK(legacy_args.isMember(kLegacyEventPhaseKey));
event["ph"] = legacy_args[kLegacyEventPhaseKey];
// Object snapshot events are supposed to have a mandatory "snapshot" arg,
// which may be removed in trace processor if it is empty.
if (legacy_args[kLegacyEventPhaseKey] == "O" &&
!event["args"].isMember("snapshot")) {
event["args"]["snapshot"] = Json::Value(Json::objectValue);
}
if (legacy_args.isMember(kLegacyEventDurationNsKey))
event["dur"] = legacy_args[kLegacyEventDurationNsKey].asInt64() / 1000;
if (legacy_args.isMember(kLegacyEventThreadTimestampNsKey)) {
event["tts"] =
legacy_args[kLegacyEventThreadTimestampNsKey].asInt64() / 1000;
}
if (legacy_args.isMember(kLegacyEventThreadDurationNsKey)) {
event["tdur"] =
legacy_args[kLegacyEventThreadDurationNsKey].asInt64() / 1000;
}
if (legacy_args.isMember(kLegacyEventThreadInstructionCountKey))
event["ticount"] = legacy_args[kLegacyEventThreadInstructionCountKey];
if (legacy_args.isMember(kLegacyEventThreadInstructionDeltaKey))
event["tidelta"] = legacy_args[kLegacyEventThreadInstructionDeltaKey];
if (legacy_args.isMember(kLegacyEventUseAsyncTtsKey))
event["use_async_tts"] = legacy_args[kLegacyEventUseAsyncTtsKey];
if (legacy_args.isMember(kLegacyEventUnscopedIdKey)) {
event["id"] =
PrintUint64(legacy_args[kLegacyEventUnscopedIdKey].asUInt64());
}
if (legacy_args.isMember(kLegacyEventGlobalIdKey)) {
event["id2"]["global"] =
PrintUint64(legacy_args[kLegacyEventGlobalIdKey].asUInt64());
}
if (legacy_args.isMember(kLegacyEventLocalIdKey)) {
event["id2"]["local"] =
PrintUint64(legacy_args[kLegacyEventLocalIdKey].asUInt64());
}
if (legacy_args.isMember(kLegacyEventIdScopeKey))
event["scope"] = legacy_args[kLegacyEventIdScopeKey];
ConvertLegacyFlowEventArgs(legacy_args, &event);
event["args"].removeMember(kLegacyEventArgsKey);
return event;
}
util::Status ExportRawEvents() {
base::Optional<StringId> raw_legacy_event_key_id =
storage_->string_pool().GetId("track_event.legacy_event");
base::Optional<StringId> raw_legacy_system_trace_event_id =
storage_->string_pool().GetId("chrome_event.legacy_system_trace");
base::Optional<StringId> raw_legacy_user_trace_event_id =
storage_->string_pool().GetId("chrome_event.legacy_user_trace");
base::Optional<StringId> raw_chrome_metadata_event_id =
storage_->string_pool().GetId("chrome_event.metadata");
const auto& events = storage_->raw_table();
for (uint32_t i = 0; i < events.row_count(); ++i) {
if (raw_legacy_event_key_id &&
events.name()[i] == *raw_legacy_event_key_id) {
Json::Value event = ConvertLegacyRawEventToJson(i);
writer_.WriteCommonEvent(event);
} else if (raw_legacy_system_trace_event_id &&
events.name()[i] == *raw_legacy_system_trace_event_id) {
Json::Value args = args_builder_.GetArgs(events.arg_set_id()[i]);
PERFETTO_DCHECK(args.isMember("data"));
writer_.AddSystemTraceData(args["data"].asString());
} else if (raw_legacy_user_trace_event_id &&
events.name()[i] == *raw_legacy_user_trace_event_id) {
Json::Value args = args_builder_.GetArgs(events.arg_set_id()[i]);
PERFETTO_DCHECK(args.isMember("data"));
writer_.AddUserTraceData(args["data"].asString());
} else if (raw_chrome_metadata_event_id &&
events.name()[i] == *raw_chrome_metadata_event_id) {
Json::Value args = args_builder_.GetArgs(events.arg_set_id()[i]);
writer_.MergeMetadata(args);
}
}
return util::OkStatus();
}
util::Status ExportCpuProfileSamples() {
const tables::CpuProfileStackSampleTable& samples =
storage_->cpu_profile_stack_sample_table();
for (uint32_t i = 0; i < samples.row_count(); ++i) {
Json::Value event;
event["ts"] = Json::Int64(samples.ts()[i] / 1000);
UniqueTid utid = static_cast<UniqueTid>(samples.utid()[i]);
auto pid_and_tid = UtidToPidAndTid(utid);
event["pid"] = Json::Int(pid_and_tid.first);
event["tid"] = Json::Int(pid_and_tid.second);
event["ph"] = "n";
event["cat"] = "disabled-by-default-cpu_profiler";
event["name"] = "StackCpuSampling";
event["s"] = "t";
// Add a dummy thread timestamp to this event to match the format of
// instant events. Useful in the UI to view args of a selected group of
// samples.
event["tts"] = Json::Int64(1);
// "n"-phase events are nestable async events which get tied together with
// their id, so we need to give each one a unique ID as we only
// want the samples to show up on their own track in the trace-viewer but
// not nested together.
static size_t g_id_counter = 0;
event["id"] = PrintUint64(++g_id_counter);
const auto& callsites = storage_->stack_profile_callsite_table();
const auto& frames = storage_->stack_profile_frame_table();
const auto& mappings = storage_->stack_profile_mapping_table();
std::vector<std::string> callstack;
base::Optional<CallsiteId> opt_callsite_id = samples.callsite_id()[i];
while (opt_callsite_id) {
CallsiteId callsite_id = *opt_callsite_id;
uint32_t callsite_row = *callsites.id().IndexOf(callsite_id);
FrameId frame_id = callsites.frame_id()[callsite_row];
uint32_t frame_row = *frames.id().IndexOf(frame_id);
MappingId mapping_id = frames.mapping()[frame_row];
uint32_t mapping_row = *mappings.id().IndexOf(mapping_id);
NullTermStringView symbol_name;
auto opt_symbol_set_id = frames.symbol_set_id()[frame_row];
if (opt_symbol_set_id) {
symbol_name = storage_->GetString(
storage_->symbol_table().name()[*opt_symbol_set_id]);
}
char frame_entry[1024];
snprintf(frame_entry, sizeof(frame_entry), "%s - %s [%s]\n",
(symbol_name.empty()
? PrintUint64(
static_cast<uint64_t>(frames.rel_pc()[frame_row]))
.c_str()
: symbol_name.c_str()),
GetNonNullString(storage_, mappings.name()[mapping_row]),
GetNonNullString(storage_, mappings.build_id()[mapping_row]));
callstack.emplace_back(frame_entry);
opt_callsite_id = callsites.parent_id()[callsite_row];
}
std::string merged_callstack;
for (auto entry = callstack.rbegin(); entry != callstack.rend();
++entry) {
merged_callstack += *entry;
}
event["args"]["frames"] = merged_callstack;
event["args"]["process_priority"] = samples.process_priority()[i];
// TODO(oysteine): Used for backwards compatibility with the memlog
// pipeline, should remove once we've switched to looking directly at the
// tid.
event["args"]["thread_id"] = Json::Int(pid_and_tid.second);
writer_.WriteCommonEvent(event);
}
return util::OkStatus();
}
util::Status ExportMetadata() {
const auto& trace_metadata = storage_->metadata_table();
const auto& keys = trace_metadata.name();
const auto& int_values = trace_metadata.int_value();
const auto& str_values = trace_metadata.str_value();
// Create a mapping from key string ids to keys.
std::unordered_map<StringId, metadata::KeyIDs> key_map;
for (uint32_t i = 0; i < metadata::kNumKeys; ++i) {
auto id = *storage_->string_pool().GetId(metadata::kNames[i]);
key_map[id] = static_cast<metadata::KeyIDs>(i);
}
for (uint32_t pos = 0; pos < trace_metadata.row_count(); pos++) {
// Cast away from enum type, as otherwise -Wswitch-enum will demand an
// exhaustive list of cases, even if there's a default case.
metadata::KeyIDs key = key_map[keys[pos]];
switch (static_cast<size_t>(key)) {
case metadata::benchmark_description:
writer_.AppendTelemetryMetadataString(
"benchmarkDescriptions", str_values.GetString(pos).c_str());
break;
case metadata::benchmark_name:
writer_.AppendTelemetryMetadataString(
"benchmarks", str_values.GetString(pos).c_str());
break;
case metadata::benchmark_start_time_us:
writer_.SetTelemetryMetadataTimestamp("benchmarkStart",
*int_values[pos]);
break;
case metadata::benchmark_had_failures:
writer_.AppendTelemetryMetadataBool("hadFailures", *int_values[pos]);
break;
case metadata::benchmark_label:
writer_.AppendTelemetryMetadataString(
"labels", str_values.GetString(pos).c_str());
break;
case metadata::benchmark_story_name:
writer_.AppendTelemetryMetadataString(
"stories", str_values.GetString(pos).c_str());
break;
case metadata::benchmark_story_run_index:
writer_.AppendTelemetryMetadataInt("storysetRepeats",
*int_values[pos]);
break;
case metadata::benchmark_story_run_time_us:
writer_.SetTelemetryMetadataTimestamp("traceStart", *int_values[pos]);
break;
case metadata::benchmark_story_tags: // repeated
writer_.AppendTelemetryMetadataString(
"storyTags", str_values.GetString(pos).c_str());
break;
default:
PERFETTO_DLOG("Ignoring metadata key %zu", static_cast<size_t>(key));
break;
}
}
return util::OkStatus();
}
util::Status ExportStats() {
const auto& stats = storage_->stats();
for (size_t idx = 0; idx < stats::kNumKeys; idx++) {
if (stats::kTypes[idx] == stats::kSingle) {
writer_.SetStats(stats::kNames[idx], stats[idx].value);
} else {
PERFETTO_DCHECK(stats::kTypes[idx] == stats::kIndexed);
writer_.SetStats(stats::kNames[idx], stats[idx].indexed_values);
}
}
return util::OkStatus();
}
uint32_t UpidToPid(UniquePid upid) {
auto pid_it = upids_to_exported_pids_.find(upid);
PERFETTO_DCHECK(pid_it != upids_to_exported_pids_.end());
return pid_it->second;
}
std::pair<uint32_t, uint32_t> UtidToPidAndTid(UniqueTid utid) {
auto pid_and_tid_it = utids_to_exported_pids_and_tids_.find(utid);
PERFETTO_DCHECK(pid_and_tid_it != utids_to_exported_pids_and_tids_.end());
return pid_and_tid_it->second;
}
uint32_t NextExportedPidOrTidForDuplicates() {
// Ensure that the exported substitute value does not represent a valid
// pid/tid. This would be very unlikely in practice.
while (IsValidPidOrTid(next_exported_pid_or_tid_for_duplicates_))
next_exported_pid_or_tid_for_duplicates_--;
return next_exported_pid_or_tid_for_duplicates_--;
}
bool IsValidPidOrTid(uint32_t pid_or_tid) {
const auto& process_table = storage_->process_table();
for (UniquePid upid = 0; upid < process_table.row_count(); upid++) {
if (process_table.pid()[upid] == pid_or_tid)
return true;
}
const auto& thread_table = storage_->thread_table();
for (UniqueTid utid = 0; utid < thread_table.row_count(); utid++) {
if (thread_table.tid()[utid] == pid_or_tid)
return true;
}
return false;
}
const TraceStorage* storage_;
ArgsBuilder args_builder_;
TraceFormatWriter writer_;
// If a pid/tid is duplicated between two or more different processes/threads
// (pid/tid reuse), we export the subsequent occurrences with different
// pids/tids that is visibly different from regular pids/tids - counting down
// from uint32_t max.
uint32_t next_exported_pid_or_tid_for_duplicates_ =
std::numeric_limits<uint32_t>::max();
std::map<UniquePid, uint32_t> upids_to_exported_pids_;
std::map<uint32_t, UniquePid> exported_pids_to_upids_;
std::map<UniqueTid, std::pair<uint32_t, uint32_t>>
utids_to_exported_pids_and_tids_;
std::map<std::pair<uint32_t, uint32_t>, UniqueTid>
exported_pids_and_tids_to_utids_;
};
#endif // PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
} // namespace
OutputWriter::OutputWriter() = default;
OutputWriter::~OutputWriter() = default;
util::Status ExportJson(const TraceStorage* storage,
OutputWriter* output,
ArgumentFilterPredicate argument_filter,
MetadataFilterPredicate metadata_filter,
LabelFilterPredicate label_filter) {
#if PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
JsonExporter exporter(storage, output, std::move(argument_filter),
std::move(metadata_filter), std::move(label_filter));
return exporter.Export();
#else
perfetto::base::ignore_result(storage);
perfetto::base::ignore_result(output);
perfetto::base::ignore_result(argument_filter);
perfetto::base::ignore_result(metadata_filter);
perfetto::base::ignore_result(label_filter);
return util::ErrStatus("JSON support is not compiled in this build");
#endif // PERFETTO_BUILDFLAG(PERFETTO_TP_JSON)
}
util::Status ExportJson(TraceProcessorStorage* tp,
OutputWriter* output,
ArgumentFilterPredicate argument_filter,
MetadataFilterPredicate metadata_filter,
LabelFilterPredicate label_filter) {
const TraceStorage* storage = reinterpret_cast<TraceProcessorStorageImpl*>(tp)
->context()
->storage.get();
return ExportJson(storage, output, argument_filter, metadata_filter,
label_filter);
}
util::Status ExportJson(const TraceStorage* storage, FILE* output) {
FileWriter writer(output);
return ExportJson(storage, &writer, nullptr, nullptr, nullptr);
}
} // namespace json
} // namespace trace_processor
} // namespace perfetto