blob: e994c2d7e71a30e462be4bc6243dfef33d992761 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/traced/probes/ps/process_stats_data_source.h"
#include <stdlib.h>
#include <algorithm>
#include <utility>
#include "perfetto/base/file_utils.h"
#include "perfetto/base/metatrace.h"
#include "perfetto/base/scoped_file.h"
#include "perfetto/base/string_splitter.h"
#include "perfetto/base/task_runner.h"
#include "perfetto/base/time.h"
#include "perfetto/trace/ps/process_stats.pbzero.h"
#include "perfetto/trace/ps/process_tree.pbzero.h"
#include "perfetto/trace/trace_packet.pbzero.h"
// TODO(primiano): the code in this file assumes that PIDs are never recycled
// and that processes/threads never change names. Neither is always true.
// The notion of PID in the Linux kernel is a bit confusing.
// - PID: is really the thread id (for the main thread: PID == TID).
// - TGID (thread group ID): is the Unix Process ID (the actual PID).
// - PID == TGID for the main thread: the TID of the main thread is also the PID
// of the process.
// So, in this file, |pid| might refer to either a process id or a thread id.
namespace perfetto {
namespace {
inline int32_t ParseIntValue(const char* str) {
int32_t ret = 0;
for (;;) {
char c = *(str++);
if (!c)
break;
if (c < '0' || c > '9')
return 0;
ret *= 10;
ret += static_cast<int32_t>(c - '0');
}
return ret;
}
int32_t ReadNextNumericDir(DIR* dirp) {
while (struct dirent* dir_ent = readdir(dirp)) {
if (dir_ent->d_type != DT_DIR)
continue;
int32_t int_value = ParseIntValue(dir_ent->d_name);
if (int_value)
return int_value;
}
return 0;
}
inline int ToInt(const std::string& str) {
return atoi(str.c_str());
}
inline uint32_t ToU32(const char* str) {
return static_cast<uint32_t>(strtol(str, nullptr, 10));
}
} // namespace
// static
constexpr int ProcessStatsDataSource::kTypeId;
ProcessStatsDataSource::ProcessStatsDataSource(
base::TaskRunner* task_runner,
TracingSessionID session_id,
std::unique_ptr<TraceWriter> writer,
const DataSourceConfig& config)
: ProbesDataSource(session_id, kTypeId),
task_runner_(task_runner),
writer_(std::move(writer)),
record_thread_names_(config.process_stats_config().record_thread_names()),
dump_all_procs_on_start_(
config.process_stats_config().scan_all_processes_on_start()),
weak_factory_(this) {
const auto& ps_config = config.process_stats_config();
const auto& quirks = ps_config.quirks();
enable_on_demand_dumps_ =
(std::find(quirks.begin(), quirks.end(),
ProcessStatsConfig::DISABLE_ON_DEMAND) == quirks.end());
poll_period_ms_ = ps_config.proc_stats_poll_ms();
if (poll_period_ms_ > 0 && poll_period_ms_ < 100) {
PERFETTO_ILOG("proc_stats_poll_ms %" PRIu32
" is less than minimum of 100ms. Increasing to 100ms.",
poll_period_ms_);
poll_period_ms_ = 100;
}
if (poll_period_ms_ > 0) {
auto proc_stats_ttl_ms = ps_config.proc_stats_cache_ttl_ms();
process_stats_cache_ttl_ticks_ =
std::max(proc_stats_ttl_ms / poll_period_ms_, 1u);
}
}
ProcessStatsDataSource::~ProcessStatsDataSource() = default;
void ProcessStatsDataSource::Start() {
if (dump_all_procs_on_start_)
WriteAllProcesses();
if (poll_period_ms_) {
auto weak_this = GetWeakPtr();
task_runner_->PostTask(std::bind(&ProcessStatsDataSource::Tick, weak_this));
}
}
base::WeakPtr<ProcessStatsDataSource> ProcessStatsDataSource::GetWeakPtr()
const {
return weak_factory_.GetWeakPtr();
}
void ProcessStatsDataSource::WriteAllProcesses() {
PERFETTO_METATRACE("WriteAllProcesses", 0);
PERFETTO_DCHECK(!cur_ps_tree_);
CacheProcFsScanStartTimestamp();
base::ScopedDir proc_dir = OpenProcDir();
if (!proc_dir)
return;
while (int32_t pid = ReadNextNumericDir(*proc_dir)) {
WriteProcessOrThread(pid);
char task_path[255];
sprintf(task_path, "/proc/%d/task", pid);
base::ScopedDir task_dir(opendir(task_path));
if (!task_dir)
continue;
while (int32_t tid = ReadNextNumericDir(*task_dir)) {
if (tid == pid)
continue;
if (record_thread_names_) {
WriteProcessOrThread(tid);
} else {
// If we are not interested in thread names, there is no need to open
// a proc file for each thread. We can save time and directly write the
// thread record.
WriteThread(tid, pid, /*optional_name=*/nullptr);
}
}
}
FinalizeCurPacket();
}
void ProcessStatsDataSource::OnPids(const std::vector<int32_t>& pids) {
PERFETTO_METATRACE("OnPids", 0);
if (!enable_on_demand_dumps_)
return;
PERFETTO_DCHECK(!cur_ps_tree_);
for (int32_t pid : pids) {
if (seen_pids_.count(pid) || pid == 0)
continue;
WriteProcessOrThread(pid);
}
FinalizeCurPacket();
}
void ProcessStatsDataSource::OnRenamePids(const std::vector<int32_t>& pids) {
PERFETTO_METATRACE("OnRenamePids", 0);
if (!enable_on_demand_dumps_)
return;
PERFETTO_DCHECK(!cur_ps_tree_);
for (int32_t pid : pids) {
auto pid_it = seen_pids_.find(pid);
if (pid_it == seen_pids_.end())
continue;
seen_pids_.erase(pid_it);
}
}
void ProcessStatsDataSource::Flush(FlushRequestID,
std::function<void()> callback) {
// We shouldn't get this in the middle of WriteAllProcesses() or OnPids().
PERFETTO_DCHECK(!cur_ps_tree_);
PERFETTO_DCHECK(!cur_ps_stats_);
PERFETTO_DCHECK(!cur_ps_stats_process_);
writer_->Flush(callback);
}
void ProcessStatsDataSource::WriteProcessOrThread(int32_t pid) {
// In case we're called from outside WriteAllProcesses()
CacheProcFsScanStartTimestamp();
std::string proc_status = ReadProcPidFile(pid, "status");
if (proc_status.empty())
return;
int tgid = ToInt(ReadProcStatusEntry(proc_status, "Tgid:"));
if (tgid <= 0)
return;
if (!seen_pids_.count(tgid))
WriteProcess(tgid, proc_status);
if (pid != tgid) {
PERFETTO_DCHECK(!seen_pids_.count(pid));
std::string thread_name;
if (record_thread_names_)
thread_name = ReadProcStatusEntry(proc_status, "Name:");
WriteThread(pid, tgid, thread_name.empty() ? nullptr : thread_name.c_str());
}
}
void ProcessStatsDataSource::WriteProcess(int32_t pid,
const std::string& proc_status) {
PERFETTO_DCHECK(ToInt(ReadProcStatusEntry(proc_status, "Tgid:")) == pid);
auto* proc = GetOrCreatePsTree()->add_processes();
proc->set_pid(pid);
proc->set_ppid(ToInt(ReadProcStatusEntry(proc_status, "PPid:")));
std::string cmdline = ReadProcPidFile(pid, "cmdline");
if (!cmdline.empty()) {
using base::StringSplitter;
for (StringSplitter ss(&cmdline[0], cmdline.size(), '\0'); ss.Next();)
proc->add_cmdline(ss.cur_token());
} else {
// Nothing in cmdline so use the thread name instead (which is == "comm").
proc->add_cmdline(ReadProcStatusEntry(proc_status, "Name:").c_str());
}
seen_pids_.emplace(pid);
}
void ProcessStatsDataSource::WriteThread(int32_t tid,
int32_t tgid,
const char* optional_name) {
auto* thread = GetOrCreatePsTree()->add_threads();
thread->set_tid(tid);
thread->set_tgid(tgid);
if (optional_name)
thread->set_name(optional_name);
seen_pids_.emplace(tid);
}
base::ScopedDir ProcessStatsDataSource::OpenProcDir() {
base::ScopedDir proc_dir(opendir("/proc"));
if (!proc_dir)
PERFETTO_PLOG("Failed to opendir(/proc)");
return proc_dir;
}
std::string ProcessStatsDataSource::ReadProcPidFile(int32_t pid,
const std::string& file) {
std::string contents;
contents.reserve(4096);
if (!base::ReadFile("/proc/" + std::to_string(pid) + "/" + file, &contents))
return "";
return contents;
}
std::string ProcessStatsDataSource::ReadProcStatusEntry(const std::string& buf,
const char* key) {
auto begin = buf.find(key);
if (begin == std::string::npos)
return "";
begin = buf.find_first_not_of(" \t", begin + strlen(key));
if (begin == std::string::npos)
return "";
auto end = buf.find('\n', begin);
if (end == std::string::npos || end <= begin)
return "";
return buf.substr(begin, end - begin);
}
void ProcessStatsDataSource::StartNewPacketIfNeeded() {
if (cur_packet_)
return;
cur_packet_ = writer_->NewTracePacket();
cur_packet_->set_timestamp(CacheProcFsScanStartTimestamp());
if (did_clear_incremental_state_) {
cur_packet_->set_incremental_state_cleared(true);
did_clear_incremental_state_ = false;
}
}
protos::pbzero::ProcessTree* ProcessStatsDataSource::GetOrCreatePsTree() {
StartNewPacketIfNeeded();
if (!cur_ps_tree_)
cur_ps_tree_ = cur_packet_->set_process_tree();
cur_ps_stats_ = nullptr;
cur_ps_stats_process_ = nullptr;
return cur_ps_tree_;
}
protos::pbzero::ProcessStats* ProcessStatsDataSource::GetOrCreateStats() {
StartNewPacketIfNeeded();
if (!cur_ps_stats_)
cur_ps_stats_ = cur_packet_->set_process_stats();
cur_ps_tree_ = nullptr;
cur_ps_stats_process_ = nullptr;
return cur_ps_stats_;
}
protos::pbzero::ProcessStats_Process*
ProcessStatsDataSource::GetOrCreateStatsProcess(int32_t pid) {
if (cur_ps_stats_process_)
return cur_ps_stats_process_;
cur_ps_stats_process_ = GetOrCreateStats()->add_processes();
cur_ps_stats_process_->set_pid(pid);
return cur_ps_stats_process_;
}
void ProcessStatsDataSource::FinalizeCurPacket() {
PERFETTO_DCHECK(!cur_ps_tree_ || cur_packet_);
PERFETTO_DCHECK(!cur_ps_stats_ || cur_packet_);
uint64_t now = static_cast<uint64_t>(base::GetBootTimeNs().count());
if (cur_ps_tree_) {
cur_ps_tree_->set_collection_end_timestamp(now);
cur_ps_tree_ = nullptr;
}
if (cur_ps_stats_) {
cur_ps_stats_->set_collection_end_timestamp(now);
cur_ps_stats_ = nullptr;
}
cur_ps_stats_process_ = nullptr;
cur_procfs_scan_start_timestamp_ = 0;
cur_packet_ = TraceWriter::TracePacketHandle{};
}
// static
void ProcessStatsDataSource::Tick(
base::WeakPtr<ProcessStatsDataSource> weak_this) {
if (!weak_this)
return;
ProcessStatsDataSource& thiz = *weak_this;
uint32_t period_ms = thiz.poll_period_ms_;
uint32_t delay_ms = period_ms - (base::GetWallTimeMs().count() % period_ms);
thiz.task_runner_->PostDelayedTask(
std::bind(&ProcessStatsDataSource::Tick, weak_this), delay_ms);
thiz.WriteAllProcessStats();
// We clear the cache every process_stats_cache_ttl_ticks_ ticks.
if (++thiz.cache_ticks_ == thiz.process_stats_cache_ttl_ticks_) {
thiz.cache_ticks_ = 0;
thiz.process_stats_cache_.clear();
}
}
void ProcessStatsDataSource::WriteAllProcessStats() {
// TODO(primiano): implement whitelisting of processes by names.
// TODO(primiano): Have a pid cache to avoid wasting cycles reading kthreads
// proc files over and over. Same for non-whitelist processes (see above).
CacheProcFsScanStartTimestamp();
PERFETTO_METATRACE("WriteAllProcessStats", 0);
base::ScopedDir proc_dir = OpenProcDir();
if (!proc_dir)
return;
std::vector<int32_t> pids;
while (int32_t pid = ReadNextNumericDir(*proc_dir)) {
cur_ps_stats_process_ = nullptr;
uint32_t pid_u = static_cast<uint32_t>(pid);
if (skip_stats_for_pids_.size() > pid_u && skip_stats_for_pids_[pid_u])
continue;
std::string proc_status = ReadProcPidFile(pid, "status");
if (proc_status.empty())
continue;
if (!WriteMemCounters(pid, proc_status)) {
// If WriteMemCounters() fails the pid is very likely a kernel thread
// that has a valid /proc/[pid]/status but no memory values. In this
// case avoid keep polling it over and over.
if (skip_stats_for_pids_.size() <= pid_u)
skip_stats_for_pids_.resize(pid_u + 1);
skip_stats_for_pids_[pid_u] = true;
continue;
}
std::string oom_score_adj = ReadProcPidFile(pid, "oom_score_adj");
if (!oom_score_adj.empty()) {
CachedProcessStats& cached = process_stats_cache_[pid];
auto counter = ToInt(oom_score_adj);
if (counter != cached.oom_score_adj) {
GetOrCreateStatsProcess(pid)->set_oom_score_adj(counter);
cached.oom_score_adj = counter;
}
}
pids.push_back(pid);
}
FinalizeCurPacket();
// Ensure that we write once long-term process info (e.g., name) for new pids
// that we haven't seen before.
OnPids(pids);
}
// Returns true if the stats for the given |pid| have been written, false it
// it failed (e.g., |pid| was a kernel thread and, as such, didn't report any
// memory counters).
bool ProcessStatsDataSource::WriteMemCounters(int32_t pid,
const std::string& proc_status) {
bool proc_status_has_mem_counters = false;
CachedProcessStats& cached = process_stats_cache_[pid];
// Parse /proc/[pid]/status, which looks like this:
// Name: cat
// Umask: 0027
// State: R (running)
// FDSize: 256
// Groups: 4 20 24 46 997
// VmPeak: 5992 kB
// VmSize: 5992 kB
// VmLck: 0 kB
// ...
std::vector<char> key;
std::vector<char> value;
enum { kKey, kSeparator, kValue } state = kKey;
for (char c : proc_status) {
if (c == '\n') {
key.push_back('\0');
value.push_back('\0');
// |value| will contain "1234 KB". We rely on strtol() (in ToU32()) to
// stop parsing at the first non-numeric character.
if (strcmp(key.data(), "VmSize") == 0) {
// Assume that if we see VmSize we'll see also the others.
proc_status_has_mem_counters = true;
auto counter = ToU32(value.data());
if (counter != cached.vm_size_kb) {
GetOrCreateStatsProcess(pid)->set_vm_size_kb(counter);
cached.vm_size_kb = counter;
}
} else if (strcmp(key.data(), "VmLck") == 0) {
auto counter = ToU32(value.data());
if (counter != cached.vm_locked_kb) {
GetOrCreateStatsProcess(pid)->set_vm_locked_kb(counter);
cached.vm_locked_kb = counter;
}
} else if (strcmp(key.data(), "VmHWM") == 0) {
auto counter = ToU32(value.data());
if (counter != cached.vm_hvm_kb) {
GetOrCreateStatsProcess(pid)->set_vm_hwm_kb(counter);
cached.vm_hvm_kb = counter;
}
} else if (strcmp(key.data(), "VmRSS") == 0) {
auto counter = ToU32(value.data());
if (counter != cached.vm_rss_kb) {
GetOrCreateStatsProcess(pid)->set_vm_rss_kb(counter);
cached.vm_rss_kb = counter;
}
} else if (strcmp(key.data(), "RssAnon") == 0) {
auto counter = ToU32(value.data());
if (counter != cached.rss_anon_kb) {
GetOrCreateStatsProcess(pid)->set_rss_anon_kb(counter);
cached.rss_anon_kb = counter;
}
} else if (strcmp(key.data(), "RssFile") == 0) {
auto counter = ToU32(value.data());
if (counter != cached.rss_file_kb) {
GetOrCreateStatsProcess(pid)->set_rss_file_kb(counter);
cached.rss_file_kb = counter;
}
} else if (strcmp(key.data(), "RssShmem") == 0) {
auto counter = ToU32(value.data());
if (counter != cached.rss_shmem_kb) {
GetOrCreateStatsProcess(pid)->set_rss_shmem_kb(counter);
cached.rss_shmem_kb = counter;
}
} else if (strcmp(key.data(), "VmSwap") == 0) {
auto counter = ToU32(value.data());
if (counter != cached.vm_swap_kb) {
GetOrCreateStatsProcess(pid)->set_vm_swap_kb(counter);
cached.vm_swap_kb = counter;
}
}
key.clear();
state = kKey;
continue;
}
if (state == kKey) {
if (c == ':') {
state = kSeparator;
continue;
}
key.push_back(c);
continue;
}
if (state == kSeparator) {
if (isspace(c))
continue;
value.clear();
value.push_back(c);
state = kValue;
continue;
}
if (state == kValue) {
value.push_back(c);
}
}
return proc_status_has_mem_counters;
}
uint64_t ProcessStatsDataSource::CacheProcFsScanStartTimestamp() {
if (!cur_procfs_scan_start_timestamp_)
cur_procfs_scan_start_timestamp_ =
static_cast<uint64_t>(base::GetBootTimeNs().count());
return cur_procfs_scan_start_timestamp_;
}
void ProcessStatsDataSource::ClearIncrementalState() {
PERFETTO_DLOG("ProcessStatsDataSource clearing incremental state.");
seen_pids_.clear();
skip_stats_for_pids_.clear();
cache_ticks_ = 0;
process_stats_cache_.clear();
// Set the relevant flag in the next packet.
did_clear_incremental_state_ = true;
}
} // namespace perfetto