blob: 22a3427e43837cd92f06cd952b0365d6329a6908 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_
#define SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_
#include <array>
#include <deque>
#include <map>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "perfetto/base/hash.h"
#include "perfetto/base/logging.h"
#include "perfetto/base/optional.h"
#include "perfetto/base/string_view.h"
#include "perfetto/base/utils.h"
#include "src/trace_processor/ftrace_utils.h"
#include "src/trace_processor/stats.h"
namespace perfetto {
namespace trace_processor {
// UniquePid is an offset into |unique_processes_|. This is necessary because
// Unix pids are reused and thus not guaranteed to be unique over a long
// period of time.
using UniquePid = uint32_t;
// UniqueTid is an offset into |unique_threads_|. Necessary because tids can
// be reused.
using UniqueTid = uint32_t;
// StringId is an offset into |string_pool_|.
using StringId = uint32_t;
// Identifiers for all the tables in the database.
enum TableId : uint8_t {
// Intentionally don't have TableId == 0 so that RowId == 0 can refer to an
// invalid row id.
kCounters = 1,
kRawEvents = 2,
kInstants = 3,
kSched = 4,
};
// The top 8 bits are set to the TableId and the bottom 32 to the row of the
// table.
using RowId = int64_t;
static const RowId kInvalidRowId = 0;
using ArgSetId = uint32_t;
static const ArgSetId kInvalidArgSetId = 0;
enum RefType {
kRefNoRef = 0,
kRefUtid = 1,
kRefCpuId = 2,
kRefIrq = 3,
kRefSoftIrq = 4,
kRefUpid = 5,
kRefUtidLookupUpid = 6,
kRefMax
};
// Stores a data inside a trace file in a columnar form. This makes it efficient
// to read or search across a single field of the trace (e.g. all the thread
// names for a given CPU).
class TraceStorage {
public:
TraceStorage();
TraceStorage(const TraceStorage&) = delete;
virtual ~TraceStorage();
// Information about a unique process seen in a trace.
struct Process {
explicit Process(uint32_t p) : pid(p) {}
int64_t start_ns = 0;
StringId name_id = 0;
uint32_t pid = 0;
base::Optional<UniquePid> pupid;
};
// Information about a unique thread seen in a trace.
struct Thread {
explicit Thread(uint32_t t) : tid(t) {}
int64_t start_ns = 0;
StringId name_id = 0;
base::Optional<UniquePid> upid;
uint32_t tid = 0;
};
// Generic key value storage which can be referenced by other tables.
class Args {
public:
// Variadic type representing the possible values for the args table.
struct Variadic {
enum Type { kInt, kString, kReal };
static Variadic Integer(int64_t int_value) {
Variadic variadic;
variadic.type = Type::kInt;
variadic.int_value = int_value;
return variadic;
}
static Variadic String(StringId string_id) {
Variadic variadic;
variadic.type = Type::kString;
variadic.string_value = string_id;
return variadic;
}
static Variadic Real(double real_value) {
Variadic variadic;
variadic.type = Type::kReal;
variadic.real_value = real_value;
return variadic;
}
Type type;
union {
int64_t int_value;
StringId string_value;
double real_value;
};
};
struct Arg {
StringId flat_key = 0;
StringId key = 0;
Variadic value = Variadic::Integer(0);
// This is only used by the arg tracker and so is not part of the hash.
RowId row_id = 0;
};
struct ArgHasher {
uint64_t operator()(const Arg& arg) const noexcept {
base::Hash hash;
hash.Update(arg.key);
// We don't hash arg.flat_key because it's a subsequence of arg.key.
switch (arg.value.type) {
case Variadic::Type::kInt:
hash.Update(arg.value.int_value);
break;
case Variadic::Type::kString:
hash.Update(arg.value.string_value);
break;
case Variadic::Type::kReal:
hash.Update(arg.value.real_value);
break;
}
return hash.digest();
}
};
const std::deque<ArgSetId>& set_ids() const { return set_ids_; }
const std::deque<StringId>& flat_keys() const { return flat_keys_; }
const std::deque<StringId>& keys() const { return keys_; }
const std::deque<Variadic>& arg_values() const { return arg_values_; }
uint32_t args_count() const {
return static_cast<uint32_t>(set_ids_.size());
}
ArgSetId AddArgSet(const std::vector<Arg>& args,
uint32_t begin,
uint32_t end) {
base::Hash hash;
for (uint32_t i = begin; i < end; i++) {
hash.Update(ArgHasher()(args[i]));
}
ArgSetHash digest = hash.digest();
auto it = arg_row_for_hash_.find(digest);
if (it != arg_row_for_hash_.end()) {
return set_ids_[it->second];
}
// The +1 ensures that nothing has an id == kInvalidArgSetId == 0.
ArgSetId id = static_cast<uint32_t>(arg_row_for_hash_.size()) + 1;
arg_row_for_hash_.emplace(digest, args_count());
for (uint32_t i = begin; i < end; i++) {
const auto& arg = args[i];
set_ids_.emplace_back(id);
flat_keys_.emplace_back(arg.flat_key);
keys_.emplace_back(arg.key);
arg_values_.emplace_back(arg.value);
}
return id;
}
private:
using ArgSetHash = uint64_t;
std::deque<ArgSetId> set_ids_;
std::deque<StringId> flat_keys_;
std::deque<StringId> keys_;
std::deque<Variadic> arg_values_;
std::unordered_map<ArgSetHash, uint32_t> arg_row_for_hash_;
};
class Slices {
public:
inline size_t AddSlice(uint32_t cpu,
int64_t start_ns,
int64_t duration_ns,
UniqueTid utid,
ftrace_utils::TaskState end_state,
int32_t priority) {
cpus_.emplace_back(cpu);
start_ns_.emplace_back(start_ns);
durations_.emplace_back(duration_ns);
utids_.emplace_back(utid);
end_states_.emplace_back(end_state);
priorities_.emplace_back(priority);
if (utid >= rows_for_utids_.size())
rows_for_utids_.resize(utid + 1);
rows_for_utids_[utid].emplace_back(slice_count() - 1);
return slice_count() - 1;
}
void set_duration(size_t index, int64_t duration_ns) {
durations_[index] = duration_ns;
}
void set_end_state(size_t index, ftrace_utils::TaskState end_state) {
end_states_[index] = end_state;
}
size_t slice_count() const { return start_ns_.size(); }
const std::deque<uint32_t>& cpus() const { return cpus_; }
const std::deque<int64_t>& start_ns() const { return start_ns_; }
const std::deque<int64_t>& durations() const { return durations_; }
const std::deque<UniqueTid>& utids() const { return utids_; }
const std::deque<ftrace_utils::TaskState>& end_state() const {
return end_states_;
}
const std::deque<int32_t>& priorities() const { return priorities_; }
const std::deque<std::vector<uint32_t>>& rows_for_utids() const {
return rows_for_utids_;
}
private:
// Each deque below has the same number of entries (the number of slices
// in the trace for the CPU).
std::deque<uint32_t> cpus_;
std::deque<int64_t> start_ns_;
std::deque<int64_t> durations_;
std::deque<UniqueTid> utids_;
std::deque<ftrace_utils::TaskState> end_states_;
std::deque<int32_t> priorities_;
// One row per utid.
std::deque<std::vector<uint32_t>> rows_for_utids_;
};
class NestableSlices {
public:
inline size_t AddSlice(int64_t start_ns,
int64_t duration_ns,
UniqueTid utid,
StringId cat,
StringId name,
uint8_t depth,
int64_t stack_id,
int64_t parent_stack_id) {
start_ns_.emplace_back(start_ns);
durations_.emplace_back(duration_ns);
utids_.emplace_back(utid);
cats_.emplace_back(cat);
names_.emplace_back(name);
depths_.emplace_back(depth);
stack_ids_.emplace_back(stack_id);
parent_stack_ids_.emplace_back(parent_stack_id);
return slice_count() - 1;
}
void set_duration(size_t index, int64_t duration_ns) {
durations_[index] = duration_ns;
}
void set_stack_id(size_t index, int64_t stack_id) {
stack_ids_[index] = stack_id;
}
size_t slice_count() const { return start_ns_.size(); }
const std::deque<int64_t>& start_ns() const { return start_ns_; }
const std::deque<int64_t>& durations() const { return durations_; }
const std::deque<UniqueTid>& utids() const { return utids_; }
const std::deque<StringId>& cats() const { return cats_; }
const std::deque<StringId>& names() const { return names_; }
const std::deque<uint8_t>& depths() const { return depths_; }
const std::deque<int64_t>& stack_ids() const { return stack_ids_; }
const std::deque<int64_t>& parent_stack_ids() const {
return parent_stack_ids_;
}
private:
std::deque<int64_t> start_ns_;
std::deque<int64_t> durations_;
std::deque<UniqueTid> utids_;
std::deque<StringId> cats_;
std::deque<StringId> names_;
std::deque<uint8_t> depths_;
std::deque<int64_t> stack_ids_;
std::deque<int64_t> parent_stack_ids_;
};
class Counters {
public:
inline size_t AddCounter(int64_t timestamp,
StringId name_id,
double value,
int64_t ref,
RefType type) {
timestamps_.emplace_back(timestamp);
name_ids_.emplace_back(name_id);
values_.emplace_back(value);
refs_.emplace_back(ref);
types_.emplace_back(type);
arg_set_ids_.emplace_back(kInvalidArgSetId);
return counter_count() - 1;
}
void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; }
size_t counter_count() const { return timestamps_.size(); }
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<StringId>& name_ids() const { return name_ids_; }
const std::deque<double>& values() const { return values_; }
const std::deque<int64_t>& refs() const { return refs_; }
const std::deque<RefType>& types() const { return types_; }
const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; }
private:
std::deque<int64_t> timestamps_;
std::deque<StringId> name_ids_;
std::deque<double> values_;
std::deque<int64_t> refs_;
std::deque<RefType> types_;
std::deque<ArgSetId> arg_set_ids_;
};
class SqlStats {
public:
static constexpr size_t kMaxLogEntries = 100;
void RecordQueryBegin(const std::string& query,
int64_t time_queued,
int64_t time_started);
void RecordQueryEnd(int64_t time_ended);
size_t size() const { return queries_.size(); }
const std::deque<std::string>& queries() const { return queries_; }
const std::deque<int64_t>& times_queued() const { return times_queued_; }
const std::deque<int64_t>& times_started() const { return times_started_; }
const std::deque<int64_t>& times_ended() const { return times_ended_; }
private:
std::deque<std::string> queries_;
std::deque<int64_t> times_queued_;
std::deque<int64_t> times_started_;
std::deque<int64_t> times_ended_;
};
class Instants {
public:
inline uint32_t AddInstantEvent(int64_t timestamp,
StringId name_id,
double value,
int64_t ref,
RefType type) {
timestamps_.emplace_back(timestamp);
name_ids_.emplace_back(name_id);
values_.emplace_back(value);
refs_.emplace_back(ref);
types_.emplace_back(type);
arg_set_ids_.emplace_back(kInvalidArgSetId);
return static_cast<uint32_t>(instant_count() - 1);
}
void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; }
size_t instant_count() const { return timestamps_.size(); }
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<StringId>& name_ids() const { return name_ids_; }
const std::deque<double>& values() const { return values_; }
const std::deque<int64_t>& refs() const { return refs_; }
const std::deque<RefType>& types() const { return types_; }
const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; }
private:
std::deque<int64_t> timestamps_;
std::deque<StringId> name_ids_;
std::deque<double> values_;
std::deque<int64_t> refs_;
std::deque<RefType> types_;
std::deque<ArgSetId> arg_set_ids_;
};
class RawEvents {
public:
inline RowId AddRawEvent(int64_t timestamp,
StringId name_id,
uint32_t cpu,
UniqueTid utid) {
timestamps_.emplace_back(timestamp);
name_ids_.emplace_back(name_id);
cpus_.emplace_back(cpu);
utids_.emplace_back(utid);
arg_set_ids_.emplace_back(kInvalidArgSetId);
return CreateRowId(TableId::kRawEvents,
static_cast<uint32_t>(raw_event_count() - 1));
}
void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; }
size_t raw_event_count() const { return timestamps_.size(); }
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<StringId>& name_ids() const { return name_ids_; }
const std::deque<uint32_t>& cpus() const { return cpus_; }
const std::deque<UniqueTid>& utids() const { return utids_; }
const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; }
private:
std::deque<int64_t> timestamps_;
std::deque<StringId> name_ids_;
std::deque<uint32_t> cpus_;
std::deque<UniqueTid> utids_;
std::deque<ArgSetId> arg_set_ids_;
};
class AndroidLogs {
public:
inline size_t AddLogEvent(int64_t timestamp,
UniqueTid utid,
uint8_t prio,
StringId tag_id,
StringId msg_id) {
timestamps_.emplace_back(timestamp);
utids_.emplace_back(utid);
prios_.emplace_back(prio);
tag_ids_.emplace_back(tag_id);
msg_ids_.emplace_back(msg_id);
return size() - 1;
}
size_t size() const { return timestamps_.size(); }
const std::deque<int64_t>& timestamps() const { return timestamps_; }
const std::deque<UniqueTid>& utids() const { return utids_; }
const std::deque<uint8_t>& prios() const { return prios_; }
const std::deque<StringId>& tag_ids() const { return tag_ids_; }
const std::deque<StringId>& msg_ids() const { return msg_ids_; }
private:
std::deque<int64_t> timestamps_;
std::deque<UniqueTid> utids_;
std::deque<uint8_t> prios_;
std::deque<StringId> tag_ids_;
std::deque<StringId> msg_ids_;
};
struct Stats {
using IndexMap = std::map<int, int64_t>;
int64_t value = 0;
IndexMap indexed_values;
};
using StatsMap = std::array<Stats, stats::kNumKeys>;
void ResetStorage();
UniqueTid AddEmptyThread(uint32_t tid) {
unique_threads_.emplace_back(tid);
return static_cast<UniqueTid>(unique_threads_.size() - 1);
}
UniquePid AddEmptyProcess(uint32_t pid) {
unique_processes_.emplace_back(pid);
return static_cast<UniquePid>(unique_processes_.size() - 1);
}
// Return an unqiue identifier for the contents of each string.
// The string is copied internally and can be destroyed after this called.
// Virtual for testing.
virtual StringId InternString(base::StringView);
Process* GetMutableProcess(UniquePid upid) {
PERFETTO_DCHECK(upid < unique_processes_.size());
return &unique_processes_[upid];
}
Thread* GetMutableThread(UniqueTid utid) {
PERFETTO_DCHECK(utid < unique_threads_.size());
return &unique_threads_[utid];
}
// Example usage: SetStats(stats::android_log_num_failed, 42);
void SetStats(size_t key, int64_t value) {
PERFETTO_DCHECK(key < stats::kNumKeys);
PERFETTO_DCHECK(stats::kTypes[key] == stats::kSingle);
stats_[key].value = value;
}
// Example usage: IncrementStats(stats::android_log_num_failed, -1);
void IncrementStats(size_t key, int64_t increment = 1) {
PERFETTO_DCHECK(key < stats::kNumKeys);
PERFETTO_DCHECK(stats::kTypes[key] == stats::kSingle);
stats_[key].value += increment;
}
// Example usage: SetIndexedStats(stats::cpu_failure, 1, 42);
void SetIndexedStats(size_t key, int index, int64_t value) {
PERFETTO_DCHECK(key < stats::kNumKeys);
PERFETTO_DCHECK(stats::kTypes[key] == stats::kIndexed);
stats_[key].indexed_values[index] = value;
}
// Reading methods.
const std::string& GetString(StringId id) const {
PERFETTO_DCHECK(id < string_pool_.size());
return string_pool_[id];
}
const Process& GetProcess(UniquePid upid) const {
PERFETTO_DCHECK(upid < unique_processes_.size());
return unique_processes_[upid];
}
const Thread& GetThread(UniqueTid utid) const {
// Allow utid == 0 for idle thread retrieval.
PERFETTO_DCHECK(utid < unique_threads_.size());
return unique_threads_[utid];
}
static RowId CreateRowId(TableId table, uint32_t row) {
return (static_cast<RowId>(table) << kRowIdTableShift) | row;
}
static std::pair<int8_t /*table*/, uint32_t /*row*/> ParseRowId(RowId rowid) {
auto id = static_cast<uint64_t>(rowid);
auto table_id = static_cast<uint8_t>(id >> kRowIdTableShift);
auto row = static_cast<uint32_t>(id & ((1ull << kRowIdTableShift) - 1));
return std::make_pair(table_id, row);
}
const Slices& slices() const { return slices_; }
Slices* mutable_slices() { return &slices_; }
const NestableSlices& nestable_slices() const { return nestable_slices_; }
NestableSlices* mutable_nestable_slices() { return &nestable_slices_; }
const Counters& counters() const { return counters_; }
Counters* mutable_counters() { return &counters_; }
const SqlStats& sql_stats() const { return sql_stats_; }
SqlStats* mutable_sql_stats() { return &sql_stats_; }
const Instants& instants() const { return instants_; }
Instants* mutable_instants() { return &instants_; }
const AndroidLogs& android_logs() const { return android_log_; }
AndroidLogs* mutable_android_log() { return &android_log_; }
const StatsMap& stats() const { return stats_; }
const Args& args() const { return args_; }
Args* mutable_args() { return &args_; }
const RawEvents& raw_events() const { return raw_events_; }
RawEvents* mutable_raw_events() { return &raw_events_; }
const std::deque<std::string>& string_pool() const { return string_pool_; }
// |unique_processes_| always contains at least 1 element becuase the 0th ID
// is reserved to indicate an invalid process.
size_t process_count() const { return unique_processes_.size(); }
// |unique_threads_| always contains at least 1 element becuase the 0th ID
// is reserved to indicate an invalid thread.
size_t thread_count() const { return unique_threads_.size(); }
// Number of interned strings in the pool. Includes the empty string w/ ID=0.
size_t string_count() const { return string_pool_.size(); }
// Start / end ts (in nanoseconds) across the parsed trace events.
// Returns (0, 0) if the trace is empty.
std::pair<int64_t, int64_t> GetTraceTimestampBoundsNs() const;
private:
static constexpr uint8_t kRowIdTableShift = 32;
using StringHash = uint64_t;
TraceStorage& operator=(const TraceStorage&) = default;
// Stats about parsing the trace.
StatsMap stats_{};
// One entry for each CPU in the trace.
Slices slices_;
// Args for all other tables.
Args args_;
// One entry for each unique string in the trace.
std::deque<std::string> string_pool_;
// One entry for each unique string in the trace.
std::unordered_map<StringHash, StringId> string_index_;
// One entry for each UniquePid, with UniquePid as the index.
std::deque<Process> unique_processes_;
// One entry for each UniqueTid, with UniqueTid as the index.
std::deque<Thread> unique_threads_;
// Slices coming from userspace events (e.g. Chromium TRACE_EVENT macros).
NestableSlices nestable_slices_;
// Counter events from the trace. This includes CPU frequency events as well
// systrace trace_marker counter events.
Counters counters_;
SqlStats sql_stats_;
// These are instantaneous events in the trace. They have no duration
// and do not have a value that make sense to track over time.
// e.g. signal events
Instants instants_;
// Raw events are every ftrace event in the trace. The raw event includes
// the timestamp and the pid. The args for the raw event will be in the
// args table. This table can be used to generate a text version of the
// trace.
RawEvents raw_events_;
AndroidLogs android_log_;
};
} // namespace trace_processor
} // namespace perfetto
#endif // SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_