blob: 49cd78ea0476594d6ecbd5dd3e994dca734f0f63 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <utility>
#include "perfetto/ext/base/utils.h"
#include "src/trace_processor/importers/proto/proto_trace_parser.h"
#include "src/trace_processor/trace_sorter.h"
namespace perfetto {
namespace trace_processor {
TraceSorter::TraceSorter(TraceProcessorContext* context, int64_t window_size_ns)
: context_(context), window_size_ns_(window_size_ns) {
const char* env = getenv("TRACE_PROCESSOR_SORT_ONLY");
bypass_next_stage_for_testing_ = env && !strcmp(env, "1");
if (bypass_next_stage_for_testing_)
PERFETTO_ELOG("TEST MODE: bypassing protobuf parsing stage");
}
void TraceSorter::Queue::Sort() {
PERFETTO_DCHECK(needs_sorting());
PERFETTO_DCHECK(sort_start_idx_ < events_.size());
// If sort_min_ts_ has been set, it will no long be max_int, and so will be
// smaller than max_ts_.
PERFETTO_DCHECK(sort_min_ts_ < max_ts_);
// We know that all events between [0, sort_start_idx_] are sorted. Within
// this range, perform a bound search and find the iterator for the min
// timestamp that broke the monotonicity. Re-sort from there to the end.
auto sort_end = events_.begin() + static_cast<ssize_t>(sort_start_idx_);
PERFETTO_DCHECK(std::is_sorted(events_.begin(), sort_end));
auto sort_begin = std::lower_bound(events_.begin(), sort_end, sort_min_ts_,
&TimestampedTracePiece::Compare);
std::sort(sort_begin, events_.end());
sort_start_idx_ = 0;
sort_min_ts_ = 0;
// At this point |events_| must be fully sorted.
PERFETTO_DCHECK(std::is_sorted(events_.begin(), events_.end()));
}
// Removes all the events in |queues_| that are earlier than the given window
// size and moves them to the next parser stages, respecting global timestamp
// order. This function is a "extract min from N sorted queues", with some
// little cleverness: we know that events tend to be bursty, so events are
// not going to be randomly distributed on the N |queues_|.
// Upon each iteration this function finds the first two queues (if any) that
// have the oldest events, and extracts events from the 1st until hitting the
// min_ts of the 2nd. Imagine the queues are as follows:
//
// q0 {min_ts: 10 max_ts: 30}
// q1 {min_ts:5 max_ts: 35}
// q2 {min_ts: 12 max_ts: 40}
//
// We know that we can extract all events from q1 until we hit ts=10 without
// looking at any other queue. After hitting ts=10, we need to re-look to all of
// them to figure out the next min-event.
// There are more suitable data structures to do this (e.g. keeping a min-heap
// to avoid re-scanning all the queues all the times) but doesn't seem worth it.
// With Android traces (that have 8 CPUs) this function accounts for ~1-3% cpu
// time in a profiler.
void TraceSorter::SortAndExtractEventsBeyondWindow(int64_t window_size_ns) {
DCHECK_ftrace_batch_cpu(kNoBatch);
constexpr int64_t kTsMax = std::numeric_limits<int64_t>::max();
const bool was_empty = global_min_ts_ == kTsMax && global_max_ts_ == 0;
int64_t extract_end_ts = global_max_ts_ - window_size_ns;
auto* next_stage = context_->parser.get();
size_t iterations = 0;
for (;; iterations++) {
size_t min_queue_idx = 0; // The index of the queue with the min(ts).
// The top-2 min(ts) among all queues.
// queues_[min_queue_idx].events.timestamp == min_queue_ts[0].
int64_t min_queue_ts[2]{kTsMax, kTsMax};
// This loop identifies the queue which starts with the earliest event and
// also remembers the earliest event of the 2nd queue (in min_queue_ts[1]).
bool has_queues_with_expired_events = false;
for (size_t i = 0; i < queues_.size(); i++) {
auto& queue = queues_[i];
if (queue.events_.empty())
continue;
PERFETTO_DCHECK(queue.min_ts_ >= global_min_ts_);
PERFETTO_DCHECK(queue.max_ts_ <= global_max_ts_);
if (queue.min_ts_ < min_queue_ts[0]) {
min_queue_ts[1] = min_queue_ts[0];
min_queue_ts[0] = queue.min_ts_;
min_queue_idx = i;
has_queues_with_expired_events = true;
} else if (queue.min_ts_ < min_queue_ts[1]) {
min_queue_ts[1] = queue.min_ts_;
}
}
if (!has_queues_with_expired_events) {
// All the queues have events that start after the window (i.e. they are
// too recent and not eligible to be extracted given the current window).
break;
}
Queue& queue = queues_[min_queue_idx];
auto& events = queue.events_;
if (queue.needs_sorting())
queue.Sort();
PERFETTO_DCHECK(queue.min_ts_ == events.front().timestamp);
PERFETTO_DCHECK(queue.min_ts_ == global_min_ts_);
// Now that we identified the min-queue, extract all events from it until
// we hit either: (1) the min-ts of the 2nd queue or (2) the window limit,
// whichever comes first.
int64_t extract_until_ts = std::min(extract_end_ts, min_queue_ts[1]);
size_t num_extracted = 0;
for (auto& event : events) {
int64_t timestamp = event.timestamp;
if (timestamp > extract_until_ts)
break;
++num_extracted;
if (bypass_next_stage_for_testing_)
continue;
if (min_queue_idx == 0) {
// queues_[0] is for non-ftrace packets.
next_stage->ParseTracePacket(timestamp, std::move(event));
} else {
// Ftrace queues start at offset 1. So queues_[1] = cpu[0] and so on.
uint32_t cpu = static_cast<uint32_t>(min_queue_idx - 1);
next_stage->ParseFtracePacket(cpu, timestamp, std::move(event));
}
} // for (event: events)
if (!num_extracted) {
// No events can be extracted from any of the queues. This means that
// either we hit the window or all queues are empty.
break;
}
// Now remove the entries from the event buffer and update the queue-local
// and global time bounds.
events.erase_front(num_extracted);
// Update the global_{min,max}_ts to reflect the bounds after extraction.
if (events.empty()) {
queue.min_ts_ = kTsMax;
queue.max_ts_ = 0;
global_min_ts_ = min_queue_ts[1];
// If we extraced the max entry from a queue (i.e. we emptied the queue)
// we need to recompute the global max, because it might have been the one
// just extracted.
global_max_ts_ = 0;
for (auto& q : queues_)
global_max_ts_ = std::max(global_max_ts_, q.max_ts_);
} else {
queue.min_ts_ = queue.events_.front().timestamp;
global_min_ts_ = std::min(queue.min_ts_, min_queue_ts[1]);
}
} // for(;;)
// We decide to extract events only when we know (using the global_{min,max}
// bounds) that there are eligible events. We should never end up in a
// situation where we call this function but then realize that there was
// nothing to extract.
PERFETTO_DCHECK(iterations > 0 || was_empty);
#if PERFETTO_DCHECK_IS_ON()
// Check that the global min/max are consistent.
int64_t dbg_min_ts = kTsMax;
int64_t dbg_max_ts = 0;
for (auto& q : queues_) {
dbg_min_ts = std::min(dbg_min_ts, q.min_ts_);
dbg_max_ts = std::max(dbg_max_ts, q.max_ts_);
}
PERFETTO_DCHECK(global_min_ts_ == dbg_min_ts);
PERFETTO_DCHECK(global_max_ts_ == dbg_max_ts);
#endif
}
} // namespace trace_processor
} // namespace perfetto