blob: da3baa55b81d60ee4da43768a19f7d5e5ab43b62 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/trace_processor/importers/proto/proto_trace_tokenizer.h"
#include <string>
#include "perfetto/base/build_config.h"
#include "perfetto/base/logging.h"
#include "perfetto/ext/base/optional.h"
#include "perfetto/ext/base/string_view.h"
#include "perfetto/ext/base/utils.h"
#include "perfetto/protozero/proto_decoder.h"
#include "perfetto/protozero/proto_utils.h"
#include "perfetto/trace_processor/status.h"
#include "src/trace_processor/importers/common/clock_tracker.h"
#include "src/trace_processor/importers/common/event_tracker.h"
#include "src/trace_processor/importers/common/track_tracker.h"
#include "src/trace_processor/importers/ftrace/ftrace_module.h"
#include "src/trace_processor/importers/gzip/gzip_utils.h"
#include "src/trace_processor/importers/proto/packet_sequence_state.h"
#include "src/trace_processor/importers/proto/proto_incremental_state.h"
#include "src/trace_processor/storage/stats.h"
#include "src/trace_processor/storage/trace_storage.h"
#include "src/trace_processor/trace_sorter.h"
#include "protos/perfetto/common/builtin_clock.pbzero.h"
#include "protos/perfetto/config/trace_config.pbzero.h"
#include "protos/perfetto/trace/clock_snapshot.pbzero.h"
#include "protos/perfetto/trace/profiling/profile_common.pbzero.h"
#include "protos/perfetto/trace/trace.pbzero.h"
#include "protos/perfetto/trace/trace_packet.pbzero.h"
namespace perfetto {
namespace trace_processor {
using protozero::proto_utils::MakeTagLengthDelimited;
using protozero::proto_utils::ParseVarInt;
namespace {
constexpr uint8_t kTracePacketTag =
MakeTagLengthDelimited(protos::pbzero::Trace::kPacketFieldNumber);
TraceBlobView Decompress(GzipDecompressor* decompressor, TraceBlobView input) {
PERFETTO_DCHECK(gzip::IsGzipSupported());
uint8_t out[4096];
std::vector<uint8_t> data;
data.reserve(input.length());
// Ensure that the decompressor is able to cope with a new stream of data.
decompressor->Reset();
decompressor->SetInput(input.data(), input.length());
using ResultCode = GzipDecompressor::ResultCode;
for (auto ret = ResultCode::kOk; ret != ResultCode::kEof;) {
auto res = decompressor->Decompress(out, base::ArraySize(out));
ret = res.ret;
if (ret == ResultCode::kError || ret == ResultCode::kNoProgress ||
ret == ResultCode::kNeedsMoreInput)
return TraceBlobView(nullptr, 0, 0);
data.insert(data.end(), out, out + res.bytes_written);
}
std::unique_ptr<uint8_t[]> output(new uint8_t[data.size()]);
memcpy(output.get(), data.data(), data.size());
return TraceBlobView(std::move(output), 0, data.size());
}
} // namespace
ProtoTraceTokenizer::ProtoTraceTokenizer(TraceProcessorContext* ctx)
: context_(ctx) {}
ProtoTraceTokenizer::~ProtoTraceTokenizer() = default;
util::Status ProtoTraceTokenizer::Parse(std::unique_ptr<uint8_t[]> owned_buf,
size_t size) {
uint8_t* data = &owned_buf[0];
if (!partial_buf_.empty()) {
// It takes ~5 bytes for a proto preamble + the varint size.
const size_t kHeaderBytes = 5;
if (PERFETTO_UNLIKELY(partial_buf_.size() < kHeaderBytes)) {
size_t missing_len = std::min(kHeaderBytes - partial_buf_.size(), size);
partial_buf_.insert(partial_buf_.end(), &data[0], &data[missing_len]);
if (partial_buf_.size() < kHeaderBytes)
return util::OkStatus();
data += missing_len;
size -= missing_len;
}
// At this point we have enough data in |partial_buf_| to read at least the
// field header and know the size of the next TracePacket.
const uint8_t* pos = &partial_buf_[0];
uint8_t proto_field_tag = *pos;
uint64_t field_size = 0;
const uint8_t* next = ParseVarInt(++pos, &*partial_buf_.end(), &field_size);
bool parse_failed = next == pos;
pos = next;
if (proto_field_tag != kTracePacketTag || field_size == 0 || parse_failed) {
return util::ErrStatus(
"Failed parsing a TracePacket from the partial buffer");
}
// At this point we know how big the TracePacket is.
size_t hdr_size = static_cast<size_t>(pos - &partial_buf_[0]);
size_t size_incl_header = static_cast<size_t>(field_size + hdr_size);
PERFETTO_DCHECK(size_incl_header > partial_buf_.size());
// There is a good chance that between the |partial_buf_| and the new |data|
// of the current call we have enough bytes to parse a TracePacket.
if (partial_buf_.size() + size >= size_incl_header) {
// Create a new buffer for the whole TracePacket and copy into that:
// 1) The beginning of the TracePacket (including the proto header) from
// the partial buffer.
// 2) The rest of the TracePacket from the current |data| buffer (note
// that we might have consumed already a few bytes form |data| earlier
// in this function, hence we need to keep |off| into account).
std::unique_ptr<uint8_t[]> buf(new uint8_t[size_incl_header]);
memcpy(&buf[0], partial_buf_.data(), partial_buf_.size());
// |size_missing| is the number of bytes for the rest of the TracePacket
// in |data|.
size_t size_missing = size_incl_header - partial_buf_.size();
memcpy(&buf[partial_buf_.size()], &data[0], size_missing);
data += size_missing;
size -= size_missing;
partial_buf_.clear();
uint8_t* buf_start = &buf[0]; // Note that buf is std::moved below.
util::Status status =
ParseInternal(std::move(buf), buf_start, size_incl_header);
if (PERFETTO_UNLIKELY(!status.ok()))
return status;
} else {
partial_buf_.insert(partial_buf_.end(), data, &data[size]);
return util::OkStatus();
}
}
return ParseInternal(std::move(owned_buf), data, size);
}
util::Status ProtoTraceTokenizer::ParseInternal(
std::unique_ptr<uint8_t[]> owned_buf,
uint8_t* data,
size_t size) {
PERFETTO_DCHECK(data >= &owned_buf[0]);
const uint8_t* start = &owned_buf[0];
const size_t data_off = static_cast<size_t>(data - start);
TraceBlobView whole_buf(std::move(owned_buf), data_off, size);
protos::pbzero::Trace::Decoder decoder(data, size);
for (auto it = decoder.packet(); it; ++it) {
protozero::ConstBytes packet = *it;
size_t field_offset = whole_buf.offset_of(packet.data);
util::Status status =
ParsePacket(whole_buf.slice(field_offset, packet.size));
if (PERFETTO_UNLIKELY(!status.ok()))
return status;
}
const size_t bytes_left = decoder.bytes_left();
if (bytes_left > 0) {
PERFETTO_DCHECK(partial_buf_.empty());
partial_buf_.insert(partial_buf_.end(), &data[decoder.read_offset()],
&data[decoder.read_offset() + bytes_left]);
}
return util::OkStatus();
}
util::Status ProtoTraceTokenizer::ParsePacket(TraceBlobView packet) {
protos::pbzero::TracePacket::Decoder decoder(packet.data(), packet.length());
if (PERFETTO_UNLIKELY(decoder.bytes_left()))
return util::ErrStatus(
"Failed to parse proto packet fully; the trace is probably corrupt.");
const uint32_t seq_id = decoder.trusted_packet_sequence_id();
auto* state = GetIncrementalStateForPacketSequence(seq_id);
uint32_t sequence_flags = decoder.sequence_flags();
if (decoder.incremental_state_cleared() ||
sequence_flags &
protos::pbzero::TracePacket::SEQ_INCREMENTAL_STATE_CLEARED) {
HandleIncrementalStateCleared(decoder);
} else if (decoder.previous_packet_dropped()) {
HandlePreviousPacketDropped(decoder);
}
// It is important that we parse defaults before parsing other fields such as
// the timestamp, since the defaults could affect them.
if (decoder.has_trace_packet_defaults()) {
auto field = decoder.trace_packet_defaults();
const size_t offset = packet.offset_of(field.data);
ParseTracePacketDefaults(decoder, packet.slice(offset, field.size));
}
if (decoder.has_interned_data()) {
auto field = decoder.interned_data();
const size_t offset = packet.offset_of(field.data);
ParseInternedData(decoder, packet.slice(offset, field.size));
}
if (decoder.has_clock_snapshot()) {
return ParseClockSnapshot(decoder.clock_snapshot(),
decoder.trusted_packet_sequence_id());
}
if (decoder.sequence_flags() &
protos::pbzero::TracePacket::SEQ_NEEDS_INCREMENTAL_STATE) {
if (!seq_id) {
return util::ErrStatus(
"TracePacket specified SEQ_NEEDS_INCREMENTAL_STATE but the "
"TraceWriter's sequence_id is zero (the service is "
"probably too old)");
}
if (!state->IsIncrementalStateValid()) {
context_->storage->IncrementStats(stats::tokenizer_skipped_packets);
return util::OkStatus();
}
}
protos::pbzero::TracePacketDefaults::Decoder* defaults =
state->current_generation()->GetTracePacketDefaults();
int64_t timestamp;
if (decoder.has_timestamp()) {
timestamp = static_cast<int64_t>(decoder.timestamp());
uint32_t timestamp_clock_id =
decoder.has_timestamp_clock_id()
? decoder.timestamp_clock_id()
: (defaults ? defaults->timestamp_clock_id() : 0);
if ((decoder.has_chrome_events() || decoder.has_chrome_metadata()) &&
(!timestamp_clock_id ||
timestamp_clock_id == protos::pbzero::BUILTIN_CLOCK_MONOTONIC)) {
// Chrome event timestamps are in MONOTONIC domain, but may occur in
// traces where (a) no clock snapshots exist or (b) no clock_id is
// specified for their timestamps. Adjust to trace time if we have a clock
// snapshot.
// TODO(eseckler): Set timestamp_clock_id and emit ClockSnapshots in
// chrome and then remove this.
auto trace_ts = context_->clock_tracker->ToTraceTime(
protos::pbzero::BUILTIN_CLOCK_MONOTONIC, timestamp);
if (trace_ts.has_value())
timestamp = trace_ts.value();
} else if (timestamp_clock_id) {
// If the TracePacket specifies a non-zero clock-id, translate the
// timestamp into the trace-time clock domain.
ClockTracker::ClockId converted_clock_id = timestamp_clock_id;
bool is_seq_scoped =
ClockTracker::IsReservedSeqScopedClockId(converted_clock_id);
if (is_seq_scoped) {
if (!seq_id) {
return util::ErrStatus(
"TracePacket specified a sequence-local clock id (%" PRIu32
") but the TraceWriter's sequence_id is zero (the service is "
"probably too old)",
timestamp_clock_id);
}
converted_clock_id =
ClockTracker::SeqScopedClockIdToGlobal(seq_id, timestamp_clock_id);
}
auto trace_ts =
context_->clock_tracker->ToTraceTime(converted_clock_id, timestamp);
if (!trace_ts.has_value()) {
// ToTraceTime() will increase the |clock_sync_failure| stat on failure.
static const char seq_extra_err[] =
" Because the clock id is sequence-scoped, the ClockSnapshot must "
"be emitted on the same TraceWriter sequence of the packet that "
"refers to that clock id.";
return util::ErrStatus(
"Failed to convert TracePacket's timestamp from clock_id=%" PRIu32
" seq_id=%" PRIu32
". This is usually due to the lack of a prior ClockSnapshot "
"proto.%s",
timestamp_clock_id, seq_id, is_seq_scoped ? seq_extra_err : "");
}
timestamp = trace_ts.value();
}
} else {
timestamp = std::max(latest_timestamp_, context_->sorter->max_timestamp());
}
latest_timestamp_ = std::max(timestamp, latest_timestamp_);
auto& modules = context_->modules_by_field;
for (uint32_t field_id = 1; field_id < modules.size(); ++field_id) {
if (modules[field_id] && decoder.Get(field_id).valid()) {
ModuleResult res = modules[field_id]->TokenizePacket(
decoder, &packet, timestamp, state, field_id);
if (!res.ignored())
return res.ToStatus();
}
}
if (decoder.has_compressed_packets()) {
if (!gzip::IsGzipSupported())
return util::Status("Cannot decode compressed packets. Zlib not enabled");
protozero::ConstBytes field = decoder.compressed_packets();
const size_t field_off = packet.offset_of(field.data);
TraceBlobView compressed_packets = packet.slice(field_off, field.size);
TraceBlobView packets =
Decompress(&decompressor_, std::move(compressed_packets));
const uint8_t* start = packets.data();
const uint8_t* end = packets.data() + packets.length();
const uint8_t* ptr = start;
while ((end - ptr) > 2) {
const uint8_t* packet_start = ptr;
if (PERFETTO_UNLIKELY(*ptr != kTracePacketTag))
return util::ErrStatus("Expected TracePacket tag");
uint64_t packet_size = 0;
ptr = ParseVarInt(++ptr, end, &packet_size);
size_t packet_offset = static_cast<size_t>(ptr - start);
ptr += packet_size;
if (PERFETTO_UNLIKELY((ptr - packet_start) < 2 || ptr > end))
return util::ErrStatus("Invalid packet size");
util::Status status = ParsePacket(
packets.slice(packet_offset, static_cast<size_t>(packet_size)));
if (PERFETTO_UNLIKELY(!status.ok()))
return status;
}
return util::OkStatus();
}
// If we're not forcing a full sort and this is a write_into_file trace, then
// use flush_period_ms as an indiciator for how big the sliding window for the
// sorter should be.
if (!context_->config.force_full_sort && decoder.has_trace_config()) {
auto config = decoder.trace_config();
protos::pbzero::TraceConfig::Decoder trace_config(config.data, config.size);
if (trace_config.write_into_file()) {
int64_t window_size_ns;
if (trace_config.has_flush_period_ms() &&
trace_config.flush_period_ms() > 0) {
// We use 2x the flush period as a margin of error to allow for any
// late flush responses to still be sorted correctly.
window_size_ns = static_cast<int64_t>(trace_config.flush_period_ms()) *
2 * 1000 * 1000;
} else {
constexpr uint64_t kDefaultWindowNs =
180 * 1000 * 1000 * 1000ULL; // 3 minutes.
PERFETTO_ELOG(
"It is strongly recommended to have flush_period_ms set when "
"write_into_file is turned on. You will likely have many dropped "
"events because of inability to sort the events correctly.");
window_size_ns = static_cast<int64_t>(kDefaultWindowNs);
}
context_->sorter->SetWindowSizeNs(window_size_ns);
}
}
// Use parent data and length because we want to parse this again
// later to get the exact type of the packet.
context_->sorter->PushTracePacket(timestamp, state, std::move(packet));
return util::OkStatus();
}
void ProtoTraceTokenizer::HandleIncrementalStateCleared(
const protos::pbzero::TracePacket::Decoder& packet_decoder) {
if (PERFETTO_UNLIKELY(!packet_decoder.has_trusted_packet_sequence_id())) {
PERFETTO_ELOG(
"incremental_state_cleared without trusted_packet_sequence_id");
context_->storage->IncrementStats(stats::interned_data_tokenizer_errors);
return;
}
GetIncrementalStateForPacketSequence(
packet_decoder.trusted_packet_sequence_id())
->OnIncrementalStateCleared();
context_->track_tracker->OnIncrementalStateCleared(
packet_decoder.trusted_packet_sequence_id());
}
void ProtoTraceTokenizer::HandlePreviousPacketDropped(
const protos::pbzero::TracePacket::Decoder& packet_decoder) {
if (PERFETTO_UNLIKELY(!packet_decoder.has_trusted_packet_sequence_id())) {
PERFETTO_ELOG("previous_packet_dropped without trusted_packet_sequence_id");
context_->storage->IncrementStats(stats::interned_data_tokenizer_errors);
return;
}
GetIncrementalStateForPacketSequence(
packet_decoder.trusted_packet_sequence_id())
->OnPacketLoss();
}
void ProtoTraceTokenizer::ParseTracePacketDefaults(
const protos::pbzero::TracePacket_Decoder& packet_decoder,
TraceBlobView trace_packet_defaults) {
if (PERFETTO_UNLIKELY(!packet_decoder.has_trusted_packet_sequence_id())) {
PERFETTO_ELOG(
"TracePacketDefaults packet without trusted_packet_sequence_id");
context_->storage->IncrementStats(stats::interned_data_tokenizer_errors);
return;
}
auto* state = GetIncrementalStateForPacketSequence(
packet_decoder.trusted_packet_sequence_id());
state->UpdateTracePacketDefaults(std::move(trace_packet_defaults));
}
void ProtoTraceTokenizer::ParseInternedData(
const protos::pbzero::TracePacket::Decoder& packet_decoder,
TraceBlobView interned_data) {
if (PERFETTO_UNLIKELY(!packet_decoder.has_trusted_packet_sequence_id())) {
PERFETTO_ELOG("InternedData packet without trusted_packet_sequence_id");
context_->storage->IncrementStats(stats::interned_data_tokenizer_errors);
return;
}
auto* state = GetIncrementalStateForPacketSequence(
packet_decoder.trusted_packet_sequence_id());
// Don't parse interned data entries until incremental state is valid, because
// they could otherwise be associated with the wrong generation in the state.
if (!state->IsIncrementalStateValid()) {
context_->storage->IncrementStats(stats::tokenizer_skipped_packets);
return;
}
// Store references to interned data submessages into the sequence's state.
protozero::ProtoDecoder decoder(interned_data.data(), interned_data.length());
for (protozero::Field f = decoder.ReadField(); f.valid();
f = decoder.ReadField()) {
auto bytes = f.as_bytes();
auto offset = interned_data.offset_of(bytes.data);
state->InternMessage(f.id(), interned_data.slice(offset, bytes.size));
}
}
util::Status ProtoTraceTokenizer::ParseClockSnapshot(ConstBytes blob,
uint32_t seq_id) {
std::vector<ClockTracker::ClockValue> clocks;
protos::pbzero::ClockSnapshot::Decoder evt(blob.data, blob.size);
if (evt.primary_trace_clock()) {
context_->clock_tracker->SetTraceTimeClock(
static_cast<ClockTracker::ClockId>(evt.primary_trace_clock()));
}
for (auto it = evt.clocks(); it; ++it) {
protos::pbzero::ClockSnapshot::Clock::Decoder clk(*it);
ClockTracker::ClockId clock_id = clk.clock_id();
if (ClockTracker::IsReservedSeqScopedClockId(clk.clock_id())) {
if (!seq_id) {
return util::ErrStatus(
"ClockSnapshot packet is specifying a sequence-scoped clock id "
"(%" PRIu64 ") but the TracePacket sequence_id is zero",
clock_id);
}
clock_id = ClockTracker::SeqScopedClockIdToGlobal(seq_id, clk.clock_id());
}
int64_t unit_multiplier_ns =
clk.unit_multiplier_ns()
? static_cast<int64_t>(clk.unit_multiplier_ns())
: 1;
clocks.emplace_back(clock_id, clk.timestamp(), unit_multiplier_ns,
clk.is_incremental());
}
context_->clock_tracker->AddSnapshot(clocks);
return util::OkStatus();
}
void ProtoTraceTokenizer::NotifyEndOfFile() {}
} // namespace trace_processor
} // namespace perfetto