Import obstack.c and obstack.h am: 61a263b27f am: 41994c0bcc

Original change: https://android-review.googlesource.com/c/platform/external/obstack/+/1843833

Change-Id: Id48d8fdffd4b17792b8e5da408bd52bc4ab7ea59
diff --git a/include/obstack.h b/include/obstack.h
new file mode 100644
index 0000000..a6eb6c9
--- /dev/null
+++ b/include/obstack.h
@@ -0,0 +1,535 @@
+/* obstack.h - object stack macros
+   Copyright (C) 1988-2021 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+/* Summary:
+
+   All the apparent functions defined here are macros. The idea
+   is that you would use these pre-tested macros to solve a
+   very specific set of problems, and they would run fast.
+   Caution: no side-effects in arguments please!! They may be
+   evaluated MANY times!!
+
+   These macros operate a stack of objects.  Each object starts life
+   small, and may grow to maturity.  (Consider building a word syllable
+   by syllable.)  An object can move while it is growing.  Once it has
+   been "finished" it never changes address again.  So the "top of the
+   stack" is typically an immature growing object, while the rest of the
+   stack is of mature, fixed size and fixed address objects.
+
+   These routines grab large chunks of memory, using a function you
+   supply, called 'obstack_chunk_alloc'.  On occasion, they free chunks,
+   by calling 'obstack_chunk_free'.  You must define them and declare
+   them before using any obstack macros.
+
+   Each independent stack is represented by a 'struct obstack'.
+   Each of the obstack macros expects a pointer to such a structure
+   as the first argument.
+
+   One motivation for this package is the problem of growing char strings
+   in symbol tables.  Unless you are "fascist pig with a read-only mind"
+   --Gosper's immortal quote from HAKMEM item 154, out of context--you
+   would not like to put any arbitrary upper limit on the length of your
+   symbols.
+
+   In practice this often means you will build many short symbols and a
+   few long symbols.  At the time you are reading a symbol you don't know
+   how long it is.  One traditional method is to read a symbol into a
+   buffer, realloc()ating the buffer every time you try to read a symbol
+   that is longer than the buffer.  This is beaut, but you still will
+   want to copy the symbol from the buffer to a more permanent
+   symbol-table entry say about half the time.
+
+   With obstacks, you can work differently.  Use one obstack for all symbol
+   names.  As you read a symbol, grow the name in the obstack gradually.
+   When the name is complete, finalize it.  Then, if the symbol exists already,
+   free the newly read name.
+
+   The way we do this is to take a large chunk, allocating memory from
+   low addresses.  When you want to build a symbol in the chunk you just
+   add chars above the current "high water mark" in the chunk.  When you
+   have finished adding chars, because you got to the end of the symbol,
+   you know how long the chars are, and you can create a new object.
+   Mostly the chars will not burst over the highest address of the chunk,
+   because you would typically expect a chunk to be (say) 100 times as
+   long as an average object.
+
+   In case that isn't clear, when we have enough chars to make up
+   the object, THEY ARE ALREADY CONTIGUOUS IN THE CHUNK (guaranteed)
+   so we just point to it where it lies.  No moving of chars is
+   needed and this is the second win: potentially long strings need
+   never be explicitly shuffled. Once an object is formed, it does not
+   change its address during its lifetime.
+
+   When the chars burst over a chunk boundary, we allocate a larger
+   chunk, and then copy the partly formed object from the end of the old
+   chunk to the beginning of the new larger chunk.  We then carry on
+   accreting characters to the end of the object as we normally would.
+
+   A special macro is provided to add a single char at a time to a
+   growing object.  This allows the use of register variables, which
+   break the ordinary 'growth' macro.
+
+   Summary:
+        We allocate large chunks.
+        We carve out one object at a time from the current chunk.
+        Once carved, an object never moves.
+        We are free to append data of any size to the currently
+          growing object.
+        Exactly one object is growing in an obstack at any one time.
+        You can run one obstack per control block.
+        You may have as many control blocks as you dare.
+        Because of the way we do it, you can "unwind" an obstack
+          back to a previous state. (You may remove objects much
+          as you would with a stack.)
+ */
+
+
+/* Don't do the contents of this file more than once.  */
+
+#ifndef _OBSTACK_H
+#define _OBSTACK_H 1
+
+#ifndef _OBSTACK_INTERFACE_VERSION
+# define _OBSTACK_INTERFACE_VERSION 2
+#endif
+
+#include <stddef.h>             /* For size_t and ptrdiff_t.  */
+#include <string.h>             /* For __GNU_LIBRARY__, and memcpy.  */
+
+#if _OBSTACK_INTERFACE_VERSION == 1
+/* For binary compatibility with obstack version 1, which used "int"
+   and "long" for these two types.  */
+# define _OBSTACK_SIZE_T unsigned int
+# define _CHUNK_SIZE_T unsigned long
+# define _OBSTACK_CAST(type, expr) ((type) (expr))
+#else
+/* Version 2 with sane types, especially for 64-bit hosts.  */
+# define _OBSTACK_SIZE_T size_t
+# define _CHUNK_SIZE_T size_t
+# define _OBSTACK_CAST(type, expr) (expr)
+#endif
+
+/* If B is the base of an object addressed by P, return the result of
+   aligning P to the next multiple of A + 1.  B and P must be of type
+   char *.  A + 1 must be a power of 2.  */
+
+#define __BPTR_ALIGN(B, P, A) ((B) + (((P) - (B) + (A)) & ~(A)))
+
+/* Similar to __BPTR_ALIGN (B, P, A), except optimize the common case
+   where pointers can be converted to integers, aligned as integers,
+   and converted back again.  If ptrdiff_t is narrower than a
+   pointer (e.g., the AS/400), play it safe and compute the alignment
+   relative to B.  Otherwise, use the faster strategy of computing the
+   alignment relative to 0.  */
+
+#define __PTR_ALIGN(B, P, A)						      \
+  __BPTR_ALIGN (sizeof (ptrdiff_t) < sizeof (void *) ? (B) : (char *) 0,      \
+                P, A)
+
+#ifndef __attribute_pure__
+# if defined __GNUC_MINOR__ && __GNUC__ * 1000 + __GNUC_MINOR__ >= 2096
+#  define __attribute_pure__ __attribute__ ((__pure__))
+# else
+#  define __attribute_pure__
+# endif
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct _obstack_chunk           /* Lives at front of each chunk. */
+{
+  char *limit;                  /* 1 past end of this chunk */
+  struct _obstack_chunk *prev;  /* address of prior chunk or NULL */
+  char contents[4];             /* objects begin here */
+};
+
+struct obstack          /* control current object in current chunk */
+{
+  _CHUNK_SIZE_T chunk_size;     /* preferred size to allocate chunks in */
+  struct _obstack_chunk *chunk; /* address of current struct obstack_chunk */
+  char *object_base;            /* address of object we are building */
+  char *next_free;              /* where to add next char to current object */
+  char *chunk_limit;            /* address of char after current chunk */
+  union
+  {
+    _OBSTACK_SIZE_T i;
+    void *p;
+  } temp;                       /* Temporary for some macros.  */
+  _OBSTACK_SIZE_T alignment_mask;  /* Mask of alignment for each object. */
+
+  /* These prototypes vary based on 'use_extra_arg'.  */
+  union
+  {
+    void *(*plain) (size_t);
+    void *(*extra) (void *, size_t);
+  } chunkfun;
+  union
+  {
+    void (*plain) (void *);
+    void (*extra) (void *, void *);
+  } freefun;
+
+  void *extra_arg;              /* first arg for chunk alloc/dealloc funcs */
+  unsigned use_extra_arg : 1;     /* chunk alloc/dealloc funcs take extra arg */
+  unsigned maybe_empty_object : 1; /* There is a possibility that the current
+                                      chunk contains a zero-length object.  This
+                                      prevents freeing the chunk if we allocate
+                                      a bigger chunk to replace it. */
+  unsigned alloc_failed : 1;      /* No longer used, as we now call the failed
+                                     handler on error, but retained for binary
+                                     compatibility.  */
+};
+
+/* Declare the external functions we use; they are in obstack.c.  */
+
+extern void _obstack_newchunk (struct obstack *, _OBSTACK_SIZE_T);
+extern void _obstack_free (struct obstack *, void *);
+extern int _obstack_begin (struct obstack *,
+                           _OBSTACK_SIZE_T, _OBSTACK_SIZE_T,
+                           void *(*) (size_t), void (*) (void *));
+extern int _obstack_begin_1 (struct obstack *,
+                             _OBSTACK_SIZE_T, _OBSTACK_SIZE_T,
+                             void *(*) (void *, size_t),
+                             void (*) (void *, void *), void *);
+extern _OBSTACK_SIZE_T _obstack_memory_used (struct obstack *)
+  __attribute_pure__;
+
+
+/* Error handler called when 'obstack_chunk_alloc' failed to allocate
+   more memory.  This can be set to a user defined function which
+   should either abort gracefully or use longjump - but shouldn't
+   return.  The default action is to print a message and abort.  */
+extern void (*obstack_alloc_failed_handler) (void);
+
+/* Exit value used when 'print_and_abort' is used.  */
+extern int obstack_exit_failure;
+
+/* Pointer to beginning of object being allocated or to be allocated next.
+   Note that this might not be the final address of the object
+   because a new chunk might be needed to hold the final size.  */
+
+#define obstack_base(h) ((void *) (h)->object_base)
+
+/* Size for allocating ordinary chunks.  */
+
+#define obstack_chunk_size(h) ((h)->chunk_size)
+
+/* Pointer to next byte not yet allocated in current chunk.  */
+
+#define obstack_next_free(h) ((void *) (h)->next_free)
+
+/* Mask specifying low bits that should be clear in address of an object.  */
+
+#define obstack_alignment_mask(h) ((h)->alignment_mask)
+
+/* To prevent prototype warnings provide complete argument list.  */
+#define obstack_init(h)							      \
+  _obstack_begin ((h), 0, 0,						      \
+                  _OBSTACK_CAST (void *(*) (size_t), obstack_chunk_alloc),    \
+                  _OBSTACK_CAST (void (*) (void *), obstack_chunk_free))
+
+#define obstack_begin(h, size)						      \
+  _obstack_begin ((h), (size), 0,					      \
+                  _OBSTACK_CAST (void *(*) (size_t), obstack_chunk_alloc), \
+                  _OBSTACK_CAST (void (*) (void *), obstack_chunk_free))
+
+#define obstack_specify_allocation(h, size, alignment, chunkfun, freefun)     \
+  _obstack_begin ((h), (size), (alignment),				      \
+                  _OBSTACK_CAST (void *(*) (size_t), chunkfun),		      \
+                  _OBSTACK_CAST (void (*) (void *), freefun))
+
+#define obstack_specify_allocation_with_arg(h, size, alignment, chunkfun, freefun, arg) \
+  _obstack_begin_1 ((h), (size), (alignment),				      \
+                    _OBSTACK_CAST (void *(*) (void *, size_t), chunkfun),     \
+                    _OBSTACK_CAST (void (*) (void *, void *), freefun), arg)
+
+#define obstack_chunkfun(h, newchunkfun)				      \
+  ((void) ((h)->chunkfun.extra = (void *(*) (void *, size_t)) (newchunkfun)))
+
+#define obstack_freefun(h, newfreefun)					      \
+  ((void) ((h)->freefun.extra = (void *(*) (void *, void *)) (newfreefun)))
+
+#define obstack_1grow_fast(h, achar) ((void) (*((h)->next_free)++ = (achar)))
+
+#define obstack_blank_fast(h, n) ((void) ((h)->next_free += (n)))
+
+#define obstack_memory_used(h) _obstack_memory_used (h)
+
+#if defined __GNUC__
+# if !defined __GNUC_MINOR__ || __GNUC__ * 1000 + __GNUC_MINOR__ < 2008
+#  define __extension__
+# endif
+
+/* For GNU C, if not -traditional,
+   we can define these macros to compute all args only once
+   without using a global variable.
+   Also, we can avoid using the 'temp' slot, to make faster code.  */
+
+# define obstack_object_size(OBSTACK)					      \
+  __extension__								      \
+    ({ struct obstack const *__o = (OBSTACK);				      \
+       (_OBSTACK_SIZE_T) (__o->next_free - __o->object_base); })
+
+/* The local variable is named __o1 to avoid a shadowed variable
+   warning when invoked from other obstack macros.  */
+# define obstack_room(OBSTACK)						      \
+  __extension__								      \
+    ({ struct obstack const *__o1 = (OBSTACK);				      \
+       (_OBSTACK_SIZE_T) (__o1->chunk_limit - __o1->next_free); })
+
+# define obstack_make_room(OBSTACK, length)				      \
+  __extension__								      \
+    ({ struct obstack *__o = (OBSTACK);					      \
+       _OBSTACK_SIZE_T __len = (length);				      \
+       if (obstack_room (__o) < __len)					      \
+         _obstack_newchunk (__o, __len);				      \
+       (void) 0; })
+
+# define obstack_empty_p(OBSTACK)					      \
+  __extension__								      \
+    ({ struct obstack const *__o = (OBSTACK);				      \
+       (__o->chunk->prev == 0						      \
+        && __o->next_free == __PTR_ALIGN ((char *) __o->chunk,		      \
+                                          __o->chunk->contents,		      \
+                                          __o->alignment_mask)); })
+
+# define obstack_grow(OBSTACK, where, length)				      \
+  __extension__								      \
+    ({ struct obstack *__o = (OBSTACK);					      \
+       _OBSTACK_SIZE_T __len = (length);				      \
+       if (obstack_room (__o) < __len)					      \
+         _obstack_newchunk (__o, __len);				      \
+       memcpy (__o->next_free, where, __len);				      \
+       __o->next_free += __len;						      \
+       (void) 0; })
+
+# define obstack_grow0(OBSTACK, where, length)				      \
+  __extension__								      \
+    ({ struct obstack *__o = (OBSTACK);					      \
+       _OBSTACK_SIZE_T __len = (length);				      \
+       if (obstack_room (__o) < __len + 1)				      \
+         _obstack_newchunk (__o, __len + 1);				      \
+       memcpy (__o->next_free, where, __len);				      \
+       __o->next_free += __len;						      \
+       *(__o->next_free)++ = 0;						      \
+       (void) 0; })
+
+# define obstack_1grow(OBSTACK, datum)					      \
+  __extension__								      \
+    ({ struct obstack *__o = (OBSTACK);					      \
+       if (obstack_room (__o) < 1)					      \
+         _obstack_newchunk (__o, 1);					      \
+       obstack_1grow_fast (__o, datum); })
+
+/* These assume that the obstack alignment is good enough for pointers
+   or ints, and that the data added so far to the current object
+   shares that much alignment.  */
+
+# define obstack_ptr_grow(OBSTACK, datum)				      \
+  __extension__								      \
+    ({ struct obstack *__o = (OBSTACK);					      \
+       if (obstack_room (__o) < sizeof (void *))			      \
+         _obstack_newchunk (__o, sizeof (void *));			      \
+       obstack_ptr_grow_fast (__o, datum); })
+
+# define obstack_int_grow(OBSTACK, datum)				      \
+  __extension__								      \
+    ({ struct obstack *__o = (OBSTACK);					      \
+       if (obstack_room (__o) < sizeof (int))				      \
+         _obstack_newchunk (__o, sizeof (int));				      \
+       obstack_int_grow_fast (__o, datum); })
+
+# define obstack_ptr_grow_fast(OBSTACK, aptr)				      \
+  __extension__								      \
+    ({ struct obstack *__o1 = (OBSTACK);				      \
+       void *__p1 = __o1->next_free;					      \
+       *(const void **) __p1 = (aptr);					      \
+       __o1->next_free += sizeof (const void *);			      \
+       (void) 0; })
+
+# define obstack_int_grow_fast(OBSTACK, aint)				      \
+  __extension__								      \
+    ({ struct obstack *__o1 = (OBSTACK);				      \
+       void *__p1 = __o1->next_free;					      \
+       *(int *) __p1 = (aint);						      \
+       __o1->next_free += sizeof (int);					      \
+       (void) 0; })
+
+# define obstack_blank(OBSTACK, length)					      \
+  __extension__								      \
+    ({ struct obstack *__o = (OBSTACK);					      \
+       _OBSTACK_SIZE_T __len = (length);				      \
+       if (obstack_room (__o) < __len)					      \
+         _obstack_newchunk (__o, __len);				      \
+       obstack_blank_fast (__o, __len); })
+
+# define obstack_alloc(OBSTACK, length)					      \
+  __extension__								      \
+    ({ struct obstack *__h = (OBSTACK);					      \
+       obstack_blank (__h, (length));					      \
+       obstack_finish (__h); })
+
+# define obstack_copy(OBSTACK, where, length)				      \
+  __extension__								      \
+    ({ struct obstack *__h = (OBSTACK);					      \
+       obstack_grow (__h, (where), (length));				      \
+       obstack_finish (__h); })
+
+# define obstack_copy0(OBSTACK, where, length)				      \
+  __extension__								      \
+    ({ struct obstack *__h = (OBSTACK);					      \
+       obstack_grow0 (__h, (where), (length));				      \
+       obstack_finish (__h); })
+
+/* The local variable is named __o1 to avoid a shadowed variable
+   warning when invoked from other obstack macros, typically obstack_free.  */
+# define obstack_finish(OBSTACK)					      \
+  __extension__								      \
+    ({ struct obstack *__o1 = (OBSTACK);				      \
+       void *__value = (void *) __o1->object_base;			      \
+       if (__o1->next_free == __value)					      \
+         __o1->maybe_empty_object = 1;					      \
+       __o1->next_free							      \
+         = __PTR_ALIGN (__o1->object_base, __o1->next_free,		      \
+                        __o1->alignment_mask);				      \
+       if ((size_t) (__o1->next_free - (char *) __o1->chunk)		      \
+           > (size_t) (__o1->chunk_limit - (char *) __o1->chunk))	      \
+         __o1->next_free = __o1->chunk_limit;				      \
+       __o1->object_base = __o1->next_free;				      \
+       __value; })
+
+# define obstack_free(OBSTACK, OBJ)					      \
+  __extension__								      \
+    ({ struct obstack *__o = (OBSTACK);					      \
+       void *__obj = (void *) (OBJ);					      \
+       if (__obj > (void *) __o->chunk && __obj < (void *) __o->chunk_limit)  \
+         __o->next_free = __o->object_base = (char *) __obj;		      \
+       else								      \
+         _obstack_free (__o, __obj); })
+
+#else /* not __GNUC__ */
+
+# define obstack_object_size(h)						      \
+  ((_OBSTACK_SIZE_T) ((h)->next_free - (h)->object_base))
+
+# define obstack_room(h)						      \
+  ((_OBSTACK_SIZE_T) ((h)->chunk_limit - (h)->next_free))
+
+# define obstack_empty_p(h)						      \
+  ((h)->chunk->prev == 0						      \
+   && (h)->next_free == __PTR_ALIGN ((char *) (h)->chunk,		      \
+                                     (h)->chunk->contents,		      \
+                                     (h)->alignment_mask))
+
+/* Note that the call to _obstack_newchunk is enclosed in (..., 0)
+   so that we can avoid having void expressions
+   in the arms of the conditional expression.
+   Casting the third operand to void was tried before,
+   but some compilers won't accept it.  */
+
+# define obstack_make_room(h, length)					      \
+  ((h)->temp.i = (length),						      \
+   ((obstack_room (h) < (h)->temp.i)					      \
+    ? (_obstack_newchunk (h, (h)->temp.i), 0) : 0),			      \
+   (void) 0)
+
+# define obstack_grow(h, where, length)					      \
+  ((h)->temp.i = (length),						      \
+   ((obstack_room (h) < (h)->temp.i)					      \
+   ? (_obstack_newchunk ((h), (h)->temp.i), 0) : 0),			      \
+   memcpy ((h)->next_free, where, (h)->temp.i),				      \
+   (h)->next_free += (h)->temp.i,					      \
+   (void) 0)
+
+# define obstack_grow0(h, where, length)				      \
+  ((h)->temp.i = (length),						      \
+   ((obstack_room (h) < (h)->temp.i + 1)				      \
+   ? (_obstack_newchunk ((h), (h)->temp.i + 1), 0) : 0),		      \
+   memcpy ((h)->next_free, where, (h)->temp.i),				      \
+   (h)->next_free += (h)->temp.i,					      \
+   *((h)->next_free)++ = 0,						      \
+   (void) 0)
+
+# define obstack_1grow(h, datum)					      \
+  (((obstack_room (h) < 1)						      \
+    ? (_obstack_newchunk ((h), 1), 0) : 0),				      \
+   obstack_1grow_fast (h, datum))
+
+# define obstack_ptr_grow(h, datum)					      \
+  (((obstack_room (h) < sizeof (char *))				      \
+    ? (_obstack_newchunk ((h), sizeof (char *)), 0) : 0),		      \
+   obstack_ptr_grow_fast (h, datum))
+
+# define obstack_int_grow(h, datum)					      \
+  (((obstack_room (h) < sizeof (int))					      \
+    ? (_obstack_newchunk ((h), sizeof (int)), 0) : 0),			      \
+   obstack_int_grow_fast (h, datum))
+
+# define obstack_ptr_grow_fast(h, aptr)					      \
+  (((const void **) ((h)->next_free += sizeof (void *)))[-1] = (aptr),	      \
+   (void) 0)
+
+# define obstack_int_grow_fast(h, aint)					      \
+  (((int *) ((h)->next_free += sizeof (int)))[-1] = (aint),		      \
+   (void) 0)
+
+# define obstack_blank(h, length)					      \
+  ((h)->temp.i = (length),						      \
+   ((obstack_room (h) < (h)->temp.i)					      \
+   ? (_obstack_newchunk ((h), (h)->temp.i), 0) : 0),			      \
+   obstack_blank_fast (h, (h)->temp.i))
+
+# define obstack_alloc(h, length)					      \
+  (obstack_blank ((h), (length)), obstack_finish ((h)))
+
+# define obstack_copy(h, where, length)					      \
+  (obstack_grow ((h), (where), (length)), obstack_finish ((h)))
+
+# define obstack_copy0(h, where, length)				      \
+  (obstack_grow0 ((h), (where), (length)), obstack_finish ((h)))
+
+# define obstack_finish(h)						      \
+  (((h)->next_free == (h)->object_base					      \
+    ? (((h)->maybe_empty_object = 1), 0)				      \
+    : 0),								      \
+   (h)->temp.p = (h)->object_base,					      \
+   (h)->next_free							      \
+     = __PTR_ALIGN ((h)->object_base, (h)->next_free,			      \
+                    (h)->alignment_mask),				      \
+   (((size_t) ((h)->next_free - (char *) (h)->chunk)			      \
+     > (size_t) ((h)->chunk_limit - (char *) (h)->chunk))		      \
+   ? ((h)->next_free = (h)->chunk_limit) : 0),				      \
+   (h)->object_base = (h)->next_free,					      \
+   (h)->temp.p)
+
+# define obstack_free(h, obj)						      \
+  ((h)->temp.p = (void *) (obj),					      \
+   (((h)->temp.p > (void *) (h)->chunk					      \
+     && (h)->temp.p < (void *) (h)->chunk_limit)			      \
+    ? (void) ((h)->next_free = (h)->object_base = (char *) (h)->temp.p)       \
+    : _obstack_free ((h), (h)->temp.p)))
+
+#endif /* not __GNUC__ */
+
+#ifdef __cplusplus
+}       /* C++ */
+#endif
+
+#endif /* _OBSTACK_H */
diff --git a/libiberty/COPYING.LIB b/libiberty/COPYING.LIB
new file mode 100644
index 0000000..ae23fcf
--- /dev/null
+++ b/libiberty/COPYING.LIB
@@ -0,0 +1,504 @@
+		  GNU LESSER GENERAL PUBLIC LICENSE
+		       Version 2.1, February 1999
+
+ Copyright (C) 1991, 1999 Free Software Foundation, Inc.
+     51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+[This is the first released version of the Lesser GPL.  It also counts
+ as the successor of the GNU Library Public License, version 2, hence
+ the version number 2.1.]
+
+			    Preamble
+
+  The licenses for most software are designed to take away your
+freedom to share and change it.  By contrast, the GNU General Public
+Licenses are intended to guarantee your freedom to share and change
+free software--to make sure the software is free for all its users.
+
+  This license, the Lesser General Public License, applies to some
+specially designated software packages--typically libraries--of the
+Free Software Foundation and other authors who decide to use it.  You
+can use it too, but we suggest you first think carefully about whether
+this license or the ordinary General Public License is the better
+strategy to use in any particular case, based on the explanations below.
+
+  When we speak of free software, we are referring to freedom of use,
+not price.  Our General Public Licenses are designed to make sure that
+you have the freedom to distribute copies of free software (and charge
+for this service if you wish); that you receive source code or can get
+it if you want it; that you can change the software and use pieces of
+it in new free programs; and that you are informed that you can do
+these things.
+
+  To protect your rights, we need to make restrictions that forbid
+distributors to deny you these rights or to ask you to surrender these
+rights.  These restrictions translate to certain responsibilities for
+you if you distribute copies of the library or if you modify it.
+
+  For example, if you distribute copies of the library, whether gratis
+or for a fee, you must give the recipients all the rights that we gave
+you.  You must make sure that they, too, receive or can get the source
+code.  If you link other code with the library, you must provide
+complete object files to the recipients, so that they can relink them
+with the library after making changes to the library and recompiling
+it.  And you must show them these terms so they know their rights.
+
+  We protect your rights with a two-step method: (1) we copyright the
+library, and (2) we offer you this license, which gives you legal
+permission to copy, distribute and/or modify the library.
+
+  To protect each distributor, we want to make it very clear that
+there is no warranty for the free library.  Also, if the library is
+modified by someone else and passed on, the recipients should know
+that what they have is not the original version, so that the original
+author's reputation will not be affected by problems that might be
+introduced by others.
+
+  Finally, software patents pose a constant threat to the existence of
+any free program.  We wish to make sure that a company cannot
+effectively restrict the users of a free program by obtaining a
+restrictive license from a patent holder.  Therefore, we insist that
+any patent license obtained for a version of the library must be
+consistent with the full freedom of use specified in this license.
+
+  Most GNU software, including some libraries, is covered by the
+ordinary GNU General Public License.  This license, the GNU Lesser
+General Public License, applies to certain designated libraries, and
+is quite different from the ordinary General Public License.  We use
+this license for certain libraries in order to permit linking those
+libraries into non-free programs.
+
+  When a program is linked with a library, whether statically or using
+a shared library, the combination of the two is legally speaking a
+combined work, a derivative of the original library.  The ordinary
+General Public License therefore permits such linking only if the
+entire combination fits its criteria of freedom.  The Lesser General
+Public License permits more lax criteria for linking other code with
+the library.
+
+  We call this license the "Lesser" General Public License because it
+does Less to protect the user's freedom than the ordinary General
+Public License.  It also provides other free software developers Less
+of an advantage over competing non-free programs.  These disadvantages
+are the reason we use the ordinary General Public License for many
+libraries.  However, the Lesser license provides advantages in certain
+special circumstances.
+
+  For example, on rare occasions, there may be a special need to
+encourage the widest possible use of a certain library, so that it becomes
+a de-facto standard.  To achieve this, non-free programs must be
+allowed to use the library.  A more frequent case is that a free
+library does the same job as widely used non-free libraries.  In this
+case, there is little to gain by limiting the free library to free
+software only, so we use the Lesser General Public License.
+
+  In other cases, permission to use a particular library in non-free
+programs enables a greater number of people to use a large body of
+free software.  For example, permission to use the GNU C Library in
+non-free programs enables many more people to use the whole GNU
+operating system, as well as its variant, the GNU/Linux operating
+system.
+
+  Although the Lesser General Public License is Less protective of the
+users' freedom, it does ensure that the user of a program that is
+linked with the Library has the freedom and the wherewithal to run
+that program using a modified version of the Library.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.  Pay close attention to the difference between a
+"work based on the library" and a "work that uses the library".  The
+former contains code derived from the library, whereas the latter must
+be combined with the library in order to run.
+
+		  GNU LESSER GENERAL PUBLIC LICENSE
+   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
+
+  0. This License Agreement applies to any software library or other
+program which contains a notice placed by the copyright holder or
+other authorized party saying it may be distributed under the terms of
+this Lesser General Public License (also called "this License").
+Each licensee is addressed as "you".
+
+  A "library" means a collection of software functions and/or data
+prepared so as to be conveniently linked with application programs
+(which use some of those functions and data) to form executables.
+
+  The "Library", below, refers to any such software library or work
+which has been distributed under these terms.  A "work based on the
+Library" means either the Library or any derivative work under
+copyright law: that is to say, a work containing the Library or a
+portion of it, either verbatim or with modifications and/or translated
+straightforwardly into another language.  (Hereinafter, translation is
+included without limitation in the term "modification".)
+
+  "Source code" for a work means the preferred form of the work for
+making modifications to it.  For a library, complete source code means
+all the source code for all modules it contains, plus any associated
+interface definition files, plus the scripts used to control compilation
+and installation of the library.
+
+  Activities other than copying, distribution and modification are not
+covered by this License; they are outside its scope.  The act of
+running a program using the Library is not restricted, and output from
+such a program is covered only if its contents constitute a work based
+on the Library (independent of the use of the Library in a tool for
+writing it).  Whether that is true depends on what the Library does
+and what the program that uses the Library does.
+  
+  1. You may copy and distribute verbatim copies of the Library's
+complete source code as you receive it, in any medium, provided that
+you conspicuously and appropriately publish on each copy an
+appropriate copyright notice and disclaimer of warranty; keep intact
+all the notices that refer to this License and to the absence of any
+warranty; and distribute a copy of this License along with the
+Library.
+
+  You may charge a fee for the physical act of transferring a copy,
+and you may at your option offer warranty protection in exchange for a
+fee.
+
+  2. You may modify your copy or copies of the Library or any portion
+of it, thus forming a work based on the Library, and copy and
+distribute such modifications or work under the terms of Section 1
+above, provided that you also meet all of these conditions:
+
+    a) The modified work must itself be a software library.
+
+    b) You must cause the files modified to carry prominent notices
+    stating that you changed the files and the date of any change.
+
+    c) You must cause the whole of the work to be licensed at no
+    charge to all third parties under the terms of this License.
+
+    d) If a facility in the modified Library refers to a function or a
+    table of data to be supplied by an application program that uses
+    the facility, other than as an argument passed when the facility
+    is invoked, then you must make a good faith effort to ensure that,
+    in the event an application does not supply such function or
+    table, the facility still operates, and performs whatever part of
+    its purpose remains meaningful.
+
+    (For example, a function in a library to compute square roots has
+    a purpose that is entirely well-defined independent of the
+    application.  Therefore, Subsection 2d requires that any
+    application-supplied function or table used by this function must
+    be optional: if the application does not supply it, the square
+    root function must still compute square roots.)
+
+These requirements apply to the modified work as a whole.  If
+identifiable sections of that work are not derived from the Library,
+and can be reasonably considered independent and separate works in
+themselves, then this License, and its terms, do not apply to those
+sections when you distribute them as separate works.  But when you
+distribute the same sections as part of a whole which is a work based
+on the Library, the distribution of the whole must be on the terms of
+this License, whose permissions for other licensees extend to the
+entire whole, and thus to each and every part regardless of who wrote
+it.
+
+Thus, it is not the intent of this section to claim rights or contest
+your rights to work written entirely by you; rather, the intent is to
+exercise the right to control the distribution of derivative or
+collective works based on the Library.
+
+In addition, mere aggregation of another work not based on the Library
+with the Library (or with a work based on the Library) on a volume of
+a storage or distribution medium does not bring the other work under
+the scope of this License.
+
+  3. You may opt to apply the terms of the ordinary GNU General Public
+License instead of this License to a given copy of the Library.  To do
+this, you must alter all the notices that refer to this License, so
+that they refer to the ordinary GNU General Public License, version 2,
+instead of to this License.  (If a newer version than version 2 of the
+ordinary GNU General Public License has appeared, then you can specify
+that version instead if you wish.)  Do not make any other change in
+these notices.
+
+  Once this change is made in a given copy, it is irreversible for
+that copy, so the ordinary GNU General Public License applies to all
+subsequent copies and derivative works made from that copy.
+
+  This option is useful when you wish to copy part of the code of
+the Library into a program that is not a library.
+
+  4. You may copy and distribute the Library (or a portion or
+derivative of it, under Section 2) in object code or executable form
+under the terms of Sections 1 and 2 above provided that you accompany
+it with the complete corresponding machine-readable source code, which
+must be distributed under the terms of Sections 1 and 2 above on a
+medium customarily used for software interchange.
+
+  If distribution of object code is made by offering access to copy
+from a designated place, then offering equivalent access to copy the
+source code from the same place satisfies the requirement to
+distribute the source code, even though third parties are not
+compelled to copy the source along with the object code.
+
+  5. A program that contains no derivative of any portion of the
+Library, but is designed to work with the Library by being compiled or
+linked with it, is called a "work that uses the Library".  Such a
+work, in isolation, is not a derivative work of the Library, and
+therefore falls outside the scope of this License.
+
+  However, linking a "work that uses the Library" with the Library
+creates an executable that is a derivative of the Library (because it
+contains portions of the Library), rather than a "work that uses the
+library".  The executable is therefore covered by this License.
+Section 6 states terms for distribution of such executables.
+
+  When a "work that uses the Library" uses material from a header file
+that is part of the Library, the object code for the work may be a
+derivative work of the Library even though the source code is not.
+Whether this is true is especially significant if the work can be
+linked without the Library, or if the work is itself a library.  The
+threshold for this to be true is not precisely defined by law.
+
+  If such an object file uses only numerical parameters, data
+structure layouts and accessors, and small macros and small inline
+functions (ten lines or less in length), then the use of the object
+file is unrestricted, regardless of whether it is legally a derivative
+work.  (Executables containing this object code plus portions of the
+Library will still fall under Section 6.)
+
+  Otherwise, if the work is a derivative of the Library, you may
+distribute the object code for the work under the terms of Section 6.
+Any executables containing that work also fall under Section 6,
+whether or not they are linked directly with the Library itself.
+
+  6. As an exception to the Sections above, you may also combine or
+link a "work that uses the Library" with the Library to produce a
+work containing portions of the Library, and distribute that work
+under terms of your choice, provided that the terms permit
+modification of the work for the customer's own use and reverse
+engineering for debugging such modifications.
+
+  You must give prominent notice with each copy of the work that the
+Library is used in it and that the Library and its use are covered by
+this License.  You must supply a copy of this License.  If the work
+during execution displays copyright notices, you must include the
+copyright notice for the Library among them, as well as a reference
+directing the user to the copy of this License.  Also, you must do one
+of these things:
+
+    a) Accompany the work with the complete corresponding
+    machine-readable source code for the Library including whatever
+    changes were used in the work (which must be distributed under
+    Sections 1 and 2 above); and, if the work is an executable linked
+    with the Library, with the complete machine-readable "work that
+    uses the Library", as object code and/or source code, so that the
+    user can modify the Library and then relink to produce a modified
+    executable containing the modified Library.  (It is understood
+    that the user who changes the contents of definitions files in the
+    Library will not necessarily be able to recompile the application
+    to use the modified definitions.)
+
+    b) Use a suitable shared library mechanism for linking with the
+    Library.  A suitable mechanism is one that (1) uses at run time a
+    copy of the library already present on the user's computer system,
+    rather than copying library functions into the executable, and (2)
+    will operate properly with a modified version of the library, if
+    the user installs one, as long as the modified version is
+    interface-compatible with the version that the work was made with.
+
+    c) Accompany the work with a written offer, valid for at
+    least three years, to give the same user the materials
+    specified in Subsection 6a, above, for a charge no more
+    than the cost of performing this distribution.
+
+    d) If distribution of the work is made by offering access to copy
+    from a designated place, offer equivalent access to copy the above
+    specified materials from the same place.
+
+    e) Verify that the user has already received a copy of these
+    materials or that you have already sent this user a copy.
+
+  For an executable, the required form of the "work that uses the
+Library" must include any data and utility programs needed for
+reproducing the executable from it.  However, as a special exception,
+the materials to be distributed need not include anything that is
+normally distributed (in either source or binary form) with the major
+components (compiler, kernel, and so on) of the operating system on
+which the executable runs, unless that component itself accompanies
+the executable.
+
+  It may happen that this requirement contradicts the license
+restrictions of other proprietary libraries that do not normally
+accompany the operating system.  Such a contradiction means you cannot
+use both them and the Library together in an executable that you
+distribute.
+
+  7. You may place library facilities that are a work based on the
+Library side-by-side in a single library together with other library
+facilities not covered by this License, and distribute such a combined
+library, provided that the separate distribution of the work based on
+the Library and of the other library facilities is otherwise
+permitted, and provided that you do these two things:
+
+    a) Accompany the combined library with a copy of the same work
+    based on the Library, uncombined with any other library
+    facilities.  This must be distributed under the terms of the
+    Sections above.
+
+    b) Give prominent notice with the combined library of the fact
+    that part of it is a work based on the Library, and explaining
+    where to find the accompanying uncombined form of the same work.
+
+  8. You may not copy, modify, sublicense, link with, or distribute
+the Library except as expressly provided under this License.  Any
+attempt otherwise to copy, modify, sublicense, link with, or
+distribute the Library is void, and will automatically terminate your
+rights under this License.  However, parties who have received copies,
+or rights, from you under this License will not have their licenses
+terminated so long as such parties remain in full compliance.
+
+  9. You are not required to accept this License, since you have not
+signed it.  However, nothing else grants you permission to modify or
+distribute the Library or its derivative works.  These actions are
+prohibited by law if you do not accept this License.  Therefore, by
+modifying or distributing the Library (or any work based on the
+Library), you indicate your acceptance of this License to do so, and
+all its terms and conditions for copying, distributing or modifying
+the Library or works based on it.
+
+  10. Each time you redistribute the Library (or any work based on the
+Library), the recipient automatically receives a license from the
+original licensor to copy, distribute, link with or modify the Library
+subject to these terms and conditions.  You may not impose any further
+restrictions on the recipients' exercise of the rights granted herein.
+You are not responsible for enforcing compliance by third parties with
+this License.
+
+  11. If, as a consequence of a court judgment or allegation of patent
+infringement or for any other reason (not limited to patent issues),
+conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot
+distribute so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you
+may not distribute the Library at all.  For example, if a patent
+license would not permit royalty-free redistribution of the Library by
+all those who receive copies directly or indirectly through you, then
+the only way you could satisfy both it and this License would be to
+refrain entirely from distribution of the Library.
+
+If any portion of this section is held invalid or unenforceable under any
+particular circumstance, the balance of the section is intended to apply,
+and the section as a whole is intended to apply in other circumstances.
+
+It is not the purpose of this section to induce you to infringe any
+patents or other property right claims or to contest validity of any
+such claims; this section has the sole purpose of protecting the
+integrity of the free software distribution system which is
+implemented by public license practices.  Many people have made
+generous contributions to the wide range of software distributed
+through that system in reliance on consistent application of that
+system; it is up to the author/donor to decide if he or she is willing
+to distribute software through any other system and a licensee cannot
+impose that choice.
+
+This section is intended to make thoroughly clear what is believed to
+be a consequence of the rest of this License.
+
+  12. If the distribution and/or use of the Library is restricted in
+certain countries either by patents or by copyrighted interfaces, the
+original copyright holder who places the Library under this License may add
+an explicit geographical distribution limitation excluding those countries,
+so that distribution is permitted only in or among countries not thus
+excluded.  In such case, this License incorporates the limitation as if
+written in the body of this License.
+
+  13. The Free Software Foundation may publish revised and/or new
+versions of the Lesser General Public License from time to time.
+Such new versions will be similar in spirit to the present version,
+but may differ in detail to address new problems or concerns.
+
+Each version is given a distinguishing version number.  If the Library
+specifies a version number of this License which applies to it and
+"any later version", you have the option of following the terms and
+conditions either of that version or of any later version published by
+the Free Software Foundation.  If the Library does not specify a
+license version number, you may choose any version ever published by
+the Free Software Foundation.
+
+  14. If you wish to incorporate parts of the Library into other free
+programs whose distribution conditions are incompatible with these,
+write to the author to ask for permission.  For software which is
+copyrighted by the Free Software Foundation, write to the Free
+Software Foundation; we sometimes make exceptions for this.  Our
+decision will be guided by the two goals of preserving the free status
+of all derivatives of our free software and of promoting the sharing
+and reuse of software generally.
+
+			    NO WARRANTY
+
+  15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
+WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
+EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
+OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
+KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
+LIBRARY IS WITH YOU.  SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
+THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
+WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
+AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
+FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
+CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
+LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
+RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
+FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
+SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
+DAMAGES.
+
+		     END OF TERMS AND CONDITIONS
+
+           How to Apply These Terms to Your New Libraries
+
+  If you develop a new library, and you want it to be of the greatest
+possible use to the public, we recommend making it free software that
+everyone can redistribute and change.  You can do so by permitting
+redistribution under these terms (or, alternatively, under the terms of the
+ordinary General Public License).
+
+  To apply these terms, attach the following notices to the library.  It is
+safest to attach them to the start of each source file to most effectively
+convey the exclusion of warranty; and each file should have at least the
+"copyright" line and a pointer to where the full notice is found.
+
+    <one line to give the library's name and a brief idea of what it does.>
+    Copyright (C) <year>  <name of author>
+
+    This library is free software; you can redistribute it and/or
+    modify it under the terms of the GNU Lesser General Public
+    License as published by the Free Software Foundation; either
+    version 2.1 of the License, or (at your option) any later version.
+
+    This library is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+    Lesser General Public License for more details.
+
+    You should have received a copy of the GNU Lesser General Public
+    License along with this library; if not, write to the Free Software
+    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+
+Also add information on how to contact you by electronic and paper mail.
+
+You should also get your employer (if you work as a programmer) or your
+school, if any, to sign a "copyright disclaimer" for the library, if
+necessary.  Here is a sample; alter the names:
+
+  Yoyodyne, Inc., hereby disclaims all copyright interest in the
+  library `Frob' (a library for tweaking knobs) written by James Random Hacker.
+
+  <signature of Ty Coon>, 1 April 1990
+  Ty Coon, President of Vice
+
+That's all there is to it!
+
+
diff --git a/libiberty/obstack.c b/libiberty/obstack.c
new file mode 100644
index 0000000..aa1173d
--- /dev/null
+++ b/libiberty/obstack.c
@@ -0,0 +1,376 @@
+/* obstack.c - subroutines used implicitly by object stack macros
+   Copyright (C) 1988-2021 Free Software Foundation, Inc.
+   This file is part of the GNU C Library.
+
+   The GNU C Library is free software; you can redistribute it and/or
+   modify it under the terms of the GNU Lesser General Public
+   License as published by the Free Software Foundation; either
+   version 2.1 of the License, or (at your option) any later version.
+
+   The GNU C Library is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+   Lesser General Public License for more details.
+
+   You should have received a copy of the GNU Lesser General Public
+   License along with the GNU C Library; if not, see
+   <http://www.gnu.org/licenses/>.  */
+
+
+#ifdef _LIBC
+# include <obstack.h>
+#else
+# include <config.h>
+# include "obstack.h"
+#endif
+
+/* NOTE BEFORE MODIFYING THIS FILE: _OBSTACK_INTERFACE_VERSION in
+   obstack.h must be incremented whenever callers compiled using an old
+   obstack.h can no longer properly call the functions in this file.  */
+
+/* Comment out all this code if we are using the GNU C Library, and are not
+   actually compiling the library itself, and the installed library
+   supports the same library interface we do.  This code is part of the GNU
+   C Library, but also included in many other GNU distributions.  Compiling
+   and linking in this code is a waste when using the GNU C library
+   (especially if it is a shared library).  Rather than having every GNU
+   program understand 'configure --with-gnu-libc' and omit the object
+   files, it is simpler to just do this in the source for each such file.  */
+#if !defined _LIBC && defined __GNU_LIBRARY__ && __GNU_LIBRARY__ > 1
+# include <gnu-versions.h>
+# if (_GNU_OBSTACK_INTERFACE_VERSION == _OBSTACK_INTERFACE_VERSION	      \
+      || (_GNU_OBSTACK_INTERFACE_VERSION == 1				      \
+          && _OBSTACK_INTERFACE_VERSION == 2				      \
+          && defined SIZEOF_INT && defined SIZEOF_SIZE_T		      \
+          && SIZEOF_INT == SIZEOF_SIZE_T))
+#  define _OBSTACK_ELIDE_CODE
+# endif
+#endif
+
+#ifndef _OBSTACK_ELIDE_CODE
+/* If GCC, or if an oddball (testing?) host that #defines __alignof__,
+   use the already-supplied __alignof__.  Otherwise, this must be Gnulib
+   (as glibc assumes GCC); defer to Gnulib's alignof_type.  */
+# if !defined __GNUC__ && !defined __IBM__ALIGNOF__ && !defined __alignof__
+#  if defined __cplusplus
+template <class type> struct alignof_helper { char __slot1; type __slot2; };
+#   define __alignof__(type) offsetof (alignof_helper<type>, __slot2)
+#  else
+#   define __alignof__(type)						      \
+  offsetof (struct { char __slot1; type __slot2; }, __slot2)
+#  endif
+# endif
+# include <stdlib.h>
+# include <stdint.h>
+
+# ifndef MAX
+#  define MAX(a,b) ((a) > (b) ? (a) : (b))
+# endif
+
+/* Determine default alignment.  */
+
+/* If malloc were really smart, it would round addresses to DEFAULT_ALIGNMENT.
+   But in fact it might be less smart and round addresses to as much as
+   DEFAULT_ROUNDING.  So we prepare for it to do that.
+
+   DEFAULT_ALIGNMENT cannot be an enum constant; see gnulib's alignof.h.  */
+#define DEFAULT_ALIGNMENT MAX (__alignof__ (long double),		      \
+                               MAX (__alignof__ (uintmax_t),		      \
+                                    __alignof__ (void *)))
+#define DEFAULT_ROUNDING MAX (sizeof (long double),			      \
+                               MAX (sizeof (uintmax_t),			      \
+                                    sizeof (void *)))
+
+/* Call functions with either the traditional malloc/free calling
+   interface, or the mmalloc/mfree interface (that adds an extra first
+   argument), based on the value of use_extra_arg.  */
+
+static void *
+call_chunkfun (struct obstack *h, size_t size)
+{
+  if (h->use_extra_arg)
+    return h->chunkfun.extra (h->extra_arg, size);
+  else
+    return h->chunkfun.plain (size);
+}
+
+static void
+call_freefun (struct obstack *h, void *old_chunk)
+{
+  if (h->use_extra_arg)
+    h->freefun.extra (h->extra_arg, old_chunk);
+  else
+    h->freefun.plain (old_chunk);
+}
+
+
+/* Initialize an obstack H for use.  Specify chunk size SIZE (0 means default).
+   Objects start on multiples of ALIGNMENT (0 means use default).
+
+   Return nonzero if successful, calls obstack_alloc_failed_handler if
+   allocation fails.  */
+
+static int
+_obstack_begin_worker (struct obstack *h,
+                       _OBSTACK_SIZE_T size, _OBSTACK_SIZE_T alignment)
+{
+  struct _obstack_chunk *chunk; /* points to new chunk */
+
+  if (alignment == 0)
+    alignment = DEFAULT_ALIGNMENT;
+  if (size == 0)
+    /* Default size is what GNU malloc can fit in a 4096-byte block.  */
+    {
+      /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc.
+         Use the values for range checking, because if range checking is off,
+         the extra bytes won't be missed terribly, but if range checking is on
+         and we used a larger request, a whole extra 4096 bytes would be
+         allocated.
+
+         These number are irrelevant to the new GNU malloc.  I suspect it is
+         less sensitive to the size of the request.  */
+      int extra = ((((12 + DEFAULT_ROUNDING - 1) & ~(DEFAULT_ROUNDING - 1))
+                    + 4 + DEFAULT_ROUNDING - 1)
+                   & ~(DEFAULT_ROUNDING - 1));
+      size = 4096 - extra;
+    }
+
+  h->chunk_size = size;
+  h->alignment_mask = alignment - 1;
+
+  chunk = (struct _obstack_chunk *) call_chunkfun (h, h->chunk_size);
+  if (!chunk)
+    (*obstack_alloc_failed_handler) ();
+  h->chunk = chunk;
+  h->next_free = h->object_base = __PTR_ALIGN ((char *) chunk, chunk->contents,
+                                               alignment - 1);
+  h->chunk_limit = chunk->limit = (char *) chunk + h->chunk_size;
+  chunk->prev = 0;
+  /* The initial chunk now contains no empty object.  */
+  h->maybe_empty_object = 0;
+  h->alloc_failed = 0;
+  return 1;
+}
+
+int
+_obstack_begin (struct obstack *h,
+                _OBSTACK_SIZE_T size, _OBSTACK_SIZE_T alignment,
+                void *(*chunkfun) (size_t),
+                void (*freefun) (void *))
+{
+  h->chunkfun.plain = chunkfun;
+  h->freefun.plain = freefun;
+  h->use_extra_arg = 0;
+  return _obstack_begin_worker (h, size, alignment);
+}
+
+int
+_obstack_begin_1 (struct obstack *h,
+                  _OBSTACK_SIZE_T size, _OBSTACK_SIZE_T alignment,
+                  void *(*chunkfun) (void *, size_t),
+                  void (*freefun) (void *, void *),
+                  void *arg)
+{
+  h->chunkfun.extra = chunkfun;
+  h->freefun.extra = freefun;
+  h->extra_arg = arg;
+  h->use_extra_arg = 1;
+  return _obstack_begin_worker (h, size, alignment);
+}
+
+/* Allocate a new current chunk for the obstack *H
+   on the assumption that LENGTH bytes need to be added
+   to the current object, or a new object of length LENGTH allocated.
+   Copies any partial object from the end of the old chunk
+   to the beginning of the new one.  */
+
+void
+_obstack_newchunk (struct obstack *h, _OBSTACK_SIZE_T length)
+{
+  struct _obstack_chunk *old_chunk = h->chunk;
+  struct _obstack_chunk *new_chunk = 0;
+  size_t obj_size = h->next_free - h->object_base;
+  char *object_base;
+
+  /* Compute size for new chunk.  */
+  size_t sum1 = obj_size + length;
+  size_t sum2 = sum1 + h->alignment_mask;
+  size_t new_size = sum2 + (obj_size >> 3) + 100;
+  if (new_size < sum2)
+    new_size = sum2;
+  if (new_size < h->chunk_size)
+    new_size = h->chunk_size;
+
+  /* Allocate and initialize the new chunk.  */
+  if (obj_size <= sum1 && sum1 <= sum2)
+    new_chunk = (struct _obstack_chunk *) call_chunkfun (h, new_size);
+  if (!new_chunk)
+    (*obstack_alloc_failed_handler)();
+  h->chunk = new_chunk;
+  new_chunk->prev = old_chunk;
+  new_chunk->limit = h->chunk_limit = (char *) new_chunk + new_size;
+
+  /* Compute an aligned object_base in the new chunk */
+  object_base =
+    __PTR_ALIGN ((char *) new_chunk, new_chunk->contents, h->alignment_mask);
+
+  /* Move the existing object to the new chunk.  */
+  memcpy (object_base, h->object_base, obj_size);
+
+  /* If the object just copied was the only data in OLD_CHUNK,
+     free that chunk and remove it from the chain.
+     But not if that chunk might contain an empty object.  */
+  if (!h->maybe_empty_object
+      && (h->object_base
+          == __PTR_ALIGN ((char *) old_chunk, old_chunk->contents,
+                          h->alignment_mask)))
+    {
+      new_chunk->prev = old_chunk->prev;
+      call_freefun (h, old_chunk);
+    }
+
+  h->object_base = object_base;
+  h->next_free = h->object_base + obj_size;
+  /* The new chunk certainly contains no empty object yet.  */
+  h->maybe_empty_object = 0;
+}
+
+/* Return nonzero if object OBJ has been allocated from obstack H.
+   This is here for debugging.
+   If you use it in a program, you are probably losing.  */
+
+/* Suppress -Wmissing-prototypes warning.  We don't want to declare this in
+   obstack.h because it is just for debugging.  */
+int _obstack_allocated_p (struct obstack *h, void *obj) __attribute_pure__;
+
+int
+_obstack_allocated_p (struct obstack *h, void *obj)
+{
+  struct _obstack_chunk *lp;    /* below addr of any objects in this chunk */
+  struct _obstack_chunk *plp;   /* point to previous chunk if any */
+
+  lp = (h)->chunk;
+  /* We use >= rather than > since the object cannot be exactly at
+     the beginning of the chunk but might be an empty object exactly
+     at the end of an adjacent chunk.  */
+  while (lp != 0 && ((void *) lp >= obj || (void *) (lp)->limit < obj))
+    {
+      plp = lp->prev;
+      lp = plp;
+    }
+  return lp != 0;
+}
+
+/* Free objects in obstack H, including OBJ and everything allocate
+   more recently than OBJ.  If OBJ is zero, free everything in H.  */
+
+void
+_obstack_free (struct obstack *h, void *obj)
+{
+  struct _obstack_chunk *lp;    /* below addr of any objects in this chunk */
+  struct _obstack_chunk *plp;   /* point to previous chunk if any */
+
+  lp = h->chunk;
+  /* We use >= because there cannot be an object at the beginning of a chunk.
+     But there can be an empty object at that address
+     at the end of another chunk.  */
+  while (lp != 0 && ((void *) lp >= obj || (void *) (lp)->limit < obj))
+    {
+      plp = lp->prev;
+      call_freefun (h, lp);
+      lp = plp;
+      /* If we switch chunks, we can't tell whether the new current
+         chunk contains an empty object, so assume that it may.  */
+      h->maybe_empty_object = 1;
+    }
+  if (lp)
+    {
+      h->object_base = h->next_free = (char *) (obj);
+      h->chunk_limit = lp->limit;
+      h->chunk = lp;
+    }
+  else if (obj != 0)
+    /* obj is not in any of the chunks! */
+    abort ();
+}
+
+_OBSTACK_SIZE_T
+_obstack_memory_used (struct obstack *h)
+{
+  struct _obstack_chunk *lp;
+  _OBSTACK_SIZE_T nbytes = 0;
+
+  for (lp = h->chunk; lp != 0; lp = lp->prev)
+    {
+      nbytes += lp->limit - (char *) lp;
+    }
+  return nbytes;
+}
+
+# ifndef _OBSTACK_NO_ERROR_HANDLER
+/* Define the error handler.  */
+#  include <stdio.h>
+
+/* Exit value used when 'print_and_abort' is used.  */
+#  ifdef _LIBC
+int obstack_exit_failure = EXIT_FAILURE;
+#  else
+#   ifndef EXIT_FAILURE
+#    define EXIT_FAILURE 1
+#   endif
+#   define obstack_exit_failure EXIT_FAILURE
+#  endif
+
+#  if defined _LIBC || (HAVE_LIBINTL_H && ENABLE_NLS)
+#   include <libintl.h>
+#   ifndef _
+#    define _(msgid) gettext (msgid)
+#   endif
+#  else
+#   ifndef _
+#    define _(msgid) (msgid)
+#   endif
+#  endif
+
+#  if !(defined _Noreturn						      \
+        || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 201112))
+#   if ((defined __GNUC__						      \
+	 && (__GNUC__ >= 3 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 8)))	      \
+	|| (defined __SUNPRO_C && __SUNPRO_C >= 0x5110))
+#    define _Noreturn __attribute__ ((__noreturn__))
+#   elif defined _MSC_VER && _MSC_VER >= 1200
+#    define _Noreturn __declspec (noreturn)
+#   else
+#    define _Noreturn
+#   endif
+#  endif
+
+#  ifdef _LIBC
+#   include <libio/iolibio.h>
+#  endif
+
+static _Noreturn void
+print_and_abort (void)
+{
+  /* Don't change any of these strings.  Yes, it would be possible to add
+     the newline to the string and use fputs or so.  But this must not
+     happen because the "memory exhausted" message appears in other places
+     like this and the translation should be reused instead of creating
+     a very similar string which requires a separate translation.  */
+#  ifdef _LIBC
+  (void) __fxprintf (NULL, "%s\n", _("memory exhausted"));
+#  else
+  fprintf (stderr, "%s\n", _("memory exhausted"));
+#  endif
+  exit (obstack_exit_failure);
+}
+
+/* The functions allocating more room by calling 'obstack_chunk_alloc'
+   jump to the handler pointed to by 'obstack_alloc_failed_handler'.
+   This can be set to a user defined function which should either
+   abort gracefully or use longjump - but shouldn't return.  This
+   variable by default points to the internal function
+   'print_and_abort'.  */
+void (*obstack_alloc_failed_handler) (void) = print_and_abort;
+# endif /* !_OBSTACK_NO_ERROR_HANDLER */
+#endif /* !_OBSTACK_ELIDE_CODE */