blob: 47fc0b0928b2ad3dacdded4fc8839b6f37596df5 [file] [log] [blame]
/*
* Copyright © 2014 Broadcom
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <inttypes.h>
#include "vc4_context.h"
#include "vc4_qir.h"
#include "vc4_qpu.h"
#include "util/ralloc.h"
static void
vc4_dump_program(struct vc4_compile *c)
{
fprintf(stderr, "%s prog %d/%d QPU:\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id);
for (int i = 0; i < c->qpu_inst_count; i++) {
fprintf(stderr, "0x%016"PRIx64" ", c->qpu_insts[i]);
vc4_qpu_disasm(&c->qpu_insts[i], 1);
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
}
static void
queue(struct qblock *block, uint64_t inst)
{
struct queued_qpu_inst *q = rzalloc(block, struct queued_qpu_inst);
q->inst = inst;
list_addtail(&q->link, &block->qpu_inst_list);
}
static uint64_t *
last_inst(struct qblock *block)
{
struct queued_qpu_inst *q =
(struct queued_qpu_inst *)block->qpu_inst_list.prev;
return &q->inst;
}
static void
set_last_cond_add(struct qblock *block, uint32_t cond)
{
*last_inst(block) = qpu_set_cond_add(*last_inst(block), cond);
}
static void
set_last_cond_mul(struct qblock *block, uint32_t cond)
{
*last_inst(block) = qpu_set_cond_mul(*last_inst(block), cond);
}
/**
* Some special registers can be read from either file, which lets us resolve
* raddr conflicts without extra MOVs.
*/
static bool
swap_file(struct qpu_reg *src)
{
switch (src->addr) {
case QPU_R_UNIF:
case QPU_R_VARY:
if (src->mux == QPU_MUX_SMALL_IMM) {
return false;
} else {
if (src->mux == QPU_MUX_A)
src->mux = QPU_MUX_B;
else
src->mux = QPU_MUX_A;
return true;
}
default:
return false;
}
}
/**
* Sets up the VPM read FIFO before we do any VPM read.
*
* VPM reads (vertex attribute input) and VPM writes (varyings output) from
* the QPU reuse the VRI (varying interpolation) block's FIFOs to talk to the
* VPM block. In the VS/CS (unlike in the FS), the block starts out
* uninitialized, and you need to emit setup to the block before any VPM
* reads/writes.
*
* VRI has a FIFO in each direction, with each FIFO able to hold four
* 32-bit-per-vertex values. VPM reads come through the read FIFO and VPM
* writes go through the write FIFO. The read/write setup values from QPU go
* through the write FIFO as well, with a sideband signal indicating that
* they're setup values. Once a read setup reaches the other side of the
* FIFO, the VPM block will start asynchronously reading vertex attributes and
* filling the read FIFO -- that way hopefully the QPU doesn't have to block
* on reads later.
*
* VPM read setup can configure 16 32-bit-per-vertex values to be read at a
* time, which is 4 vec4s. If more than that is being read (since we support
* 8 vec4 vertex attributes), then multiple read setup writes need to be done.
*
* The existence of the FIFO makes it seem like you should be able to emit
* both setups for the 5-8 attribute cases and then do all the attribute
* reads. However, once the setup value makes it to the other end of the
* write FIFO, it will immediately update the VPM block's setup register.
* That updated setup register would be used for read FIFO fills from then on,
* breaking whatever remaining VPM values were supposed to be read into the
* read FIFO from the previous attribute set.
*
* As a result, we need to emit the read setup, pull every VPM read value from
* that setup, and only then emit the second setup if applicable.
*/
static void
setup_for_vpm_read(struct vc4_compile *c, struct qblock *block)
{
if (c->num_inputs_in_fifo) {
c->num_inputs_in_fifo--;
return;
}
c->num_inputs_in_fifo = MIN2(c->num_inputs_remaining, 16);
queue(block,
qpu_load_imm_ui(qpu_vrsetup(),
c->vpm_read_offset |
0x00001a00 |
((c->num_inputs_in_fifo & 0xf) << 20)));
c->num_inputs_remaining -= c->num_inputs_in_fifo;
c->vpm_read_offset += c->num_inputs_in_fifo;
c->num_inputs_in_fifo--;
}
/**
* This is used to resolve the fact that we might register-allocate two
* different operands of an instruction to the same physical register file
* even though instructions have only one field for the register file source
* address.
*
* In that case, we need to move one to a temporary that can be used in the
* instruction, instead. We reserve ra14/rb14 for this purpose.
*/
static void
fixup_raddr_conflict(struct qblock *block,
struct qpu_reg dst,
struct qpu_reg *src0, struct qpu_reg *src1,
struct qinst *inst, uint64_t *unpack)
{
uint32_t mux0 = src0->mux == QPU_MUX_SMALL_IMM ? QPU_MUX_B : src0->mux;
uint32_t mux1 = src1->mux == QPU_MUX_SMALL_IMM ? QPU_MUX_B : src1->mux;
if (mux0 <= QPU_MUX_R5 ||
mux0 != mux1 ||
(src0->addr == src1->addr &&
src0->mux == src1->mux)) {
return;
}
if (swap_file(src0) || swap_file(src1))
return;
if (mux0 == QPU_MUX_A) {
/* Make sure we use the same type of MOV as the instruction,
* in case of unpacks.
*/
if (qir_is_float_input(inst))
queue(block, qpu_a_FMAX(qpu_rb(14), *src0, *src0));
else
queue(block, qpu_a_MOV(qpu_rb(14), *src0));
/* If we had an unpack on this A-file source, we need to put
* it into this MOV, not into the later move from regfile B.
*/
if (inst->src[0].pack) {
*last_inst(block) |= *unpack;
*unpack = 0;
}
*src0 = qpu_rb(14);
} else {
queue(block, qpu_a_MOV(qpu_ra(14), *src0));
*src0 = qpu_ra(14);
}
}
static void
set_last_dst_pack(struct qblock *block, struct qinst *inst)
{
bool had_pm = *last_inst(block) & QPU_PM;
bool had_ws = *last_inst(block) & QPU_WS;
uint32_t unpack = QPU_GET_FIELD(*last_inst(block), QPU_UNPACK);
if (!inst->dst.pack)
return;
*last_inst(block) |= QPU_SET_FIELD(inst->dst.pack, QPU_PACK);
if (qir_is_mul(inst)) {
assert(!unpack || had_pm);
*last_inst(block) |= QPU_PM;
} else {
assert(!unpack || !had_pm);
assert(!had_ws); /* dst must be a-file to pack. */
}
}
static void
handle_r4_qpu_write(struct qblock *block, struct qinst *qinst,
struct qpu_reg dst)
{
if (dst.mux != QPU_MUX_R4)
queue(block, qpu_a_MOV(dst, qpu_r4()));
else if (qinst->sf)
queue(block, qpu_a_MOV(qpu_ra(QPU_W_NOP), qpu_r4()));
}
static void
vc4_generate_code_block(struct vc4_compile *c,
struct qblock *block,
struct qpu_reg *temp_registers)
{
int last_vpm_read_index = -1;
qir_for_each_inst(qinst, block) {
#if 0
fprintf(stderr, "translating qinst to qpu: ");
qir_dump_inst(qinst);
fprintf(stderr, "\n");
#endif
static const struct {
uint32_t op;
} translate[] = {
#define A(name) [QOP_##name] = {QPU_A_##name}
#define M(name) [QOP_##name] = {QPU_M_##name}
A(FADD),
A(FSUB),
A(FMIN),
A(FMAX),
A(FMINABS),
A(FMAXABS),
A(FTOI),
A(ITOF),
A(ADD),
A(SUB),
A(SHL),
A(SHR),
A(ASR),
A(MIN),
A(MAX),
A(AND),
A(OR),
A(XOR),
A(NOT),
M(FMUL),
M(V8MULD),
M(V8MIN),
M(V8MAX),
M(V8ADDS),
M(V8SUBS),
M(MUL24),
/* If we replicate src[0] out to src[1], this works
* out the same as a MOV.
*/
[QOP_MOV] = { QPU_A_OR },
[QOP_FMOV] = { QPU_A_FMAX },
[QOP_MMOV] = { QPU_M_V8MIN },
};
uint64_t unpack = 0;
struct qpu_reg src[ARRAY_SIZE(qinst->src)];
for (int i = 0; i < qir_get_nsrc(qinst); i++) {
int index = qinst->src[i].index;
switch (qinst->src[i].file) {
case QFILE_NULL:
case QFILE_LOAD_IMM:
src[i] = qpu_rn(0);
break;
case QFILE_TEMP:
src[i] = temp_registers[index];
if (qinst->src[i].pack) {
assert(!unpack ||
unpack == qinst->src[i].pack);
unpack = QPU_SET_FIELD(qinst->src[i].pack,
QPU_UNPACK);
if (src[i].mux == QPU_MUX_R4)
unpack |= QPU_PM;
}
break;
case QFILE_UNIF:
src[i] = qpu_unif();
break;
case QFILE_VARY:
src[i] = qpu_vary();
break;
case QFILE_SMALL_IMM:
src[i].mux = QPU_MUX_SMALL_IMM;
src[i].addr = qpu_encode_small_immediate(qinst->src[i].index);
/* This should only have returned a valid
* small immediate field, not ~0 for failure.
*/
assert(src[i].addr <= 47);
break;
case QFILE_VPM:
setup_for_vpm_read(c, block);
assert((int)qinst->src[i].index >=
last_vpm_read_index);
(void)last_vpm_read_index;
last_vpm_read_index = qinst->src[i].index;
src[i] = qpu_ra(QPU_R_VPM);
break;
case QFILE_FRAG_X:
src[i] = qpu_ra(QPU_R_XY_PIXEL_COORD);
break;
case QFILE_FRAG_Y:
src[i] = qpu_rb(QPU_R_XY_PIXEL_COORD);
break;
case QFILE_FRAG_REV_FLAG:
src[i] = qpu_rb(QPU_R_MS_REV_FLAGS);
break;
case QFILE_QPU_ELEMENT:
src[i] = qpu_ra(QPU_R_ELEM_QPU);
break;
case QFILE_TLB_COLOR_WRITE:
case QFILE_TLB_COLOR_WRITE_MS:
case QFILE_TLB_Z_WRITE:
case QFILE_TLB_STENCIL_SETUP:
case QFILE_TEX_S:
case QFILE_TEX_S_DIRECT:
case QFILE_TEX_T:
case QFILE_TEX_R:
case QFILE_TEX_B:
unreachable("bad qir src file");
}
}
struct qpu_reg dst;
switch (qinst->dst.file) {
case QFILE_NULL:
dst = qpu_ra(QPU_W_NOP);
break;
case QFILE_TEMP:
dst = temp_registers[qinst->dst.index];
break;
case QFILE_VPM:
dst = qpu_ra(QPU_W_VPM);
break;
case QFILE_TLB_COLOR_WRITE:
dst = qpu_tlbc();
break;
case QFILE_TLB_COLOR_WRITE_MS:
dst = qpu_tlbc_ms();
break;
case QFILE_TLB_Z_WRITE:
dst = qpu_ra(QPU_W_TLB_Z);
break;
case QFILE_TLB_STENCIL_SETUP:
dst = qpu_ra(QPU_W_TLB_STENCIL_SETUP);
break;
case QFILE_TEX_S:
case QFILE_TEX_S_DIRECT:
dst = qpu_rb(QPU_W_TMU0_S);
break;
case QFILE_TEX_T:
dst = qpu_rb(QPU_W_TMU0_T);
break;
case QFILE_TEX_R:
dst = qpu_rb(QPU_W_TMU0_R);
break;
case QFILE_TEX_B:
dst = qpu_rb(QPU_W_TMU0_B);
break;
case QFILE_VARY:
case QFILE_UNIF:
case QFILE_SMALL_IMM:
case QFILE_LOAD_IMM:
case QFILE_FRAG_X:
case QFILE_FRAG_Y:
case QFILE_FRAG_REV_FLAG:
case QFILE_QPU_ELEMENT:
assert(!"not reached");
break;
}
bool handled_qinst_cond = false;
switch (qinst->op) {
case QOP_RCP:
case QOP_RSQ:
case QOP_EXP2:
case QOP_LOG2:
switch (qinst->op) {
case QOP_RCP:
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_RECIP),
src[0]) | unpack);
break;
case QOP_RSQ:
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_RECIPSQRT),
src[0]) | unpack);
break;
case QOP_EXP2:
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_EXP),
src[0]) | unpack);
break;
case QOP_LOG2:
queue(block, qpu_a_MOV(qpu_rb(QPU_W_SFU_LOG),
src[0]) | unpack);
break;
default:
abort();
}
handle_r4_qpu_write(block, qinst, dst);
break;
case QOP_LOAD_IMM:
assert(qinst->src[0].file == QFILE_LOAD_IMM);
queue(block, qpu_load_imm_ui(dst, qinst->src[0].index));
break;
case QOP_LOAD_IMM_U2:
queue(block, qpu_load_imm_u2(dst, qinst->src[0].index));
break;
case QOP_LOAD_IMM_I2:
queue(block, qpu_load_imm_i2(dst, qinst->src[0].index));
break;
case QOP_ROT_MUL:
/* Rotation at the hardware level occurs on the inputs
* to the MUL unit, and they must be accumulators in
* order to have the time necessary to move things.
*/
assert(src[0].mux <= QPU_MUX_R3);
queue(block,
qpu_m_rot(dst, src[0], qinst->src[1].index -
QPU_SMALL_IMM_MUL_ROT) | unpack);
set_last_cond_mul(block, qinst->cond);
handled_qinst_cond = true;
set_last_dst_pack(block, qinst);
break;
case QOP_MS_MASK:
src[1] = qpu_ra(QPU_R_MS_REV_FLAGS);
fixup_raddr_conflict(block, dst, &src[0], &src[1],
qinst, &unpack);
queue(block, qpu_a_AND(qpu_ra(QPU_W_MS_FLAGS),
src[0], src[1]) | unpack);
break;
case QOP_FRAG_Z:
case QOP_FRAG_W:
/* QOP_FRAG_Z/W don't emit instructions, just allocate
* the register to the Z/W payload.
*/
break;
case QOP_TLB_COLOR_READ:
queue(block, qpu_NOP());
*last_inst(block) = qpu_set_sig(*last_inst(block),
QPU_SIG_COLOR_LOAD);
handle_r4_qpu_write(block, qinst, dst);
break;
case QOP_VARY_ADD_C:
queue(block, qpu_a_FADD(dst, src[0], qpu_r5()) | unpack);
break;
case QOP_TEX_RESULT:
queue(block, qpu_NOP());
*last_inst(block) = qpu_set_sig(*last_inst(block),
QPU_SIG_LOAD_TMU0);
handle_r4_qpu_write(block, qinst, dst);
break;
case QOP_THRSW:
queue(block, qpu_NOP());
*last_inst(block) = qpu_set_sig(*last_inst(block),
QPU_SIG_THREAD_SWITCH);
c->last_thrsw = last_inst(block);
break;
case QOP_BRANCH:
/* The branch target will be updated at QPU scheduling
* time.
*/
queue(block, (qpu_branch(qinst->cond, 0) |
QPU_BRANCH_REL));
handled_qinst_cond = true;
break;
case QOP_UNIFORMS_RESET:
fixup_raddr_conflict(block, dst, &src[0], &src[1],
qinst, &unpack);
queue(block, qpu_a_ADD(qpu_ra(QPU_W_UNIFORMS_ADDRESS),
src[0], src[1]));
break;
default:
assert(qinst->op < ARRAY_SIZE(translate));
assert(translate[qinst->op].op != 0); /* NOPs */
/* Skip emitting the MOV if it's a no-op. */
if (qir_is_raw_mov(qinst) &&
dst.mux == src[0].mux && dst.addr == src[0].addr) {
break;
}
/* If we have only one source, put it in the second
* argument slot as well so that we don't take up
* another raddr just to get unused data.
*/
if (qir_get_non_sideband_nsrc(qinst) == 1)
src[1] = src[0];
fixup_raddr_conflict(block, dst, &src[0], &src[1],
qinst, &unpack);
if (qir_is_mul(qinst)) {
queue(block, qpu_m_alu2(translate[qinst->op].op,
dst,
src[0], src[1]) | unpack);
set_last_cond_mul(block, qinst->cond);
} else {
queue(block, qpu_a_alu2(translate[qinst->op].op,
dst,
src[0], src[1]) | unpack);
set_last_cond_add(block, qinst->cond);
}
handled_qinst_cond = true;
set_last_dst_pack(block, qinst);
break;
}
assert(qinst->cond == QPU_COND_ALWAYS ||
handled_qinst_cond);
if (qinst->sf)
*last_inst(block) |= QPU_SF;
}
}
void
vc4_generate_code(struct vc4_context *vc4, struct vc4_compile *c)
{
struct qblock *start_block = list_first_entry(&c->blocks,
struct qblock, link);
struct qpu_reg *temp_registers = vc4_register_allocate(vc4, c);
if (!temp_registers)
return;
switch (c->stage) {
case QSTAGE_VERT:
case QSTAGE_COORD:
c->num_inputs_remaining = c->num_inputs;
queue(start_block, qpu_load_imm_ui(qpu_vwsetup(), 0x00001a00));
break;
case QSTAGE_FRAG:
break;
}
qir_for_each_block(block, c)
vc4_generate_code_block(c, block, temp_registers);
/* Switch the last SIG_THRSW instruction to SIG_LAST_THRSW.
*
* LAST_THRSW is a new signal in BCM2708B0 (including Raspberry Pi)
* that ensures that a later thread doesn't try to lock the scoreboard
* and terminate before an earlier-spawned thread on the same QPU, by
* delaying switching back to the later shader until earlier has
* finished. Otherwise, if the earlier thread was hitting the same
* quad, the scoreboard would deadlock.
*/
if (c->last_thrsw) {
assert(QPU_GET_FIELD(*c->last_thrsw, QPU_SIG) ==
QPU_SIG_THREAD_SWITCH);
*c->last_thrsw = ((*c->last_thrsw & ~QPU_SIG_MASK) |
QPU_SET_FIELD(QPU_SIG_LAST_THREAD_SWITCH,
QPU_SIG));
}
uint32_t cycles = qpu_schedule_instructions(c);
uint32_t inst_count_at_schedule_time = c->qpu_inst_count;
/* thread end can't have VPM write or read */
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_WADDR_ADD) == QPU_W_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_WADDR_MUL) == QPU_W_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_A) == QPU_R_VPM ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_B) == QPU_R_VPM) {
qpu_serialize_one_inst(c, qpu_NOP());
}
/* thread end can't have uniform read */
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_A) == QPU_R_UNIF ||
QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_RADDR_B) == QPU_R_UNIF) {
qpu_serialize_one_inst(c, qpu_NOP());
}
/* thread end can't have TLB operations */
if (qpu_inst_is_tlb(c->qpu_insts[c->qpu_inst_count - 1]))
qpu_serialize_one_inst(c, qpu_NOP());
/* Make sure there's no existing signal set (like for a small
* immediate)
*/
if (QPU_GET_FIELD(c->qpu_insts[c->qpu_inst_count - 1],
QPU_SIG) != QPU_SIG_NONE) {
qpu_serialize_one_inst(c, qpu_NOP());
}
c->qpu_insts[c->qpu_inst_count - 1] =
qpu_set_sig(c->qpu_insts[c->qpu_inst_count - 1],
QPU_SIG_PROG_END);
qpu_serialize_one_inst(c, qpu_NOP());
qpu_serialize_one_inst(c, qpu_NOP());
switch (c->stage) {
case QSTAGE_VERT:
case QSTAGE_COORD:
break;
case QSTAGE_FRAG:
c->qpu_insts[c->qpu_inst_count - 1] =
qpu_set_sig(c->qpu_insts[c->qpu_inst_count - 1],
QPU_SIG_SCOREBOARD_UNLOCK);
break;
}
cycles += c->qpu_inst_count - inst_count_at_schedule_time;
if (vc4_debug & VC4_DEBUG_SHADERDB) {
fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d estimated cycles\n",
qir_get_stage_name(c->stage),
c->program_id, c->variant_id,
cycles);
}
if (vc4_debug & VC4_DEBUG_QPU)
vc4_dump_program(c);
vc4_qpu_validate(c->qpu_insts, c->qpu_inst_count);
free(temp_registers);
}