blob: 66f14667898c8686998f1a1bc5b3afb0d00462d7 [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include "radv_meta.h"
#include "radv_private.h"
#include "nir/nir_builder.h"
#include "sid.h"
/**
* Vertex attributes used by all pipelines.
*/
struct vertex_attrs {
float position[2]; /**< 3DPRIM_RECTLIST */
};
/* passthrough vertex shader */
static nir_shader *
build_nir_vs(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
nir_builder b;
nir_variable *a_position;
nir_variable *v_position;
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_VERTEX, NULL);
b.shader->info->name = ralloc_strdup(b.shader, "meta_resolve_vs");
a_position = nir_variable_create(b.shader, nir_var_shader_in, vec4,
"a_position");
a_position->data.location = VERT_ATTRIB_GENERIC0;
v_position = nir_variable_create(b.shader, nir_var_shader_out, vec4,
"gl_Position");
v_position->data.location = VARYING_SLOT_POS;
nir_copy_var(&b, v_position, a_position);
return b.shader;
}
/* simple passthrough shader */
static nir_shader *
build_nir_fs(void)
{
const struct glsl_type *vec4 = glsl_vec4_type();
nir_builder b;
nir_variable *f_color; /* vec4, fragment output color */
nir_builder_init_simple_shader(&b, NULL, MESA_SHADER_FRAGMENT, NULL);
b.shader->info->name = ralloc_asprintf(b.shader,
"meta_resolve_fs");
f_color = nir_variable_create(b.shader, nir_var_shader_out, vec4,
"f_color");
f_color->data.location = FRAG_RESULT_DATA0;
nir_store_var(&b, f_color, nir_imm_vec4(&b, 0.0, 0.0, 0.0, 1.0), 0xf);
return b.shader;
}
static VkResult
create_pass(struct radv_device *device)
{
VkResult result;
VkDevice device_h = radv_device_to_handle(device);
const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
VkAttachmentDescription attachments[2];
int i;
for (i = 0; i < 2; i++) {
attachments[i].format = VK_FORMAT_UNDEFINED;
attachments[i].samples = 1;
attachments[i].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
attachments[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
attachments[i].initialLayout = VK_IMAGE_LAYOUT_GENERAL;
attachments[i].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
}
result = radv_CreateRenderPass(device_h,
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 2,
.pAttachments = attachments,
.subpassCount = 1,
.pSubpasses = &(VkSubpassDescription) {
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 2,
.pColorAttachments = (VkAttachmentReference[]) {
{
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
{
.attachment = 1,
.layout = VK_IMAGE_LAYOUT_GENERAL,
},
},
.pResolveAttachments = NULL,
.pDepthStencilAttachment = &(VkAttachmentReference) {
.attachment = VK_ATTACHMENT_UNUSED,
},
.preserveAttachmentCount = 0,
.pPreserveAttachments = NULL,
},
.dependencyCount = 0,
},
alloc,
&device->meta_state.resolve.pass);
return result;
}
static VkResult
create_pipeline(struct radv_device *device,
VkShaderModule vs_module_h)
{
VkResult result;
VkDevice device_h = radv_device_to_handle(device);
struct radv_shader_module fs_module = {
.nir = build_nir_fs(),
};
if (!fs_module.nir) {
/* XXX: Need more accurate error */
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto cleanup;
}
result = radv_graphics_pipeline_create(device_h,
radv_pipeline_cache_to_handle(&device->meta_state.cache),
&(VkGraphicsPipelineCreateInfo) {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = (VkPipelineShaderStageCreateInfo[]) {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = vs_module_h,
.pName = "main",
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = radv_shader_module_to_handle(&fs_module),
.pName = "main",
},
},
.pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
.vertexBindingDescriptionCount = 1,
.pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
{
.binding = 0,
.stride = sizeof(struct vertex_attrs),
.inputRate = VK_VERTEX_INPUT_RATE_VERTEX
},
},
.vertexAttributeDescriptionCount = 1,
.pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
{
/* Position */
.location = 0,
.binding = 0,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof(struct vertex_attrs, position),
},
},
},
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
.primitiveRestartEnable = false,
},
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 0,
.scissorCount = 0,
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.depthClampEnable = false,
.rasterizerDiscardEnable = false,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
.sampleShadingEnable = false,
.pSampleMask = NULL,
.alphaToCoverageEnable = false,
.alphaToOneEnable = false,
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.logicOpEnable = false,
.attachmentCount = 2,
.pAttachments = (VkPipelineColorBlendAttachmentState []) {
{
.colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
VK_COLOR_COMPONENT_G_BIT |
VK_COLOR_COMPONENT_B_BIT |
VK_COLOR_COMPONENT_A_BIT,
},
{
.colorWriteMask = 0,
}
},
},
.pDynamicState = NULL,
.renderPass = device->meta_state.resolve.pass,
.subpass = 0,
},
&(struct radv_graphics_pipeline_create_info) {
.use_rectlist = true,
.custom_blend_mode = V_028808_CB_RESOLVE,
},
&device->meta_state.alloc,
&device->meta_state.resolve.pipeline);
if (result != VK_SUCCESS)
goto cleanup;
goto cleanup;
cleanup:
ralloc_free(fs_module.nir);
return result;
}
void
radv_device_finish_meta_resolve_state(struct radv_device *device)
{
struct radv_meta_state *state = &device->meta_state;
VkDevice device_h = radv_device_to_handle(device);
VkRenderPass pass_h = device->meta_state.resolve.pass;
const VkAllocationCallbacks *alloc = &device->meta_state.alloc;
if (pass_h)
radv_DestroyRenderPass(device_h, pass_h,
&device->meta_state.alloc);
VkPipeline pipeline_h = state->resolve.pipeline;
if (pipeline_h) {
radv_DestroyPipeline(device_h, pipeline_h, alloc);
}
}
VkResult
radv_device_init_meta_resolve_state(struct radv_device *device)
{
VkResult res = VK_SUCCESS;
zero(device->meta_state.resolve);
struct radv_shader_module vs_module = { .nir = build_nir_vs() };
if (!vs_module.nir) {
/* XXX: Need more accurate error */
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
res = create_pass(device);
if (res != VK_SUCCESS)
goto fail;
VkShaderModule vs_module_h = radv_shader_module_to_handle(&vs_module);
res = create_pipeline(device, vs_module_h);
if (res != VK_SUCCESS)
goto fail;
goto cleanup;
fail:
radv_device_finish_meta_resolve_state(device);
cleanup:
ralloc_free(vs_module.nir);
return res;
}
static void
emit_resolve(struct radv_cmd_buffer *cmd_buffer,
const VkOffset2D *dest_offset,
const VkExtent2D *resolve_extent)
{
struct radv_device *device = cmd_buffer->device;
VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
uint32_t offset;
const struct vertex_attrs vertex_data[3] = {
{
.position = {
dest_offset->x,
dest_offset->y,
},
},
{
.position = {
dest_offset->x,
dest_offset->y + resolve_extent->height,
},
},
{
.position = {
dest_offset->x + resolve_extent->width,
dest_offset->y,
},
},
};
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
radv_cmd_buffer_upload_data(cmd_buffer, sizeof(vertex_data), 16, vertex_data, &offset);
struct radv_buffer vertex_buffer = {
.device = device,
.size = sizeof(vertex_data),
.bo = cmd_buffer->upload.upload_bo,
.offset = offset,
};
VkBuffer vertex_buffer_h = radv_buffer_to_handle(&vertex_buffer);
radv_CmdBindVertexBuffers(cmd_buffer_h,
/*firstBinding*/ 0,
/*bindingCount*/ 1,
(VkBuffer[]) { vertex_buffer_h },
(VkDeviceSize[]) { 0 });
VkPipeline pipeline_h = device->meta_state.resolve.pipeline;
RADV_FROM_HANDLE(radv_pipeline, pipeline, pipeline_h);
if (cmd_buffer->state.pipeline != pipeline) {
radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS,
pipeline_h);
}
radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0);
cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_CB;
si_emit_cache_flush(cmd_buffer);
}
void radv_CmdResolveImage(
VkCommandBuffer cmd_buffer_h,
VkImage src_image_h,
VkImageLayout src_image_layout,
VkImage dest_image_h,
VkImageLayout dest_image_layout,
uint32_t region_count,
const VkImageResolve* regions)
{
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, cmd_buffer_h);
RADV_FROM_HANDLE(radv_image, src_image, src_image_h);
RADV_FROM_HANDLE(radv_image, dest_image, dest_image_h);
struct radv_device *device = cmd_buffer->device;
struct radv_meta_saved_state saved_state;
VkDevice device_h = radv_device_to_handle(device);
bool use_compute_resolve = false;
/* we can use the hw resolve only for single full resolves */
if (region_count == 1) {
if (regions[0].srcOffset.x ||
regions[0].srcOffset.y ||
regions[0].srcOffset.z)
use_compute_resolve = true;
if (regions[0].dstOffset.x ||
regions[0].dstOffset.y ||
regions[0].dstOffset.z)
use_compute_resolve = true;
if (regions[0].extent.width != src_image->extent.width ||
regions[0].extent.height != src_image->extent.height ||
regions[0].extent.depth != src_image->extent.depth)
use_compute_resolve = true;
} else
use_compute_resolve = true;
if (use_compute_resolve) {
radv_fast_clear_flush_image_inplace(cmd_buffer, src_image);
radv_meta_resolve_compute_image(cmd_buffer,
src_image,
src_image_layout,
dest_image,
dest_image_layout,
region_count, regions);
return;
}
radv_meta_save_graphics_reset_vport_scissor(&saved_state, cmd_buffer);
assert(src_image->samples > 1);
assert(dest_image->samples == 1);
if (src_image->samples >= 16) {
/* See commit aa3f9aaf31e9056a255f9e0472ebdfdaa60abe54 for the
* glBlitFramebuffer workaround for samples >= 16.
*/
radv_finishme("vkCmdResolveImage: need interpolation workaround when "
"samples >= 16");
}
if (src_image->array_size > 1)
radv_finishme("vkCmdResolveImage: multisample array images");
for (uint32_t r = 0; r < region_count; ++r) {
const VkImageResolve *region = &regions[r];
/* From the Vulkan 1.0 spec:
*
* - The aspectMask member of srcSubresource and dstSubresource must
* only contain VK_IMAGE_ASPECT_COLOR_BIT
*
* - The layerCount member of srcSubresource and dstSubresource must
* match
*/
assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
assert(region->srcSubresource.layerCount ==
region->dstSubresource.layerCount);
const uint32_t src_base_layer =
radv_meta_get_iview_layer(src_image, &region->srcSubresource,
&region->srcOffset);
const uint32_t dest_base_layer =
radv_meta_get_iview_layer(dest_image, &region->dstSubresource,
&region->dstOffset);
/**
* From Vulkan 1.0.6 spec: 18.6 Resolving Multisample Images
*
* extent is the size in texels of the source image to resolve in width,
* height and depth. 1D images use only x and width. 2D images use x, y,
* width and height. 3D images use x, y, z, width, height and depth.
*
* srcOffset and dstOffset select the initial x, y, and z offsets in
* texels of the sub-regions of the source and destination image data.
* extent is the size in texels of the source image to resolve in width,
* height and depth. 1D images use only x and width. 2D images use x, y,
* width and height. 3D images use x, y, z, width, height and depth.
*/
const struct VkExtent3D extent =
radv_sanitize_image_extent(src_image->type, region->extent);
const struct VkOffset3D dstOffset =
radv_sanitize_image_offset(dest_image->type, region->dstOffset);
for (uint32_t layer = 0; layer < region->srcSubresource.layerCount;
++layer) {
struct radv_image_view src_iview;
radv_image_view_init(&src_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = src_image_h,
.viewType = radv_meta_get_view_type(src_image),
.format = src_image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->srcSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = src_base_layer + layer,
.layerCount = 1,
},
},
cmd_buffer, VK_IMAGE_USAGE_SAMPLED_BIT);
struct radv_image_view dest_iview;
radv_image_view_init(&dest_iview, cmd_buffer->device,
&(VkImageViewCreateInfo) {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.image = dest_image_h,
.viewType = radv_meta_get_view_type(dest_image),
.format = dest_image->vk_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = region->dstSubresource.mipLevel,
.levelCount = 1,
.baseArrayLayer = dest_base_layer + layer,
.layerCount = 1,
},
},
cmd_buffer, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
VkFramebuffer fb_h;
radv_CreateFramebuffer(device_h,
&(VkFramebufferCreateInfo) {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = 2,
.pAttachments = (VkImageView[]) {
radv_image_view_to_handle(&src_iview),
radv_image_view_to_handle(&dest_iview),
},
.width = radv_minify(dest_image->extent.width,
region->dstSubresource.mipLevel),
.height = radv_minify(dest_image->extent.height,
region->dstSubresource.mipLevel),
.layers = 1
},
&cmd_buffer->pool->alloc,
&fb_h);
radv_CmdBeginRenderPass(cmd_buffer_h,
&(VkRenderPassBeginInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.renderPass = device->meta_state.resolve.pass,
.framebuffer = fb_h,
.renderArea = {
.offset = {
dstOffset.x,
dstOffset.y,
},
.extent = {
extent.width,
extent.height,
}
},
.clearValueCount = 0,
.pClearValues = NULL,
},
VK_SUBPASS_CONTENTS_INLINE);
emit_resolve(cmd_buffer,
&(VkOffset2D) {
.x = dstOffset.x,
.y = dstOffset.y,
},
&(VkExtent2D) {
.width = extent.width,
.height = extent.height,
});
radv_CmdEndRenderPass(cmd_buffer_h);
radv_DestroyFramebuffer(device_h, fb_h,
&cmd_buffer->pool->alloc);
}
}
radv_meta_restore(&saved_state, cmd_buffer);
}
/**
* Emit any needed resolves for the current subpass.
*/
void
radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer)
{
struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
const struct radv_subpass *subpass = cmd_buffer->state.subpass;
struct radv_meta_saved_state saved_state;
/* FINISHME(perf): Skip clears for resolve attachments.
*
* From the Vulkan 1.0 spec:
*
* If the first use of an attachment in a render pass is as a resolve
* attachment, then the loadOp is effectively ignored as the resolve is
* guaranteed to overwrite all pixels in the render area.
*/
if (!subpass->has_resolve)
return;
radv_meta_save_graphics_reset_vport_scissor(&saved_state, cmd_buffer);
for (uint32_t i = 0; i < subpass->color_count; ++i) {
VkAttachmentReference src_att = subpass->color_attachments[i];
VkAttachmentReference dest_att = subpass->resolve_attachments[i];
struct radv_image *dst_img = cmd_buffer->state.framebuffer->attachments[dest_att.attachment].attachment->image;
if (dest_att.attachment == VK_ATTACHMENT_UNUSED)
continue;
if (dst_img->surface.dcc_size) {
radv_initialize_dcc(cmd_buffer, dst_img, 0xffffffff);
cmd_buffer->state.attachments[dest_att.attachment].current_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
}
struct radv_subpass resolve_subpass = {
.color_count = 2,
.color_attachments = (VkAttachmentReference[]) { src_att, dest_att },
.depth_stencil_attachment = { .attachment = VK_ATTACHMENT_UNUSED },
};
radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass, false);
/* Subpass resolves must respect the render area. We can ignore the
* render area here because vkCmdBeginRenderPass set the render area
* with 3DSTATE_DRAWING_RECTANGLE.
*
* XXX(chadv): Does the hardware really respect
* 3DSTATE_DRAWING_RECTANGLE when draing a 3DPRIM_RECTLIST?
*/
emit_resolve(cmd_buffer,
&(VkOffset2D) { 0, 0 },
&(VkExtent2D) { fb->width, fb->height });
}
cmd_buffer->state.subpass = subpass;
radv_meta_restore(&saved_state, cmd_buffer);
}