blob: 51a839056e712046c5dd49b5f30d3db3b224c569 [file] [log] [blame]
/*
* Copyright 2017 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "compiler/nir/nir.h"
#include "radeon/radeon_uvd_enc.h"
#include "radeon/radeon_vce.h"
#include "radeon/radeon_video.h"
#include "si_pipe.h"
#include "util/u_screen.h"
#include "util/u_video.h"
#include "vl/vl_decoder.h"
#include "vl/vl_video_buffer.h"
#include <sys/utsname.h>
static const char *si_get_vendor(struct pipe_screen *pscreen)
{
return "AMD";
}
static const char *si_get_device_vendor(struct pipe_screen *pscreen)
{
return "AMD";
}
static int si_get_param(struct pipe_screen *pscreen, enum pipe_cap param)
{
struct si_screen *sscreen = (struct si_screen *)pscreen;
switch (param) {
/* Supported features (boolean caps). */
case PIPE_CAP_ACCELERATED:
case PIPE_CAP_MAX_DUAL_SOURCE_RENDER_TARGETS:
case PIPE_CAP_ANISOTROPIC_FILTER:
case PIPE_CAP_POINT_SPRITE:
case PIPE_CAP_OCCLUSION_QUERY:
case PIPE_CAP_TEXTURE_MIRROR_CLAMP:
case PIPE_CAP_TEXTURE_SHADOW_LOD:
case PIPE_CAP_TEXTURE_MIRROR_CLAMP_TO_EDGE:
case PIPE_CAP_BLEND_EQUATION_SEPARATE:
case PIPE_CAP_TEXTURE_SWIZZLE:
case PIPE_CAP_DEPTH_CLIP_DISABLE:
case PIPE_CAP_DEPTH_CLIP_DISABLE_SEPARATE:
case PIPE_CAP_SHADER_STENCIL_EXPORT:
case PIPE_CAP_VERTEX_ELEMENT_INSTANCE_DIVISOR:
case PIPE_CAP_MIXED_COLORBUFFER_FORMATS:
case PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT:
case PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER:
case PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER:
case PIPE_CAP_FRAGMENT_SHADER_TEXTURE_LOD:
case PIPE_CAP_FRAGMENT_SHADER_DERIVATIVES:
case PIPE_CAP_VERTEX_SHADER_SATURATE:
case PIPE_CAP_SEAMLESS_CUBE_MAP:
case PIPE_CAP_PRIMITIVE_RESTART:
case PIPE_CAP_PRIMITIVE_RESTART_FIXED_INDEX:
case PIPE_CAP_CONDITIONAL_RENDER:
case PIPE_CAP_TEXTURE_BARRIER:
case PIPE_CAP_INDEP_BLEND_ENABLE:
case PIPE_CAP_INDEP_BLEND_FUNC:
case PIPE_CAP_SEAMLESS_CUBE_MAP_PER_TEXTURE:
case PIPE_CAP_VERTEX_COLOR_UNCLAMPED:
case PIPE_CAP_START_INSTANCE:
case PIPE_CAP_NPOT_TEXTURES:
case PIPE_CAP_MIXED_FRAMEBUFFER_SIZES:
case PIPE_CAP_MIXED_COLOR_DEPTH_BITS:
case PIPE_CAP_VERTEX_COLOR_CLAMPED:
case PIPE_CAP_FRAGMENT_COLOR_CLAMPED:
case PIPE_CAP_PREFER_BLIT_BASED_TEXTURE_TRANSFER:
case PIPE_CAP_TGSI_INSTANCEID:
case PIPE_CAP_COMPUTE:
case PIPE_CAP_TEXTURE_BUFFER_OBJECTS:
case PIPE_CAP_TGSI_VS_LAYER_VIEWPORT:
case PIPE_CAP_QUERY_PIPELINE_STATISTICS:
case PIPE_CAP_BUFFER_MAP_PERSISTENT_COHERENT:
case PIPE_CAP_CUBE_MAP_ARRAY:
case PIPE_CAP_SAMPLE_SHADING:
case PIPE_CAP_DRAW_INDIRECT:
case PIPE_CAP_CLIP_HALFZ:
case PIPE_CAP_TGSI_VS_WINDOW_SPACE_POSITION:
case PIPE_CAP_POLYGON_OFFSET_CLAMP:
case PIPE_CAP_MULTISAMPLE_Z_RESOLVE:
case PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION:
case PIPE_CAP_TGSI_TEXCOORD:
case PIPE_CAP_TGSI_FS_FINE_DERIVATIVE:
case PIPE_CAP_CONDITIONAL_RENDER_INVERTED:
case PIPE_CAP_TEXTURE_FLOAT_LINEAR:
case PIPE_CAP_TEXTURE_HALF_FLOAT_LINEAR:
case PIPE_CAP_SHAREABLE_SHADERS:
case PIPE_CAP_DEPTH_BOUNDS_TEST:
case PIPE_CAP_SAMPLER_VIEW_TARGET:
case PIPE_CAP_TEXTURE_QUERY_LOD:
case PIPE_CAP_TEXTURE_GATHER_SM5:
case PIPE_CAP_TGSI_TXQS:
case PIPE_CAP_FORCE_PERSAMPLE_INTERP:
case PIPE_CAP_COPY_BETWEEN_COMPRESSED_AND_PLAIN_FORMATS:
case PIPE_CAP_TGSI_FS_POSITION_IS_SYSVAL:
case PIPE_CAP_TGSI_FS_FACE_IS_INTEGER_SYSVAL:
case PIPE_CAP_INVALIDATE_BUFFER:
case PIPE_CAP_SURFACE_REINTERPRET_BLOCKS:
case PIPE_CAP_QUERY_BUFFER_OBJECT:
case PIPE_CAP_QUERY_MEMORY_INFO:
case PIPE_CAP_TGSI_PACK_HALF_FLOAT:
case PIPE_CAP_FRAMEBUFFER_NO_ATTACHMENT:
case PIPE_CAP_ROBUST_BUFFER_ACCESS_BEHAVIOR:
case PIPE_CAP_GENERATE_MIPMAP:
case PIPE_CAP_POLYGON_OFFSET_UNITS_UNSCALED:
case PIPE_CAP_STRING_MARKER:
case PIPE_CAP_CLEAR_TEXTURE:
case PIPE_CAP_CULL_DISTANCE:
case PIPE_CAP_TGSI_ARRAY_COMPONENTS:
case PIPE_CAP_TGSI_CAN_READ_OUTPUTS:
case PIPE_CAP_GLSL_OPTIMIZE_CONSERVATIVELY:
case PIPE_CAP_STREAM_OUTPUT_PAUSE_RESUME:
case PIPE_CAP_STREAM_OUTPUT_INTERLEAVE_BUFFERS:
case PIPE_CAP_DOUBLES:
case PIPE_CAP_TGSI_TEX_TXF_LZ:
case PIPE_CAP_TGSI_TES_LAYER_VIEWPORT:
case PIPE_CAP_BINDLESS_TEXTURE:
case PIPE_CAP_QUERY_TIMESTAMP:
case PIPE_CAP_QUERY_TIME_ELAPSED:
case PIPE_CAP_NIR_SAMPLERS_AS_DEREF:
case PIPE_CAP_MEMOBJ:
case PIPE_CAP_LOAD_CONSTBUF:
case PIPE_CAP_INT64:
case PIPE_CAP_INT64_DIVMOD:
case PIPE_CAP_TGSI_CLOCK:
case PIPE_CAP_CAN_BIND_CONST_BUFFER_AS_VERTEX:
case PIPE_CAP_ALLOW_MAPPED_BUFFERS_DURING_EXECUTION:
case PIPE_CAP_SIGNED_VERTEX_BUFFER_OFFSET:
case PIPE_CAP_TGSI_BALLOT:
case PIPE_CAP_TGSI_VOTE:
case PIPE_CAP_FBFETCH:
case PIPE_CAP_COMPUTE_GRID_INFO_LAST_BLOCK:
case PIPE_CAP_IMAGE_LOAD_FORMATTED:
case PIPE_CAP_PREFER_COMPUTE_FOR_MULTIMEDIA:
case PIPE_CAP_TGSI_DIV:
case PIPE_CAP_PACKED_UNIFORMS:
case PIPE_CAP_SHADER_SAMPLES_IDENTICAL:
case PIPE_CAP_GL_SPIRV:
case PIPE_CAP_DRAW_INFO_START_WITH_USER_INDICES:
case PIPE_CAP_ALPHA_TO_COVERAGE_DITHER_CONTROL:
case PIPE_CAP_MAP_UNSYNCHRONIZED_THREAD_SAFE:
case PIPE_CAP_NO_CLIP_ON_COPY_TEX:
return 1;
case PIPE_CAP_GLSL_ZERO_INIT:
return 2;
case PIPE_CAP_QUERY_SO_OVERFLOW:
return !sscreen->use_ngg_streamout;
case PIPE_CAP_POST_DEPTH_COVERAGE:
return sscreen->info.chip_class >= GFX10;
case PIPE_CAP_GRAPHICS:
return sscreen->info.has_graphics;
case PIPE_CAP_RESOURCE_FROM_USER_MEMORY:
return !SI_BIG_ENDIAN && sscreen->info.has_userptr;
case PIPE_CAP_DEVICE_RESET_STATUS_QUERY:
return sscreen->info.has_gpu_reset_status_query;
case PIPE_CAP_TEXTURE_MULTISAMPLE:
return sscreen->info.has_2d_tiling;
case PIPE_CAP_MIN_MAP_BUFFER_ALIGNMENT:
return SI_MAP_BUFFER_ALIGNMENT;
case PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT:
case PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT:
case PIPE_CAP_MAX_TEXTURE_GATHER_COMPONENTS:
case PIPE_CAP_MAX_STREAM_OUTPUT_BUFFERS:
case PIPE_CAP_MAX_VERTEX_STREAMS:
case PIPE_CAP_SHADER_BUFFER_OFFSET_ALIGNMENT:
case PIPE_CAP_MAX_WINDOW_RECTANGLES:
return 4;
case PIPE_CAP_GLSL_FEATURE_LEVEL:
case PIPE_CAP_GLSL_FEATURE_LEVEL_COMPATIBILITY:
if (!sscreen->info.has_indirect_compute_dispatch)
return 420;
return 460;
case PIPE_CAP_MAX_TEXTURE_UPLOAD_MEMORY_BUDGET:
/* Optimal number for good TexSubImage performance on Polaris10. */
return 64 * 1024 * 1024;
case PIPE_CAP_GL_BEGIN_END_BUFFER_SIZE:
return 4096 * 1024;
case PIPE_CAP_MAX_TEXTURE_BUFFER_SIZE:
case PIPE_CAP_MAX_SHADER_BUFFER_SIZE:
/* Align it down to 256 bytes. I've chosen the number randomly. */
return ROUND_DOWN_TO(MIN2(sscreen->info.max_alloc_size, INT_MAX), 256);
case PIPE_CAP_MAX_TEXTURE_MB:
return sscreen->info.max_alloc_size / (1024 * 1024);
case PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY:
case PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY:
case PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY:
return LLVM_VERSION_MAJOR < 9 && !sscreen->info.has_unaligned_shader_loads;
case PIPE_CAP_SPARSE_BUFFER_PAGE_SIZE:
return sscreen->info.has_sparse_vm_mappings ? RADEON_SPARSE_PAGE_SIZE : 0;
case PIPE_CAP_UMA:
case PIPE_CAP_PREFER_IMM_ARRAYS_AS_CONSTBUF:
return 0;
case PIPE_CAP_FENCE_SIGNAL:
return sscreen->info.has_syncobj;
case PIPE_CAP_CONSTBUF0_FLAGS:
return SI_RESOURCE_FLAG_32BIT;
case PIPE_CAP_NATIVE_FENCE_FD:
return sscreen->info.has_fence_to_handle;
case PIPE_CAP_DRAW_PARAMETERS:
case PIPE_CAP_MULTI_DRAW_INDIRECT:
case PIPE_CAP_MULTI_DRAW_INDIRECT_PARAMS:
return sscreen->has_draw_indirect_multi;
case PIPE_CAP_MAX_SHADER_PATCH_VARYINGS:
return 30;
case PIPE_CAP_MAX_VARYINGS:
return 32;
case PIPE_CAP_TEXTURE_BORDER_COLOR_QUIRK:
return sscreen->info.chip_class <= GFX8 ? PIPE_QUIRK_TEXTURE_BORDER_COLOR_SWIZZLE_R600 : 0;
/* Stream output. */
case PIPE_CAP_MAX_STREAM_OUTPUT_SEPARATE_COMPONENTS:
case PIPE_CAP_MAX_STREAM_OUTPUT_INTERLEAVED_COMPONENTS:
return 32 * 4;
/* Geometry shader output. */
case PIPE_CAP_MAX_GEOMETRY_OUTPUT_VERTICES:
/* gfx9 has to report 256 to make piglit/gs-max-output pass.
* gfx8 and earlier can do 1024.
*/
return 256;
case PIPE_CAP_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS:
return 4095;
case PIPE_CAP_MAX_GS_INVOCATIONS:
/* Even though the hw supports more, we officially wanna expose only 32. */
return 32;
case PIPE_CAP_MAX_VERTEX_ATTRIB_STRIDE:
return 2048;
/* Texturing. */
case PIPE_CAP_MAX_TEXTURE_2D_SIZE:
return 16384;
case PIPE_CAP_MAX_TEXTURE_CUBE_LEVELS:
return 15; /* 16384 */
case PIPE_CAP_MAX_TEXTURE_3D_LEVELS:
if (sscreen->info.chip_class >= GFX10)
return 14;
/* textures support 8192, but layered rendering supports 2048 */
return 12;
case PIPE_CAP_MAX_TEXTURE_ARRAY_LAYERS:
if (sscreen->info.chip_class >= GFX10)
return 8192;
/* textures support 8192, but layered rendering supports 2048 */
return 2048;
/* Viewports and render targets. */
case PIPE_CAP_MAX_VIEWPORTS:
return SI_MAX_VIEWPORTS;
case PIPE_CAP_VIEWPORT_SUBPIXEL_BITS:
case PIPE_CAP_RASTERIZER_SUBPIXEL_BITS:
case PIPE_CAP_MAX_RENDER_TARGETS:
return 8;
case PIPE_CAP_FRAMEBUFFER_MSAA_CONSTRAINTS:
return sscreen->info.has_eqaa_surface_allocator ? 2 : 0;
case PIPE_CAP_MIN_TEXTURE_GATHER_OFFSET:
case PIPE_CAP_MIN_TEXEL_OFFSET:
return -32;
case PIPE_CAP_MAX_TEXTURE_GATHER_OFFSET:
case PIPE_CAP_MAX_TEXEL_OFFSET:
return 31;
case PIPE_CAP_ENDIANNESS:
return PIPE_ENDIAN_LITTLE;
case PIPE_CAP_VENDOR_ID:
return ATI_VENDOR_ID;
case PIPE_CAP_DEVICE_ID:
return sscreen->info.pci_id;
case PIPE_CAP_VIDEO_MEMORY:
return sscreen->info.vram_size >> 20;
case PIPE_CAP_PCI_GROUP:
return sscreen->info.pci_domain;
case PIPE_CAP_PCI_BUS:
return sscreen->info.pci_bus;
case PIPE_CAP_PCI_DEVICE:
return sscreen->info.pci_dev;
case PIPE_CAP_PCI_FUNCTION:
return sscreen->info.pci_func;
case PIPE_CAP_TGSI_ATOMINC_WRAP:
return LLVM_VERSION_MAJOR >= 10;
default:
return u_pipe_screen_get_param_defaults(pscreen, param);
}
}
static float si_get_paramf(struct pipe_screen *pscreen, enum pipe_capf param)
{
switch (param) {
case PIPE_CAPF_MAX_LINE_WIDTH:
case PIPE_CAPF_MAX_LINE_WIDTH_AA:
/* This depends on the quant mode, though the precise interactions
* are unknown. */
return 2048;
case PIPE_CAPF_MAX_POINT_WIDTH:
case PIPE_CAPF_MAX_POINT_WIDTH_AA:
return SI_MAX_POINT_SIZE;
case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
return 16.0f;
case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
return 16.0f;
case PIPE_CAPF_MIN_CONSERVATIVE_RASTER_DILATE:
case PIPE_CAPF_MAX_CONSERVATIVE_RASTER_DILATE:
case PIPE_CAPF_CONSERVATIVE_RASTER_DILATE_GRANULARITY:
return 0.0f;
}
return 0.0f;
}
static int si_get_shader_param(struct pipe_screen *pscreen, enum pipe_shader_type shader,
enum pipe_shader_cap param)
{
struct si_screen *sscreen = (struct si_screen *)pscreen;
switch (shader) {
case PIPE_SHADER_FRAGMENT:
case PIPE_SHADER_VERTEX:
case PIPE_SHADER_GEOMETRY:
case PIPE_SHADER_TESS_CTRL:
case PIPE_SHADER_TESS_EVAL:
break;
case PIPE_SHADER_COMPUTE:
switch (param) {
case PIPE_SHADER_CAP_SUPPORTED_IRS: {
int ir = 1 << PIPE_SHADER_IR_NATIVE;
if (sscreen->info.has_indirect_compute_dispatch)
ir |= 1 << PIPE_SHADER_IR_NIR;
return ir;
}
default:
/* If compute shaders don't require a special value
* for this cap, we can return the same value we
* do for other shader types. */
break;
}
break;
default:
return 0;
}
switch (param) {
/* Shader limits. */
case PIPE_SHADER_CAP_MAX_INSTRUCTIONS:
case PIPE_SHADER_CAP_MAX_ALU_INSTRUCTIONS:
case PIPE_SHADER_CAP_MAX_TEX_INSTRUCTIONS:
case PIPE_SHADER_CAP_MAX_TEX_INDIRECTIONS:
case PIPE_SHADER_CAP_MAX_CONTROL_FLOW_DEPTH:
return 16384;
case PIPE_SHADER_CAP_MAX_INPUTS:
return shader == PIPE_SHADER_VERTEX ? SI_MAX_ATTRIBS : 32;
case PIPE_SHADER_CAP_MAX_OUTPUTS:
return shader == PIPE_SHADER_FRAGMENT ? 8 : 32;
case PIPE_SHADER_CAP_MAX_TEMPS:
return 256; /* Max native temporaries. */
case PIPE_SHADER_CAP_MAX_CONST_BUFFER_SIZE:
return 1 << 26; /* 64 MB */
case PIPE_SHADER_CAP_MAX_CONST_BUFFERS:
return SI_NUM_CONST_BUFFERS;
case PIPE_SHADER_CAP_MAX_TEXTURE_SAMPLERS:
case PIPE_SHADER_CAP_MAX_SAMPLER_VIEWS:
return SI_NUM_SAMPLERS;
case PIPE_SHADER_CAP_MAX_SHADER_BUFFERS:
return SI_NUM_SHADER_BUFFERS;
case PIPE_SHADER_CAP_MAX_SHADER_IMAGES:
return SI_NUM_IMAGES;
case PIPE_SHADER_CAP_MAX_UNROLL_ITERATIONS_HINT:
return 0;
case PIPE_SHADER_CAP_PREFERRED_IR:
return PIPE_SHADER_IR_NIR;
case PIPE_SHADER_CAP_LOWER_IF_THRESHOLD:
return 4;
/* Supported boolean features. */
case PIPE_SHADER_CAP_TGSI_CONT_SUPPORTED:
case PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED:
case PIPE_SHADER_CAP_INDIRECT_TEMP_ADDR:
case PIPE_SHADER_CAP_INDIRECT_CONST_ADDR:
case PIPE_SHADER_CAP_INTEGERS:
case PIPE_SHADER_CAP_INT64_ATOMICS:
case PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED:
case PIPE_SHADER_CAP_TGSI_ANY_INOUT_DECL_RANGE:
case PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS:
case PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED:
case PIPE_SHADER_CAP_TGSI_LDEXP_SUPPORTED:
case PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED:
case PIPE_SHADER_CAP_INDIRECT_INPUT_ADDR: /* lowered in finalize_nir */
case PIPE_SHADER_CAP_INDIRECT_OUTPUT_ADDR: /* lowered in finalize_nir */
return 1;
/* Unsupported boolean features. */
case PIPE_SHADER_CAP_FP16:
case PIPE_SHADER_CAP_FP16_DERIVATIVES:
case PIPE_SHADER_CAP_INT16:
case PIPE_SHADER_CAP_GLSL_16BIT_CONSTS:
case PIPE_SHADER_CAP_SUBROUTINES:
case PIPE_SHADER_CAP_SUPPORTED_IRS:
case PIPE_SHADER_CAP_MAX_HW_ATOMIC_COUNTERS:
case PIPE_SHADER_CAP_MAX_HW_ATOMIC_COUNTER_BUFFERS:
return 0;
}
return 0;
}
static const void *si_get_compiler_options(struct pipe_screen *screen, enum pipe_shader_ir ir,
enum pipe_shader_type shader)
{
struct si_screen *sscreen = (struct si_screen *)screen;
assert(ir == PIPE_SHADER_IR_NIR);
return &sscreen->nir_options;
}
static void si_get_driver_uuid(struct pipe_screen *pscreen, char *uuid)
{
ac_compute_driver_uuid(uuid, PIPE_UUID_SIZE);
}
static void si_get_device_uuid(struct pipe_screen *pscreen, char *uuid)
{
struct si_screen *sscreen = (struct si_screen *)pscreen;
ac_compute_device_uuid(&sscreen->info, uuid, PIPE_UUID_SIZE);
}
static const char *si_get_name(struct pipe_screen *pscreen)
{
struct si_screen *sscreen = (struct si_screen *)pscreen;
return sscreen->renderer_string;
}
static int si_get_video_param_no_decode(struct pipe_screen *screen, enum pipe_video_profile profile,
enum pipe_video_entrypoint entrypoint,
enum pipe_video_cap param)
{
switch (param) {
case PIPE_VIDEO_CAP_SUPPORTED:
return vl_profile_supported(screen, profile, entrypoint);
case PIPE_VIDEO_CAP_NPOT_TEXTURES:
return 1;
case PIPE_VIDEO_CAP_MAX_WIDTH:
case PIPE_VIDEO_CAP_MAX_HEIGHT:
return vl_video_buffer_max_size(screen);
case PIPE_VIDEO_CAP_PREFERED_FORMAT:
return PIPE_FORMAT_NV12;
case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
return false;
case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
return false;
case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
return true;
case PIPE_VIDEO_CAP_MAX_LEVEL:
return vl_level_supported(screen, profile);
default:
return 0;
}
}
static int si_get_video_param(struct pipe_screen *screen, enum pipe_video_profile profile,
enum pipe_video_entrypoint entrypoint, enum pipe_video_cap param)
{
struct si_screen *sscreen = (struct si_screen *)screen;
enum pipe_video_format codec = u_reduce_video_profile(profile);
if (entrypoint == PIPE_VIDEO_ENTRYPOINT_ENCODE) {
switch (param) {
case PIPE_VIDEO_CAP_SUPPORTED:
return (
(codec == PIPE_VIDEO_FORMAT_MPEG4_AVC &&
(sscreen->info.family >= CHIP_RAVEN || si_vce_is_fw_version_supported(sscreen))) ||
(profile == PIPE_VIDEO_PROFILE_HEVC_MAIN &&
(sscreen->info.family >= CHIP_RAVEN || si_radeon_uvd_enc_supported(sscreen))) ||
(profile == PIPE_VIDEO_PROFILE_HEVC_MAIN_10 && sscreen->info.family >= CHIP_RENOIR));
case PIPE_VIDEO_CAP_NPOT_TEXTURES:
return 1;
case PIPE_VIDEO_CAP_MAX_WIDTH:
return (sscreen->info.family < CHIP_TONGA) ? 2048 : 4096;
case PIPE_VIDEO_CAP_MAX_HEIGHT:
return (sscreen->info.family < CHIP_TONGA) ? 1152 : 2304;
case PIPE_VIDEO_CAP_PREFERED_FORMAT:
return PIPE_FORMAT_NV12;
case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
return false;
case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED:
return false;
case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
return true;
case PIPE_VIDEO_CAP_STACKED_FRAMES:
return (sscreen->info.family < CHIP_TONGA) ? 1 : 2;
default:
return 0;
}
}
switch (param) {
case PIPE_VIDEO_CAP_SUPPORTED:
switch (codec) {
case PIPE_VIDEO_FORMAT_MPEG12:
return profile != PIPE_VIDEO_PROFILE_MPEG1;
case PIPE_VIDEO_FORMAT_MPEG4:
return 1;
case PIPE_VIDEO_FORMAT_MPEG4_AVC:
if ((sscreen->info.family == CHIP_POLARIS10 || sscreen->info.family == CHIP_POLARIS11) &&
sscreen->info.uvd_fw_version < UVD_FW_1_66_16) {
RVID_ERR("POLARIS10/11 firmware version need to be updated.\n");
return false;
}
return true;
case PIPE_VIDEO_FORMAT_VC1:
return true;
case PIPE_VIDEO_FORMAT_HEVC:
/* Carrizo only supports HEVC Main */
if (sscreen->info.family >= CHIP_STONEY)
return (profile == PIPE_VIDEO_PROFILE_HEVC_MAIN ||
profile == PIPE_VIDEO_PROFILE_HEVC_MAIN_10);
else if (sscreen->info.family >= CHIP_CARRIZO)
return profile == PIPE_VIDEO_PROFILE_HEVC_MAIN;
return false;
case PIPE_VIDEO_FORMAT_JPEG:
if (sscreen->info.family >= CHIP_RAVEN)
return true;
if (sscreen->info.family < CHIP_CARRIZO || sscreen->info.family >= CHIP_VEGA10)
return false;
if (!(sscreen->info.is_amdgpu && sscreen->info.drm_minor >= 19)) {
RVID_ERR("No MJPEG support for the kernel version\n");
return false;
}
return true;
case PIPE_VIDEO_FORMAT_VP9:
if (sscreen->info.family < CHIP_RAVEN)
return false;
return true;
default:
return false;
}
case PIPE_VIDEO_CAP_NPOT_TEXTURES:
return 1;
case PIPE_VIDEO_CAP_MAX_WIDTH:
switch (codec) {
case PIPE_VIDEO_FORMAT_HEVC:
case PIPE_VIDEO_FORMAT_VP9:
return (sscreen->info.family < CHIP_RENOIR)
? ((sscreen->info.family < CHIP_TONGA) ? 2048 : 4096)
: 8192;
default:
return (sscreen->info.family < CHIP_TONGA) ? 2048 : 4096;
}
case PIPE_VIDEO_CAP_MAX_HEIGHT:
switch (codec) {
case PIPE_VIDEO_FORMAT_HEVC:
case PIPE_VIDEO_FORMAT_VP9:
return (sscreen->info.family < CHIP_RENOIR)
? ((sscreen->info.family < CHIP_TONGA) ? 1152 : 4096)
: 4352;
default:
return (sscreen->info.family < CHIP_TONGA) ? 1152 : 4096;
}
case PIPE_VIDEO_CAP_PREFERED_FORMAT:
if (profile == PIPE_VIDEO_PROFILE_HEVC_MAIN_10)
return PIPE_FORMAT_P010;
else if (profile == PIPE_VIDEO_PROFILE_VP9_PROFILE2)
return PIPE_FORMAT_P010;
else
return PIPE_FORMAT_NV12;
case PIPE_VIDEO_CAP_PREFERS_INTERLACED:
case PIPE_VIDEO_CAP_SUPPORTS_INTERLACED: {
enum pipe_video_format format = u_reduce_video_profile(profile);
if (format == PIPE_VIDEO_FORMAT_HEVC)
return false; // The firmware doesn't support interlaced HEVC.
else if (format == PIPE_VIDEO_FORMAT_JPEG)
return false;
else if (format == PIPE_VIDEO_FORMAT_VP9)
return false;
return true;
}
case PIPE_VIDEO_CAP_SUPPORTS_PROGRESSIVE:
return true;
case PIPE_VIDEO_CAP_MAX_LEVEL:
switch (profile) {
case PIPE_VIDEO_PROFILE_MPEG1:
return 0;
case PIPE_VIDEO_PROFILE_MPEG2_SIMPLE:
case PIPE_VIDEO_PROFILE_MPEG2_MAIN:
return 3;
case PIPE_VIDEO_PROFILE_MPEG4_SIMPLE:
return 3;
case PIPE_VIDEO_PROFILE_MPEG4_ADVANCED_SIMPLE:
return 5;
case PIPE_VIDEO_PROFILE_VC1_SIMPLE:
return 1;
case PIPE_VIDEO_PROFILE_VC1_MAIN:
return 2;
case PIPE_VIDEO_PROFILE_VC1_ADVANCED:
return 4;
case PIPE_VIDEO_PROFILE_MPEG4_AVC_BASELINE:
case PIPE_VIDEO_PROFILE_MPEG4_AVC_MAIN:
case PIPE_VIDEO_PROFILE_MPEG4_AVC_HIGH:
return (sscreen->info.family < CHIP_TONGA) ? 41 : 52;
case PIPE_VIDEO_PROFILE_HEVC_MAIN:
case PIPE_VIDEO_PROFILE_HEVC_MAIN_10:
return 186;
default:
return 0;
}
default:
return 0;
}
}
static bool si_vid_is_format_supported(struct pipe_screen *screen, enum pipe_format format,
enum pipe_video_profile profile,
enum pipe_video_entrypoint entrypoint)
{
/* HEVC 10 bit decoding should use P010 instead of NV12 if possible */
if (profile == PIPE_VIDEO_PROFILE_HEVC_MAIN_10)
return (format == PIPE_FORMAT_NV12) || (format == PIPE_FORMAT_P010) ||
(format == PIPE_FORMAT_P016);
/* Vp9 profile 2 supports 10 bit decoding using P016 */
if (profile == PIPE_VIDEO_PROFILE_VP9_PROFILE2)
return (format == PIPE_FORMAT_P010) || (format == PIPE_FORMAT_P016);
/* we can only handle this one with UVD */
if (profile != PIPE_VIDEO_PROFILE_UNKNOWN)
return format == PIPE_FORMAT_NV12;
return vl_video_buffer_is_format_supported(screen, format, profile, entrypoint);
}
static unsigned get_max_threads_per_block(struct si_screen *screen, enum pipe_shader_ir ir_type)
{
if (ir_type == PIPE_SHADER_IR_NATIVE)
return 256;
/* LLVM 10 only supports 1024 threads per block. */
return 1024;
}
static int si_get_compute_param(struct pipe_screen *screen, enum pipe_shader_ir ir_type,
enum pipe_compute_cap param, void *ret)
{
struct si_screen *sscreen = (struct si_screen *)screen;
// TODO: select these params by asic
switch (param) {
case PIPE_COMPUTE_CAP_IR_TARGET: {
const char *gpu, *triple;
triple = "amdgcn-mesa-mesa3d";
gpu = ac_get_llvm_processor_name(sscreen->info.family);
if (ret) {
sprintf(ret, "%s-%s", gpu, triple);
}
/* +2 for dash and terminating NIL byte */
return (strlen(triple) + strlen(gpu) + 2) * sizeof(char);
}
case PIPE_COMPUTE_CAP_GRID_DIMENSION:
if (ret) {
uint64_t *grid_dimension = ret;
grid_dimension[0] = 3;
}
return 1 * sizeof(uint64_t);
case PIPE_COMPUTE_CAP_MAX_GRID_SIZE:
if (ret) {
uint64_t *grid_size = ret;
grid_size[0] = 65535;
grid_size[1] = 65535;
grid_size[2] = 65535;
}
return 3 * sizeof(uint64_t);
case PIPE_COMPUTE_CAP_MAX_BLOCK_SIZE:
if (ret) {
uint64_t *block_size = ret;
unsigned threads_per_block = get_max_threads_per_block(sscreen, ir_type);
block_size[0] = threads_per_block;
block_size[1] = threads_per_block;
block_size[2] = threads_per_block;
}
return 3 * sizeof(uint64_t);
case PIPE_COMPUTE_CAP_MAX_THREADS_PER_BLOCK:
if (ret) {
uint64_t *max_threads_per_block = ret;
*max_threads_per_block = get_max_threads_per_block(sscreen, ir_type);
}
return sizeof(uint64_t);
case PIPE_COMPUTE_CAP_ADDRESS_BITS:
if (ret) {
uint32_t *address_bits = ret;
address_bits[0] = 64;
}
return 1 * sizeof(uint32_t);
case PIPE_COMPUTE_CAP_MAX_GLOBAL_SIZE:
if (ret) {
uint64_t *max_global_size = ret;
uint64_t max_mem_alloc_size;
si_get_compute_param(screen, ir_type, PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE,
&max_mem_alloc_size);
/* In OpenCL, the MAX_MEM_ALLOC_SIZE must be at least
* 1/4 of the MAX_GLOBAL_SIZE. Since the
* MAX_MEM_ALLOC_SIZE is fixed for older kernels,
* make sure we never report more than
* 4 * MAX_MEM_ALLOC_SIZE.
*/
*max_global_size =
MIN2(4 * max_mem_alloc_size, MAX2(sscreen->info.gart_size, sscreen->info.vram_size));
}
return sizeof(uint64_t);
case PIPE_COMPUTE_CAP_MAX_LOCAL_SIZE:
if (ret) {
uint64_t *max_local_size = ret;
/* Value reported by the closed source driver. */
*max_local_size = 32768;
}
return sizeof(uint64_t);
case PIPE_COMPUTE_CAP_MAX_INPUT_SIZE:
if (ret) {
uint64_t *max_input_size = ret;
/* Value reported by the closed source driver. */
*max_input_size = 1024;
}
return sizeof(uint64_t);
case PIPE_COMPUTE_CAP_MAX_MEM_ALLOC_SIZE:
if (ret) {
uint64_t *max_mem_alloc_size = ret;
*max_mem_alloc_size = sscreen->info.max_alloc_size;
}
return sizeof(uint64_t);
case PIPE_COMPUTE_CAP_MAX_CLOCK_FREQUENCY:
if (ret) {
uint32_t *max_clock_frequency = ret;
*max_clock_frequency = sscreen->info.max_shader_clock;
}
return sizeof(uint32_t);
case PIPE_COMPUTE_CAP_MAX_COMPUTE_UNITS:
if (ret) {
uint32_t *max_compute_units = ret;
*max_compute_units = sscreen->info.num_good_compute_units;
}
return sizeof(uint32_t);
case PIPE_COMPUTE_CAP_IMAGES_SUPPORTED:
if (ret) {
uint32_t *images_supported = ret;
*images_supported = 0;
}
return sizeof(uint32_t);
case PIPE_COMPUTE_CAP_MAX_PRIVATE_SIZE:
break; /* unused */
case PIPE_COMPUTE_CAP_SUBGROUP_SIZE:
if (ret) {
uint32_t *subgroup_size = ret;
*subgroup_size = sscreen->compute_wave_size;
}
return sizeof(uint32_t);
case PIPE_COMPUTE_CAP_MAX_VARIABLE_THREADS_PER_BLOCK:
if (ret) {
uint64_t *max_variable_threads_per_block = ret;
if (ir_type == PIPE_SHADER_IR_NATIVE)
*max_variable_threads_per_block = 0;
else
*max_variable_threads_per_block = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
}
return sizeof(uint64_t);
}
fprintf(stderr, "unknown PIPE_COMPUTE_CAP %d\n", param);
return 0;
}
static uint64_t si_get_timestamp(struct pipe_screen *screen)
{
struct si_screen *sscreen = (struct si_screen *)screen;
return 1000000 * sscreen->ws->query_value(sscreen->ws, RADEON_TIMESTAMP) /
sscreen->info.clock_crystal_freq;
}
static void si_query_memory_info(struct pipe_screen *screen, struct pipe_memory_info *info)
{
struct si_screen *sscreen = (struct si_screen *)screen;
struct radeon_winsys *ws = sscreen->ws;
unsigned vram_usage, gtt_usage;
info->total_device_memory = sscreen->info.vram_size / 1024;
info->total_staging_memory = sscreen->info.gart_size / 1024;
/* The real TTM memory usage is somewhat random, because:
*
* 1) TTM delays freeing memory, because it can only free it after
* fences expire.
*
* 2) The memory usage can be really low if big VRAM evictions are
* taking place, but the real usage is well above the size of VRAM.
*
* Instead, return statistics of this process.
*/
vram_usage = ws->query_value(ws, RADEON_VRAM_USAGE) / 1024;
gtt_usage = ws->query_value(ws, RADEON_GTT_USAGE) / 1024;
info->avail_device_memory =
vram_usage <= info->total_device_memory ? info->total_device_memory - vram_usage : 0;
info->avail_staging_memory =
gtt_usage <= info->total_staging_memory ? info->total_staging_memory - gtt_usage : 0;
info->device_memory_evicted = ws->query_value(ws, RADEON_NUM_BYTES_MOVED) / 1024;
if (sscreen->info.is_amdgpu && sscreen->info.drm_minor >= 4)
info->nr_device_memory_evictions = ws->query_value(ws, RADEON_NUM_EVICTIONS);
else
/* Just return the number of evicted 64KB pages. */
info->nr_device_memory_evictions = info->device_memory_evicted / 64;
}
static struct disk_cache *si_get_disk_shader_cache(struct pipe_screen *pscreen)
{
struct si_screen *sscreen = (struct si_screen *)pscreen;
return sscreen->disk_shader_cache;
}
static void si_init_renderer_string(struct si_screen *sscreen)
{
char first_name[256], second_name[32] = {}, kernel_version[128] = {};
struct utsname uname_data;
if (sscreen->info.marketing_name) {
snprintf(first_name, sizeof(first_name), "%s", sscreen->info.marketing_name);
snprintf(second_name, sizeof(second_name), "%s, ", sscreen->info.name);
} else {
snprintf(first_name, sizeof(first_name), "AMD %s", sscreen->info.name);
}
if (uname(&uname_data) == 0)
snprintf(kernel_version, sizeof(kernel_version), ", %s", uname_data.release);
snprintf(sscreen->renderer_string, sizeof(sscreen->renderer_string),
"%s (%sDRM %i.%i.%i%s, LLVM " MESA_LLVM_VERSION_STRING ")", first_name, second_name,
sscreen->info.drm_major, sscreen->info.drm_minor, sscreen->info.drm_patchlevel,
kernel_version);
}
void si_init_screen_get_functions(struct si_screen *sscreen)
{
sscreen->b.get_name = si_get_name;
sscreen->b.get_vendor = si_get_vendor;
sscreen->b.get_device_vendor = si_get_device_vendor;
sscreen->b.get_param = si_get_param;
sscreen->b.get_paramf = si_get_paramf;
sscreen->b.get_compute_param = si_get_compute_param;
sscreen->b.get_timestamp = si_get_timestamp;
sscreen->b.get_shader_param = si_get_shader_param;
sscreen->b.get_compiler_options = si_get_compiler_options;
sscreen->b.get_device_uuid = si_get_device_uuid;
sscreen->b.get_driver_uuid = si_get_driver_uuid;
sscreen->b.query_memory_info = si_query_memory_info;
sscreen->b.get_disk_shader_cache = si_get_disk_shader_cache;
if (sscreen->info.has_hw_decode) {
sscreen->b.get_video_param = si_get_video_param;
sscreen->b.is_video_format_supported = si_vid_is_format_supported;
} else {
sscreen->b.get_video_param = si_get_video_param_no_decode;
sscreen->b.is_video_format_supported = vl_video_buffer_is_format_supported;
}
si_init_renderer_string(sscreen);
const struct nir_shader_compiler_options nir_options = {
.lower_scmp = true,
.lower_flrp16 = true,
.lower_flrp32 = true,
.lower_flrp64 = true,
.lower_fsat = true,
.lower_fdiv = true,
.lower_bitfield_insert_to_bitfield_select = true,
.lower_bitfield_extract = true,
.lower_sub = true,
/* gfx6-8: use MAD (FMA is 4x slower)
* gfx9-10: either is OK (MAD and FMA have the same performance)
* gfx10.3: use FMA (MAD doesn't exist, separate MUL+ADD are 2x slower)
*
* FMA has no advantage on gfx9-10 and MAD allows more algebraic optimizations.
* Keep FMA enabled on gfx10 to test it, which helps us validate correctness
* for gfx10.3 on gfx10.
*/
.lower_ffma16 = sscreen->info.chip_class <= GFX9,
.lower_ffma32 = sscreen->info.chip_class <= GFX9,
.lower_ffma64 = sscreen->info.chip_class <= GFX9,
.fuse_ffma16 = sscreen->info.chip_class >= GFX10,
.fuse_ffma32 = sscreen->info.chip_class >= GFX10,
.fuse_ffma64 = sscreen->info.chip_class >= GFX10,
.lower_fmod = true,
.lower_pack_snorm_4x8 = true,
.lower_pack_unorm_4x8 = true,
.lower_unpack_snorm_2x16 = true,
.lower_unpack_snorm_4x8 = true,
.lower_unpack_unorm_2x16 = true,
.lower_unpack_unorm_4x8 = true,
.lower_extract_byte = true,
.lower_extract_word = true,
.lower_rotate = true,
.lower_to_scalar = true,
.optimize_sample_mask_in = true,
.max_unroll_iterations = 32,
.use_interpolated_input_intrinsics = true,
.lower_uniforms_to_ubo = true,
.support_16bit_alu = sscreen->info.has_packed_math_16bit,
.vectorize_vec2_16bit = sscreen->info.has_packed_math_16bit,
};
sscreen->nir_options = nir_options;
}