blob: 3f528800ae7c19a16a3a55a9eda9058f67ff5441 [file] [log] [blame]
/*
* Copyright (C) 2012 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "util/debug.h"
#include "pipe/p_state.h"
#include "util/hash_table.h"
#include "util/u_dump.h"
#include "util/u_string.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "util/format/u_format.h"
#include "freedreno_gmem.h"
#include "freedreno_context.h"
#include "freedreno_fence.h"
#include "freedreno_log.h"
#include "freedreno_resource.h"
#include "freedreno_query_hw.h"
#include "freedreno_util.h"
/*
* GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer
* inside the GPU. All rendering happens to GMEM. Larger render targets
* are split into tiles that are small enough for the color (and depth and/or
* stencil, if enabled) buffers to fit within GMEM. Before rendering a tile,
* if there was not a clear invalidating the previous tile contents, we need
* to restore the previous tiles contents (system mem -> GMEM), and after all
* the draw calls, before moving to the next tile, we need to save the tile
* contents (GMEM -> system mem).
*
* The code in this file handles dealing with GMEM and tiling.
*
* The structure of the ringbuffer ends up being:
*
* +--<---<-- IB ---<---+---<---+---<---<---<--+
* | | | |
* v ^ ^ ^
* ------------------------------------------------------
* | clear/draw cmds | Tile0 | Tile1 | .... | TileN |
* ------------------------------------------------------
* ^
* |
* address submitted in issueibcmds
*
* Where the per-tile section handles scissor setup, mem2gmem restore (if
* needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem
* resolve.
*/
#ifndef BIN_DEBUG
# define BIN_DEBUG 0
#endif
/*
* GMEM Cache:
*
* Caches GMEM state based on a given framebuffer state. The key is
* meant to be the minimal set of data that results in a unique gmem
* configuration, avoiding multiple keys arriving at the same gmem
* state. For example, the render target format is not part of the
* key, only the size per pixel. And the max_scissor bounds is not
* part of they key, only the minx/miny (after clamping to tile
* alignment) and width/height. This ensures that slightly different
* max_scissor which would result in the same gmem state, do not
* become different keys that map to the same state.
*/
struct gmem_key {
uint16_t minx, miny;
uint16_t width, height;
uint8_t gmem_page_align; /* alignment in multiples of 0x1000 to reduce key size */
uint8_t nr_cbufs;
uint8_t cbuf_cpp[MAX_RENDER_TARGETS];
uint8_t zsbuf_cpp[2];
};
static uint32_t
gmem_key_hash(const void *_key)
{
const struct gmem_key *key = _key;
return _mesa_hash_data(key, sizeof(*key));
}
static bool
gmem_key_equals(const void *_a, const void *_b)
{
const struct gmem_key *a = _a;
const struct gmem_key *b = _b;
return memcmp(a, b, sizeof(*a)) == 0;
}
static void
dump_gmem_key(const struct gmem_key *key)
{
printf("{ .minx=%u, .miny=%u, .width=%u, .height=%u",
key->minx, key->miny, key->width, key->height);
printf(", .gmem_page_align=%u, .nr_cbufs=%u",
key->gmem_page_align, key->nr_cbufs);
printf(", .cbuf_cpp = {");
for (unsigned i = 0; i < ARRAY_SIZE(key->cbuf_cpp); i++)
printf("%u,", key->cbuf_cpp[i]);
printf("}, .zsbuf_cpp = {");
for (unsigned i = 0; i < ARRAY_SIZE(key->zsbuf_cpp); i++)
printf("%u,", key->zsbuf_cpp[i]);
printf("}},\n");
}
static void
dump_gmem_state(const struct fd_gmem_stateobj *gmem)
{
unsigned total = 0;
printf("GMEM LAYOUT: bin=%ux%u, nbins=%ux%u\n",
gmem->bin_w, gmem->bin_h, gmem->nbins_x, gmem->nbins_y);
for (int i = 0; i < ARRAY_SIZE(gmem->cbuf_base); i++) {
if (!gmem->cbuf_cpp[i])
continue;
unsigned size = gmem->cbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
printf(" cbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
gmem->cbuf_base[i], size, gmem->cbuf_cpp[i]);
total = gmem->cbuf_base[i] + size;
}
for (int i = 0; i < ARRAY_SIZE(gmem->zsbuf_base); i++) {
if (!gmem->zsbuf_cpp[i])
continue;
unsigned size = gmem->zsbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
printf(" zsbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
gmem->zsbuf_base[i], size, gmem->zsbuf_cpp[i]);
total = gmem->zsbuf_base[i] + size;
}
printf("total: 0x%06x (of 0x%06x)\n", total,
gmem->screen->gmemsize_bytes);
}
static unsigned
div_align(unsigned num, unsigned denom, unsigned al)
{
return util_align_npot(DIV_ROUND_UP(num, denom), al);
}
static bool
layout_gmem(struct gmem_key *key, uint32_t nbins_x, uint32_t nbins_y,
struct fd_gmem_stateobj *gmem)
{
struct fd_screen *screen = gmem->screen;
uint32_t gmem_align = key->gmem_page_align * 0x1000;
uint32_t total = 0, i;
if ((nbins_x == 0) || (nbins_y == 0))
return false;
uint32_t bin_w, bin_h;
bin_w = div_align(key->width, nbins_x, screen->tile_alignw);
bin_h = div_align(key->height, nbins_y, screen->tile_alignh);
if (bin_w > screen->tile_maxw)
return false;
if (bin_h > screen->tile_maxh)
return false;
gmem->bin_w = bin_w;
gmem->bin_h = bin_h;
/* due to aligning bin_w/h, we could end up with one too
* many bins in either dimension, so recalculate:
*/
gmem->nbins_x = DIV_ROUND_UP(key->width, bin_w);
gmem->nbins_y = DIV_ROUND_UP(key->height, bin_h);
for (i = 0; i < MAX_RENDER_TARGETS; i++) {
if (key->cbuf_cpp[i]) {
gmem->cbuf_base[i] = util_align_npot(total, gmem_align);
total = gmem->cbuf_base[i] + key->cbuf_cpp[i] * bin_w * bin_h;
}
}
if (key->zsbuf_cpp[0]) {
gmem->zsbuf_base[0] = util_align_npot(total, gmem_align);
total = gmem->zsbuf_base[0] + key->zsbuf_cpp[0] * bin_w * bin_h;
}
if (key->zsbuf_cpp[1]) {
gmem->zsbuf_base[1] = util_align_npot(total, gmem_align);
total = gmem->zsbuf_base[1] + key->zsbuf_cpp[1] * bin_w * bin_h;
}
return total <= screen->gmemsize_bytes;
}
static void
calc_nbins(struct gmem_key *key, struct fd_gmem_stateobj *gmem)
{
struct fd_screen *screen = gmem->screen;
uint32_t nbins_x = 1, nbins_y = 1;
uint32_t max_width = screen->tile_maxw;
uint32_t max_height = screen->tile_maxh;
if (fd_mesa_debug & FD_DBG_MSGS) {
debug_printf("binning input: cbuf cpp:");
for (unsigned i = 0; i < key->nr_cbufs; i++)
debug_printf(" %d", key->cbuf_cpp[i]);
debug_printf(", zsbuf cpp: %d; %dx%d\n",
key->zsbuf_cpp[0], key->width, key->height);
}
/* first, find a bin size that satisfies the maximum width/
* height restrictions:
*/
while (div_align(key->width, nbins_x, screen->tile_alignw) > max_width) {
nbins_x++;
}
while (div_align(key->height, nbins_y, screen->tile_alignh) > max_height) {
nbins_y++;
}
/* then find a bin width/height that satisfies the memory
* constraints:
*/
while (!layout_gmem(key, nbins_x, nbins_y, gmem)) {
if (nbins_y > nbins_x) {
nbins_x++;
} else {
nbins_y++;
}
}
/* Lets see if we can tweak the layout a bit and come up with
* something better:
*/
if ((((nbins_x - 1) * (nbins_y + 1)) < (nbins_x * nbins_y)) &&
layout_gmem(key, nbins_x - 1, nbins_y + 1, gmem)) {
nbins_x--;
nbins_y++;
} else if ((((nbins_x + 1) * (nbins_y - 1)) < (nbins_x * nbins_y)) &&
layout_gmem(key, nbins_x + 1, nbins_y - 1, gmem)) {
nbins_x++;
nbins_y--;
}
layout_gmem(key, nbins_x, nbins_y, gmem);
}
static struct fd_gmem_stateobj *
gmem_stateobj_init(struct fd_screen *screen, struct gmem_key *key)
{
struct fd_gmem_stateobj *gmem =
rzalloc(screen->gmem_cache.ht, struct fd_gmem_stateobj);
pipe_reference_init(&gmem->reference, 1);
gmem->screen = screen;
gmem->key = key;
list_inithead(&gmem->node);
const unsigned npipes = screen->num_vsc_pipes;
uint32_t i, j, t, xoff, yoff;
uint32_t tpp_x, tpp_y;
int tile_n[npipes];
calc_nbins(key, gmem);
DBG("using %d bins of size %dx%d", gmem->nbins_x * gmem->nbins_y,
gmem->bin_w, gmem->bin_h);
memcpy(gmem->cbuf_cpp, key->cbuf_cpp, sizeof(key->cbuf_cpp));
memcpy(gmem->zsbuf_cpp, key->zsbuf_cpp, sizeof(key->zsbuf_cpp));
gmem->minx = key->minx;
gmem->miny = key->miny;
gmem->width = key->width;
gmem->height = key->height;
if (BIN_DEBUG) {
dump_gmem_state(gmem);
dump_gmem_key(key);
}
/*
* Assign tiles and pipes:
*
* At some point it might be worth playing with different
* strategies and seeing if that makes much impact on
* performance.
*/
#define div_round_up(v, a) (((v) + (a) - 1) / (a))
/* figure out number of tiles per pipe: */
if (is_a20x(screen)) {
/* for a20x we want to minimize the number of "pipes"
* binning data has 3 bits for x/y (8x8) but the edges are used to
* cull off-screen vertices with hw binning, so we have 6x6 pipes
*/
tpp_x = 6;
tpp_y = 6;
} else {
tpp_x = tpp_y = 1;
while (div_round_up(gmem->nbins_y, tpp_y) > npipes)
tpp_y += 2;
while ((div_round_up(gmem->nbins_y, tpp_y) *
div_round_up(gmem->nbins_x, tpp_x)) > npipes)
tpp_x += 1;
}
#ifdef DEBUG
tpp_x = env_var_as_unsigned("TPP_X", tpp_x);
tpp_y = env_var_as_unsigned("TPP_Y", tpp_x);
#endif
gmem->maxpw = tpp_x;
gmem->maxph = tpp_y;
/* configure pipes: */
xoff = yoff = 0;
for (i = 0; i < npipes; i++) {
struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
if (xoff >= gmem->nbins_x) {
xoff = 0;
yoff += tpp_y;
}
if (yoff >= gmem->nbins_y) {
break;
}
pipe->x = xoff;
pipe->y = yoff;
pipe->w = MIN2(tpp_x, gmem->nbins_x - xoff);
pipe->h = MIN2(tpp_y, gmem->nbins_y - yoff);
xoff += tpp_x;
}
/* number of pipes to use for a20x */
gmem->num_vsc_pipes = MAX2(1, i);
for (; i < npipes; i++) {
struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
pipe->x = pipe->y = pipe->w = pipe->h = 0;
}
if (BIN_DEBUG) {
printf("%dx%d ... tpp=%dx%d\n", gmem->nbins_x, gmem->nbins_y, tpp_x, tpp_y);
for (i = 0; i < ARRAY_SIZE(gmem->vsc_pipe); i++) {
struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
printf("pipe[%d]: %ux%u @ %u,%u\n", i,
pipe->w, pipe->h, pipe->x, pipe->y);
}
}
/* configure tiles: */
t = 0;
yoff = key->miny;
memset(tile_n, 0, sizeof(tile_n));
for (i = 0; i < gmem->nbins_y; i++) {
int bw, bh;
xoff = key->minx;
/* clip bin height: */
bh = MIN2(gmem->bin_h, key->miny + key->height - yoff);
assert(bh > 0);
for (j = 0; j < gmem->nbins_x; j++) {
struct fd_tile *tile = &gmem->tile[t];
uint32_t p;
assert(t < ARRAY_SIZE(gmem->tile));
/* pipe number: */
p = ((i / tpp_y) * div_round_up(gmem->nbins_x, tpp_x)) + (j / tpp_x);
assert(p < gmem->num_vsc_pipes);
/* clip bin width: */
bw = MIN2(gmem->bin_w, key->minx + key->width - xoff);
assert(bw > 0);
tile->n = !is_a20x(screen) ? tile_n[p]++ :
((i % tpp_y + 1) << 3 | (j % tpp_x + 1));
tile->p = p;
tile->bin_w = bw;
tile->bin_h = bh;
tile->xoff = xoff;
tile->yoff = yoff;
if (BIN_DEBUG) {
printf("tile[%d]: p=%u, bin=%ux%u+%u+%u\n", t,
p, bw, bh, xoff, yoff);
}
t++;
xoff += bw;
}
yoff += bh;
}
if (BIN_DEBUG) {
t = 0;
for (i = 0; i < gmem->nbins_y; i++) {
for (j = 0; j < gmem->nbins_x; j++) {
struct fd_tile *tile = &gmem->tile[t++];
printf("|p:%u n:%u|", tile->p, tile->n);
}
printf("\n");
}
}
return gmem;
}
void
__fd_gmem_destroy(struct fd_gmem_stateobj *gmem)
{
struct fd_gmem_cache *cache = &gmem->screen->gmem_cache;
fd_screen_assert_locked(gmem->screen);
_mesa_hash_table_remove_key(cache->ht, gmem->key);
list_del(&gmem->node);
ralloc_free(gmem->key);
ralloc_free(gmem);
}
static struct gmem_key *
gmem_key_init(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
{
struct fd_screen *screen = batch->ctx->screen;
struct pipe_framebuffer_state *pfb = &batch->framebuffer;
bool has_zs = pfb->zsbuf && !!(batch->gmem_reason & (FD_GMEM_DEPTH_ENABLED |
FD_GMEM_STENCIL_ENABLED | FD_GMEM_CLEARS_DEPTH_STENCIL));
struct gmem_key *key = rzalloc(screen->gmem_cache.ht, struct gmem_key);
if (has_zs || assume_zs) {
struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture);
key->zsbuf_cpp[0] = rsc->layout.cpp;
if (rsc->stencil)
key->zsbuf_cpp[1] = rsc->stencil->layout.cpp;
} else {
/* we might have a zsbuf, but it isn't used */
batch->restore &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
batch->resolve &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
}
key->nr_cbufs = pfb->nr_cbufs;
for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
if (pfb->cbufs[i])
key->cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format);
else
key->cbuf_cpp[i] = 4;
/* if MSAA, color buffers are super-sampled in GMEM: */
key->cbuf_cpp[i] *= pfb->samples;
}
/* NOTE: on a6xx, the max-scissor-rect is handled in fd6_gmem, and
* we just rely on CP_COND_EXEC to skip bins with no geometry.
*/
if (no_scis_opt || is_a6xx(screen)) {
key->minx = 0;
key->miny = 0;
key->width = pfb->width;
key->height = pfb->height;
} else {
struct pipe_scissor_state *scissor = &batch->max_scissor;
if (fd_mesa_debug & FD_DBG_NOSCIS) {
scissor->minx = 0;
scissor->miny = 0;
scissor->maxx = pfb->width;
scissor->maxy = pfb->height;
}
/* round down to multiple of alignment: */
key->minx = scissor->minx & ~(screen->gmem_alignw - 1);
key->miny = scissor->miny & ~(screen->gmem_alignh - 1);
key->width = scissor->maxx - key->minx;
key->height = scissor->maxy - key->miny;
}
if (is_a20x(screen) && batch->cleared) {
/* under normal circumstances the requirement would be 4K
* but the fast clear path requires an alignment of 32K
*/
key->gmem_page_align = 8;
} else if (is_a6xx(screen)) {
key->gmem_page_align = is_a650(screen) ? 3 : 1;
} else {
// TODO re-check this across gens.. maybe it should only
// be a single page in some cases:
key->gmem_page_align = 4;
}
return key;
}
static struct fd_gmem_stateobj *
lookup_gmem_state(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
{
struct fd_screen *screen = batch->ctx->screen;
struct fd_gmem_cache *cache = &screen->gmem_cache;
struct fd_gmem_stateobj *gmem = NULL;
struct gmem_key *key = gmem_key_init(batch, assume_zs, no_scis_opt);
uint32_t hash = gmem_key_hash(key);
fd_screen_lock(screen);
struct hash_entry *entry =
_mesa_hash_table_search_pre_hashed(cache->ht, hash, key);
if (entry) {
ralloc_free(key);
goto found;
}
/* limit the # of cached gmem states, discarding the least
* recently used state if needed:
*/
if (cache->ht->entries >= 20) {
struct fd_gmem_stateobj *last =
list_last_entry(&cache->lru, struct fd_gmem_stateobj, node);
fd_gmem_reference(&last, NULL);
}
entry = _mesa_hash_table_insert_pre_hashed(cache->ht,
hash, key, gmem_stateobj_init(screen, key));
found:
fd_gmem_reference(&gmem, entry->data);
/* Move to the head of the LRU: */
list_delinit(&gmem->node);
list_add(&gmem->node, &cache->lru);
fd_screen_unlock(screen);
return gmem;
}
/*
* GMEM render pass
*/
static void
render_tiles(struct fd_batch *batch, struct fd_gmem_stateobj *gmem)
{
struct fd_context *ctx = batch->ctx;
int i;
mtx_lock(&ctx->gmem_lock);
ctx->emit_tile_init(batch);
if (batch->restore)
ctx->stats.batch_restore++;
for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) {
struct fd_tile *tile = &gmem->tile[i];
fd_log(batch, "bin_h=%d, yoff=%d, bin_w=%d, xoff=%d",
tile->bin_h, tile->yoff, tile->bin_w, tile->xoff);
ctx->emit_tile_prep(batch, tile);
if (batch->restore) {
ctx->emit_tile_mem2gmem(batch, tile);
}
ctx->emit_tile_renderprep(batch, tile);
if (ctx->query_prepare_tile)
ctx->query_prepare_tile(batch, i, batch->gmem);
/* emit IB to drawcmds: */
fd_log(batch, "TILE[%d]: START DRAW IB", i);
if (ctx->emit_tile) {
ctx->emit_tile(batch, tile);
} else {
ctx->screen->emit_ib(batch->gmem, batch->draw);
}
fd_log(batch, "TILE[%d]: END DRAW IB", i);
fd_reset_wfi(batch);
/* emit gmem2mem to transfer tile back to system memory: */
ctx->emit_tile_gmem2mem(batch, tile);
}
if (ctx->emit_tile_fini)
ctx->emit_tile_fini(batch);
mtx_unlock(&ctx->gmem_lock);
}
static void
render_sysmem(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
ctx->emit_sysmem_prep(batch);
if (ctx->query_prepare_tile)
ctx->query_prepare_tile(batch, 0, batch->gmem);
/* emit IB to drawcmds: */
fd_log(batch, "SYSMEM: START DRAW IB");
ctx->screen->emit_ib(batch->gmem, batch->draw);
fd_log(batch, "SYSMEM: END DRAW IB");
fd_reset_wfi(batch);
if (ctx->emit_sysmem_fini)
ctx->emit_sysmem_fini(batch);
}
static void
flush_ring(struct fd_batch *batch)
{
uint32_t timestamp;
int out_fence_fd = -1;
if (unlikely(fd_mesa_debug & FD_DBG_NOHW))
return;
fd_submit_flush(batch->submit, batch->in_fence_fd,
batch->needs_out_fence_fd ? &out_fence_fd : NULL,
&timestamp);
fd_fence_populate(batch->fence, timestamp, out_fence_fd);
fd_log_flush(batch);
}
void
fd_gmem_render_tiles(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
struct pipe_framebuffer_state *pfb = &batch->framebuffer;
bool sysmem = false;
if (ctx->emit_sysmem_prep && !batch->nondraw) {
if (batch->cleared || batch->gmem_reason ||
((batch->num_draws > 5) && !batch->blit) ||
(pfb->samples > 1)) {
fd_log(batch, "GMEM: cleared=%x, gmem_reason=%x, num_draws=%u, samples=%u",
batch->cleared, batch->gmem_reason, batch->num_draws,
pfb->samples);
} else if (!(fd_mesa_debug & FD_DBG_NOBYPASS)) {
sysmem = true;
}
/* For ARB_framebuffer_no_attachments: */
if ((pfb->nr_cbufs == 0) && !pfb->zsbuf) {
sysmem = true;
}
}
if (fd_mesa_debug & FD_DBG_NOGMEM)
sysmem = true;
/* Layered rendering always needs bypass. */
for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
struct pipe_surface *psurf = pfb->cbufs[i];
if (!psurf)
continue;
if (psurf->u.tex.first_layer < psurf->u.tex.last_layer)
sysmem = true;
}
/* Tessellation doesn't seem to support tiled rendering so fall back to
* bypass.
*/
if (batch->tessellation) {
debug_assert(ctx->emit_sysmem_prep);
sysmem = true;
}
fd_reset_wfi(batch);
ctx->stats.batch_total++;
if (unlikely(fd_mesa_debug & FD_DBG_LOG) && !batch->nondraw) {
fd_log_stream(batch, stream, util_dump_framebuffer_state(stream, pfb));
for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
fd_log_stream(batch, stream, util_dump_surface(stream, pfb->cbufs[i]));
}
fd_log_stream(batch, stream, util_dump_surface(stream, pfb->zsbuf));
}
if (batch->nondraw) {
DBG("%p: rendering non-draw", batch);
render_sysmem(batch);
ctx->stats.batch_nondraw++;
} else if (sysmem) {
fd_log(batch, "%p: rendering sysmem %ux%u (%s/%s), num_draws=%u",
batch, pfb->width, pfb->height,
util_format_short_name(pipe_surface_format(pfb->cbufs[0])),
util_format_short_name(pipe_surface_format(pfb->zsbuf)),
batch->num_draws);
if (ctx->query_prepare)
ctx->query_prepare(batch, 1);
render_sysmem(batch);
ctx->stats.batch_sysmem++;
} else {
struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, false, false);
batch->gmem_state = gmem;
fd_log(batch, "%p: rendering %dx%d tiles %ux%u (%s/%s)",
batch, pfb->width, pfb->height, gmem->nbins_x, gmem->nbins_y,
util_format_short_name(pipe_surface_format(pfb->cbufs[0])),
util_format_short_name(pipe_surface_format(pfb->zsbuf)));
if (ctx->query_prepare)
ctx->query_prepare(batch, gmem->nbins_x * gmem->nbins_y);
render_tiles(batch, gmem);
batch->gmem_state = NULL;
fd_screen_lock(ctx->screen);
fd_gmem_reference(&gmem, NULL);
fd_screen_unlock(ctx->screen);
ctx->stats.batch_gmem++;
}
flush_ring(batch);
}
/* Determine a worst-case estimate (ie. assuming we don't eliminate an
* unused depth/stencil) number of bins per vsc pipe.
*/
unsigned
fd_gmem_estimate_bins_per_pipe(struct fd_batch *batch)
{
struct pipe_framebuffer_state *pfb = &batch->framebuffer;
struct fd_screen *screen = batch->ctx->screen;
struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, !!pfb->zsbuf, true);
unsigned nbins = gmem->maxpw * gmem->maxph;
fd_screen_lock(screen);
fd_gmem_reference(&gmem, NULL);
fd_screen_unlock(screen);
return nbins;
}
/* When deciding whether a tile needs mem2gmem, we need to take into
* account the scissor rect(s) that were cleared. To simplify we only
* consider the last scissor rect for each buffer, since the common
* case would be a single clear.
*/
bool
fd_gmem_needs_restore(struct fd_batch *batch, const struct fd_tile *tile,
uint32_t buffers)
{
if (!(batch->restore & buffers))
return false;
return true;
}
static inline unsigned
max_bitfield_val(unsigned high, unsigned low, unsigned shift)
{
return BITFIELD_MASK(high - low) << shift;
}
void
fd_gmem_init_limits(struct pipe_screen *pscreen)
{
struct fd_screen *screen = fd_screen(pscreen);
switch (screen->gpu_id) {
case 600 ... 699:
screen->gmem_alignw = 16;
screen->gmem_alignh = 4;
screen->tile_alignw = is_a650(screen) ? 96 : 32;
screen->tile_alignh = 32;
/* based on GRAS_BIN_CONTROL: */
screen->tile_maxw = 1024; /* max_bitfield_val(5, 0, 5) */
screen->tile_maxh = max_bitfield_val(14, 8, 4);
screen->num_vsc_pipes = 32;
break;
case 500 ... 599:
screen->gmem_alignw = screen->tile_alignw = 64;
screen->gmem_alignh = screen->tile_alignh = 32;
/* based on VSC_BIN_SIZE: */
screen->tile_maxw = 1024; /* max_bitfield_val(7, 0, 5) */
screen->tile_maxh = max_bitfield_val(16, 9, 5);
screen->num_vsc_pipes = 16;
break;
case 400 ... 499:
screen->gmem_alignw = screen->tile_alignw = 32;
screen->gmem_alignh = screen->tile_alignh = 32;
/* based on VSC_BIN_SIZE: */
screen->tile_maxw = 1024; /* max_bitfield_val(4, 0, 5) */
screen->tile_maxh = max_bitfield_val(9, 5, 5);
screen->num_vsc_pipes = 8;
break;
case 300 ... 399:
screen->gmem_alignw = screen->tile_alignw = 32;
screen->gmem_alignh = screen->tile_alignh = 32;
/* based on VSC_BIN_SIZE: */
screen->tile_maxw = 992; /* max_bitfield_val(4, 0, 5) */
screen->tile_maxh = max_bitfield_val(9, 5, 5);
screen->num_vsc_pipes = 8;
break;
case 200 ... 299:
screen->gmem_alignw = screen->tile_alignw = 32;
screen->gmem_alignh = screen->tile_alignh = 32;
screen->tile_maxw = 512;
screen->tile_maxh = ~0; // TODO
screen->num_vsc_pipes = 8;
break;
default:
unreachable("unsupported GPU");
}
}
void
fd_gmem_screen_init(struct pipe_screen *pscreen)
{
struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
cache->ht = _mesa_hash_table_create(NULL, gmem_key_hash, gmem_key_equals);
list_inithead(&cache->lru);
}
void
fd_gmem_screen_fini(struct pipe_screen *pscreen)
{
struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
_mesa_hash_table_destroy(cache->ht, NULL);
}