blob: 2f0cd34d7006e7b98fb2f1c78ef1c4e0f2fd7f29 [file] [log] [blame]
/*******************************************************************************
* Copyright 2010-2018 Intel Corporation
* All Rights Reserved.
*
* If this software was obtained under the Intel Simplified Software License,
* the following terms apply:
*
* The source code, information and material ("Material") contained herein is
* owned by Intel Corporation or its suppliers or licensors, and title to such
* Material remains with Intel Corporation or its suppliers or licensors. The
* Material contains proprietary information of Intel or its suppliers and
* licensors. The Material is protected by worldwide copyright laws and treaty
* provisions. No part of the Material may be used, copied, reproduced,
* modified, published, uploaded, posted, transmitted, distributed or disclosed
* in any way without Intel's prior express written permission. No license under
* any patent, copyright or other intellectual property rights in the Material
* is granted to or conferred upon you, either expressly, by implication,
* inducement, estoppel or otherwise. Any license under such intellectual
* property rights must be express and approved by Intel in writing.
*
* Unless otherwise agreed by Intel in writing, you may not remove or alter this
* notice or any other notice embedded in Materials by Intel or Intel's
* suppliers or licensors in any way.
*
*
* If this software was obtained under the Apache License, Version 2.0 (the
* "License"), the following terms apply:
*
* You may not use this file except in compliance with the License. You may
* obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/*
//
// Purpose:
// Intel(R) Integrated Performance Primitives. Cryptography Primitives.
// Internal EC over GF(p^m) basic Definitions & Function Prototypes
//
//
*/
#if !defined(_CP_ECGFP_H_)
#define _CP_ECGFP_H_
#include "pcpgfpstuff.h"
#include "pcpgfpxstuff.h"
#include "pcpmask_ct.h"
#define _LEGACY_ECCP_SUPPORT_
/*
// EC over GF(p) Point context
*/
typedef struct _cpGFpECPoint {
IppCtxId idCtx; /* EC Point identifier */
int flags; /* flags: affine */
int elementSize; /* size of each coordinate */
BNU_CHUNK_T* pData; /* coordinatex X, Y, Z */
} cpGFPECPoint;
/*
// Contetx Access Macros
*/
#define ECP_POINT_ID(ctx) ((ctx)->idCtx)
#define ECP_POINT_FLAGS(ctx) ((ctx)->flags)
#define ECP_POINT_FELEN(ctx) ((ctx)->elementSize)
#define ECP_POINT_DATA(ctx) ((ctx)->pData)
#define ECP_POINT_X(ctx) ((ctx)->pData)
#define ECP_POINT_Y(ctx) ((ctx)->pData+(ctx)->elementSize)
#define ECP_POINT_Z(ctx) ((ctx)->pData+(ctx)->elementSize*2)
#define ECP_POINT_TEST_ID(ctx) (ECP_POINT_ID((ctx))==idCtxGFPPoint)
/* point flags */
#define ECP_AFFINE_POINT (1)
#define ECP_FINITE_POINT (2)
#define IS_ECP_AFFINE_POINT(ctx) (ECP_POINT_FLAGS((ctx))&ECP_AFFINE_POINT)
#define SET_ECP_AFFINE_POINT(ctx) (ECP_POINT_FLAGS((ctx))|ECP_AFFINE_POINT)
#define SET_ECP_PROJECTIVE_POINT(ctx) (ECP_POINT_FLAGS((ctx))&~ECP_AFFINE_POINT)
#define IS_ECP_FINITE_POINT(ctx) (ECP_POINT_FLAGS((ctx))&ECP_FINITE_POINT)
#define SET_ECP_FINITE_POINT(ctx) (ECP_POINT_FLAGS((ctx))|ECP_FINITE_POINT)
#define SET_ECP_INFINITE_POINT(ctx) (ECP_POINT_FLAGS((ctx))&~ECP_FINITE_POINT)
/*
// define using projective coordinates
*/
#define JACOBIAN (0)
#define HOMOGENEOUS (1)
#define ECP_PROJECTIVE_COORD JACOBIAN
//#define ECP_PROJECTIVE_COORD HOMOGENEOUS
#if (ECP_PROJECTIVE_COORD== JACOBIAN)
#pragma message ("ECP_PROJECTIVE_COORD = JACOBIAN")
#elif (ECP_PROJECTIVE_COORD== HOMOGENEOUS)
#pragma message ("ECP_PROJECTIVE_COORD = HOMOGENEOUS")
#else
#error ECP_PROJECTIVE_COORD should be either JACOBIAN or HOMOGENEOUS type
#endif
/*
// pre-computed Base Point descriptor
*/
typedef void (*selectAP) (BNU_CHUNK_T* pAP, const BNU_CHUNK_T* pAPtbl, int index);
typedef struct _cpPrecompAP {
int w; /* scalar's window bitsize */
selectAP select_affine_point; /* get affine point function */
const BNU_CHUNK_T* pTbl; /* pre-computed table */
} cpPrecompAP;
/* EC over GF(p) context */
typedef struct _cpGFpEC {
IppCtxId idCtx; /* EC identifier */
IppsGFpState* pGF; /* arbitrary GF(p^d)*/
int subgroup; /* set up subgroup */
int elementSize; /* length of EC point */
int orderBitSize; /* base_point order bitsize */
BNU_CHUNK_T* pA; /* EC parameter A */
BNU_CHUNK_T* pB; /* B */
BNU_CHUNK_T* pG; /* base_point */
BNU_CHUNK_T* cofactor; /* cofactor = #E/base_point order */
int parmAspc; /* NIST's, EPIDv2.0 A-parameter specific */
int infinity; /* 0/1 if B !=0/==0 */
const cpPrecompAP* pBaseTbl; /* address of pre-computed [n]G tabble */
gsModEngine* pMontR; /* EC order montgomery engine */
BNU_CHUNK_T* pPool; /* pool of points */
#if defined(_LEGACY_ECCP_SUPPORT_)
BNU_CHUNK_T* pPublic; /* regular public key */
BNU_CHUNK_T* pPublicE; /* ephemeral public key */
BNU_CHUNK_T* pPrivat; /* regular private key */
BNU_CHUNK_T* pPrivatE; /* ephemeral private key */
BNU_CHUNK_T* pBuffer; /* pointer to scaratch buffer (for lagacy ECCP only) */
#endif
} cpGFPEC;
#define ECGFP_ALIGNMENT ((int)(sizeof(void*)))
/* Local definitions */
#define EC_POOL_SIZE (10) /* num of points into the pool */
#define EC_MONT_POOL_SIZE (4) /* num of temp values for modular arithmetic */
#define ECP_ID(pCtx) ((pCtx)->idCtx)
#define ECP_GFP(pCtx) ((pCtx)->pGF)
#define ECP_SUBGROUP(pCtx) ((pCtx)->subgroup)
#define ECP_POINTLEN(pCtx) ((pCtx)->elementSize)
#define ECP_ORDBITSIZE(pCtx) ((pCtx)->orderBitSize)
#define ECP_COFACTOR(pCtx) ((pCtx)->cofactor)
#define ECP_SPECIFIC(pCtx) ((pCtx)->parmAspc)
#define ECP_INFINITY(pCtx) ((pCtx)->infinity)
#define ECP_A(pCtx) ((pCtx)->pA)
#define ECP_B(pCtx) ((pCtx)->pB)
#define ECP_G(pCtx) ((pCtx)->pG)
#define ECP_PREMULBP(pCtx) ((pCtx)->pBaseTbl)
#define ECP_MONT_R(pCtx) ((pCtx)->pMontR)
#define ECP_POOL(pCtx) ((pCtx)->pPool)
#if defined(_LEGACY_ECCP_SUPPORT_)
#define ECP_PUBLIC(pCtx) ((pCtx)->pPublic)
#define ECP_PUBLIC_E(pCtx) ((pCtx)->pPublicE)
#define ECP_PRIVAT(pCtx) ((pCtx)->pPrivat)
#define ECP_PRIVAT_E(pCtx) ((pCtx)->pPrivatE)
#define ECP_SBUFFER(pCtx) ((pCtx)->pBuffer)
#endif
#define ECP_TEST_ID(pCtx) (ECP_ID((pCtx))==idCtxGFPEC)
/* EC curve specific (a-parameter) */
#define ECP_Acom (0) /* commont case */
#define ECP_Ami3 (1) /* a=-3 NIST's and SM2 curve */
#define ECP_Aeq0 (2) /* a=0 EPIDv2.0 curve */
#define ECP_ARB ECP_Acom
#define ECP_STD ECP_Ami3
#define ECP_EPID2 ECP_Aeq0
/* std ec pre-computed tables */
#define gfpec_precom_nistP192r1_fun OWNAPI(gfpec_precom_nistP192r1_fun)
#define gfpec_precom_nistP224r1_fun OWNAPI(gfpec_precom_nistP224r1_fun)
#define gfpec_precom_nistP256r1_fun OWNAPI(gfpec_precom_nistP256r1_fun)
#define gfpec_precom_nistP384r1_fun OWNAPI(gfpec_precom_nistP384r1_fun)
#define gfpec_precom_nistP521r1_fun OWNAPI(gfpec_precom_nistP521r1_fun)
#define gfpec_precom_sm2_fun OWNAPI(gfpec_precom_sm2_fun)
const cpPrecompAP* gfpec_precom_nistP192r1_fun(void);
const cpPrecompAP* gfpec_precom_nistP224r1_fun(void);
const cpPrecompAP* gfpec_precom_nistP256r1_fun(void);
const cpPrecompAP* gfpec_precom_nistP384r1_fun(void);
const cpPrecompAP* gfpec_precom_nistP521r1_fun(void);
const cpPrecompAP* gfpec_precom_sm2_fun(void);
/*
// get/release n points from/to the pool
*/
__INLINE BNU_CHUNK_T* cpEcGFpGetPool(int n, IppsGFpECState* pEC)
{
BNU_CHUNK_T* pPool = ECP_POOL(pEC);
ECP_POOL(pEC) += n*GFP_FELEN(GFP_PMA(ECP_GFP(pEC)))*3;
return pPool;
}
__INLINE void cpEcGFpReleasePool(int n, IppsGFpECState* pEC)
{
ECP_POOL(pEC) -= n*GFP_FELEN(GFP_PMA(ECP_GFP(pEC)))*3;
}
__INLINE IppsGFpECPoint* cpEcGFpInitPoint(IppsGFpECPoint* pPoint, BNU_CHUNK_T* pData, int flags, const IppsGFpECState* pEC)
{
ECP_POINT_ID(pPoint) = idCtxGFPPoint;
ECP_POINT_FLAGS(pPoint) = flags;
ECP_POINT_FELEN(pPoint) = GFP_FELEN(GFP_PMA(ECP_GFP(pEC)));
ECP_POINT_DATA(pPoint) = pData;
return pPoint;
}
/* copy one point into another */
__INLINE IppsGFpECPoint* gfec_CopyPoint(IppsGFpECPoint* pPointR, const IppsGFpECPoint* pPointA, int elemLen)
{
cpGFpElementCopy(ECP_POINT_DATA(pPointR), ECP_POINT_DATA(pPointA), 3*elemLen);
ECP_POINT_FLAGS(pPointR) = ECP_POINT_FLAGS(pPointA);
return pPointR;
}
__INLINE IppsGFpECPoint* gfec_SetPointAtInfinity(IppsGFpECPoint* pPoint)
{
int elemLen = ECP_POINT_FELEN(pPoint);
cpGFpElementPadd(ECP_POINT_X(pPoint), elemLen, 0);
cpGFpElementPadd(ECP_POINT_Y(pPoint), elemLen, 0);
cpGFpElementPadd(ECP_POINT_Z(pPoint), elemLen, 0);
ECP_POINT_FLAGS(pPoint) = 0;
return pPoint;
}
/*
// test infinity:
// IsProjectivePointAtInfinity
*/
__INLINE int gfec_IsPointAtInfinity(const IppsGFpECPoint* pPoint)
{
return GFP_IS_ZERO( ECP_POINT_Z(pPoint), ECP_POINT_FELEN(pPoint));
}
/* signed encode */
__INLINE void booth_recode(Ipp8u* sign, Ipp8u* digit, Ipp8u in, int w)
{
Ipp8u s = (Ipp8u)(~((in >> w) - 1));
int d = (1 << (w+1)) - in - 1;
d = (d & s) | (in & ~s);
d = (d >> 1) + (d & 1);
*sign = s & 1;
*digit = (Ipp8u)d;
}
#define gfec_point_add OWNAPI(gfec_point_add)
void gfec_point_add (BNU_CHUNK_T* pRdata,
const BNU_CHUNK_T* pPdata,
const BNU_CHUNK_T* pQdata, IppsGFpECState* pEC);
#define gfec_affine_point_add OWNAPI(gfec_affine_point_add)
void gfec_affine_point_add(BNU_CHUNK_T* pRdata,
const BNU_CHUNK_T* pPdata,
const BNU_CHUNK_T* pAdata, IppsGFpECState* pEC);
#define gfec_point_double OWNAPI(gfec_point_double)
void gfec_point_double (BNU_CHUNK_T* pRdata,
const BNU_CHUNK_T* pPdata, IppsGFpECState* pEC);
#define gfec_point_mul OWNAPI(gfec_point_mul)
void gfec_point_mul (BNU_CHUNK_T* pRdata,
const BNU_CHUNK_T* pPdata, const Ipp8u* pScalar8, int scalarBitSize, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
#define gfec_point_prod OWNAPI(gfec_point_prod)
void gfec_point_prod (BNU_CHUNK_T* pointR,
const BNU_CHUNK_T* pointA, const Ipp8u* pScalarA,
const BNU_CHUNK_T* pointB, const Ipp8u* pScalarB, int scalarBitSize, IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
#define gfec_base_point_mul OWNAPI(gfec_base_point_mul)
void gfec_base_point_mul (BNU_CHUNK_T* pRdata, const Ipp8u* pScalarB, int scalarBitSize, IppsGFpECState* pEC);
#define setupTable OWNAPI(setupTable)
void setupTable (BNU_CHUNK_T* pTbl,
const BNU_CHUNK_T* pPdata, IppsGFpECState* pEC);
/* size of context */
#define cpGFpECGetSize OWNAPI(cpGFpECGetSize)
int cpGFpECGetSize(int deg, int basicElmBitSize);
/* point operations */
#define gfec_GetPoint OWNAPI(gfec_GetPoint)
int gfec_GetPoint(BNU_CHUNK_T* pX, BNU_CHUNK_T* pY, const IppsGFpECPoint* pPoint, IppsGFpECState* pEC);
#define gfec_SetPoint OWNAPI(gfec_SetPoint)
int gfec_SetPoint(BNU_CHUNK_T* pP, const BNU_CHUNK_T* pX, const BNU_CHUNK_T* pY, IppsGFpECState* pEC);
#define gfec_MakePoint OWNAPI(gfec_MakePoint)
int gfec_MakePoint(IppsGFpECPoint* pPoint, const BNU_CHUNK_T* pElm, IppsGFpECState* pEC);
#define gfec_ComparePoint OWNAPI(gfec_ComparePoint)
int gfec_ComparePoint(const IppsGFpECPoint* pP, const IppsGFpECPoint* pQ, IppsGFpECState* pEC);
#define gfec_IsPointOnCurve OWNAPI(gfec_IsPointOnCurve)
int gfec_IsPointOnCurve(const IppsGFpECPoint* pP, IppsGFpECState* pEC);
__INLINE IppsGFpECPoint* gfec_DblPoint(IppsGFpECPoint* pR,
const IppsGFpECPoint* pP, IppsGFpECState* pEC)
{
gfec_point_double(ECP_POINT_X(pR), ECP_POINT_X(pP), pEC);
ECP_POINT_FLAGS(pR) = gfec_IsPointAtInfinity(pR)? 0 : ECP_FINITE_POINT;
return pR;
}
__INLINE IppsGFpECPoint* gfec_AddPoint(IppsGFpECPoint* pR,
const IppsGFpECPoint* pP, const IppsGFpECPoint* pQ,
IppsGFpECState* pEC)
{
gfec_point_add(ECP_POINT_X(pR), ECP_POINT_X(pP), ECP_POINT_X(pQ), pEC);
ECP_POINT_FLAGS(pR) = gfec_IsPointAtInfinity(pR)? 0 : ECP_FINITE_POINT;
return pR;
}
#define gfec_NegPoint OWNAPI(gfec_NegPoint)
IppsGFpECPoint* gfec_NegPoint(IppsGFpECPoint* pR,
const IppsGFpECPoint* pP, IppsGFpECState* pEC);
#define gfec_MulPoint OWNAPI(gfec_MulPoint)
IppsGFpECPoint* gfec_MulPoint(IppsGFpECPoint* pR,
const IppsGFpECPoint* pP, const BNU_CHUNK_T* pScalar, int scalarLen,
IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
#define gfec_MulBasePoint OWNAPI(gfec_MulBasePoint)
IppsGFpECPoint* gfec_MulBasePoint(IppsGFpECPoint* pR,
const BNU_CHUNK_T* pScalar, int scalarLen,
IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
//#define gfec_PointProduct OWNAPI(gfec_PointProduct)
//IppsGFpECPoint* gfec_PointProduct(IppsGFpECPoint* pR,
// const IppsGFpECPoint* pP, const BNU_CHUNK_T* pScalarP, int scalarPlen,
// const IppsGFpECPoint* pQ, const BNU_CHUNK_T* pScalarQ, int scalarQlen,
// IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
#define gfec_BasePointProduct OWNAPI(gfec_BasePointProduct)
IppsGFpECPoint* gfec_BasePointProduct(IppsGFpECPoint* pR,
const BNU_CHUNK_T* pScalarG, int scalarGlen,
const IppsGFpECPoint* pP, const BNU_CHUNK_T* pScalarP, int scalarPlen,
IppsGFpECState* pEC, Ipp8u* pScratchBuffer);
#define p192r1_select_ap_w7 OWNAPI(p192r1_select_ap_w7)
void p192r1_select_ap_w7(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
#define p224r1_select_ap_w7 OWNAPI(p224r1_select_ap_w7)
void p224r1_select_ap_w7(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
#define p256r1_select_ap_w7 OWNAPI(p256r1_select_ap_w7)
void p256r1_select_ap_w7(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
#define p384r1_select_ap_w5 OWNAPI(p384r1_select_ap_w5)
void p384r1_select_ap_w5(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
#define p521r1_select_ap_w5 OWNAPI(p521r1_select_ap_w5)
void p521r1_select_ap_w5(BNU_CHUNK_T* pAffinePoint, const BNU_CHUNK_T* pTable, int index);
#endif /* _CP_ECGFP_H_ */