blob: f27cb75d515e77af2d19283bdfc20d6e45e33ba9 [file] [log] [blame]
//
// Copyright (c) 2002-2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/BuiltInFunctionEmulator.h"
#include "compiler/DetectRecursion.h"
#include "compiler/ForLoopUnroll.h"
#include "compiler/Initialize.h"
#include "compiler/MapLongVariableNames.h"
#include "compiler/ParseHelper.h"
#include "compiler/ShHandle.h"
#include "compiler/ValidateLimitations.h"
namespace {
bool InitializeSymbolTable(
const TBuiltInStrings& builtInStrings,
ShShaderType type, ShShaderSpec spec, const ShBuiltInResources& resources,
TInfoSink& infoSink, TSymbolTable& symbolTable)
{
TIntermediate intermediate(infoSink);
TExtensionBehavior extBehavior;
InitExtensionBehavior(resources, extBehavior);
// The builtins deliberately don't specify precisions for the function
// arguments and return types. For that reason we don't try to check them.
TParseContext parseContext(symbolTable, extBehavior, intermediate, type, spec, 0, false, NULL, infoSink);
GlobalParseContext = &parseContext;
assert(symbolTable.isEmpty());
//
// Parse the built-ins. This should only happen once per
// language symbol table.
//
// Push the symbol table to give it an initial scope. This
// push should not have a corresponding pop, so that built-ins
// are preserved, and the test for an empty table fails.
//
symbolTable.push();
for (TBuiltInStrings::const_iterator i = builtInStrings.begin(); i != builtInStrings.end(); ++i)
{
const char* builtInShaders = i->c_str();
int builtInLengths = static_cast<int>(i->size());
if (builtInLengths <= 0)
continue;
if (PaParseStrings(1, &builtInShaders, &builtInLengths, &parseContext) != 0)
{
infoSink.info.message(EPrefixInternalError, "Unable to parse built-ins");
return false;
}
}
IdentifyBuiltIns(type, spec, resources, symbolTable);
return true;
}
class TScopedPoolAllocator {
public:
TScopedPoolAllocator(TPoolAllocator* allocator, bool pushPop)
: mAllocator(allocator), mPushPopAllocator(pushPop) {
if (mPushPopAllocator) mAllocator->push();
SetGlobalPoolAllocator(mAllocator);
}
~TScopedPoolAllocator() {
SetGlobalPoolAllocator(NULL);
if (mPushPopAllocator) mAllocator->pop();
}
private:
TPoolAllocator* mAllocator;
bool mPushPopAllocator;
};
} // namespace
TShHandleBase::TShHandleBase() {
allocator.push();
SetGlobalPoolAllocator(&allocator);
}
TShHandleBase::~TShHandleBase() {
SetGlobalPoolAllocator(NULL);
allocator.popAll();
}
TCompiler::TCompiler(ShShaderType type, ShShaderSpec spec)
: shaderType(type),
shaderSpec(spec),
builtInFunctionEmulator(type)
{
longNameMap = LongNameMap::GetInstance();
}
TCompiler::~TCompiler()
{
ASSERT(longNameMap);
longNameMap->Release();
}
bool TCompiler::Init(const ShBuiltInResources& resources)
{
TScopedPoolAllocator scopedAlloc(&allocator, false);
// Generate built-in symbol table.
if (!InitBuiltInSymbolTable(resources))
return false;
InitExtensionBehavior(resources, extensionBehavior);
return true;
}
bool TCompiler::compile(const char* const shaderStrings[],
const int numStrings,
int compileOptions)
{
TScopedPoolAllocator scopedAlloc(&allocator, true);
clearResults();
if (numStrings == 0)
return true;
// If compiling for WebGL, validate loop and indexing as well.
if (shaderSpec == SH_WEBGL_SPEC)
compileOptions |= SH_VALIDATE_LOOP_INDEXING;
// First string is path of source file if flag is set. The actual source follows.
const char* sourcePath = NULL;
int firstSource = 0;
if (compileOptions & SH_SOURCE_PATH)
{
sourcePath = shaderStrings[0];
++firstSource;
}
TIntermediate intermediate(infoSink);
TParseContext parseContext(symbolTable, extensionBehavior, intermediate,
shaderType, shaderSpec, compileOptions, true,
sourcePath, infoSink);
GlobalParseContext = &parseContext;
// We preserve symbols at the built-in level from compile-to-compile.
// Start pushing the user-defined symbols at global level.
symbolTable.push();
if (!symbolTable.atGlobalLevel())
infoSink.info.message(EPrefixInternalError, "Wrong symbol table level");
// Parse shader.
bool success =
(PaParseStrings(numStrings - firstSource, &shaderStrings[firstSource], NULL, &parseContext) == 0) &&
(parseContext.treeRoot != NULL);
if (success) {
TIntermNode* root = parseContext.treeRoot;
success = intermediate.postProcess(root);
if (success)
success = detectRecursion(root);
if (success && (compileOptions & SH_VALIDATE_LOOP_INDEXING))
success = validateLimitations(root);
// Unroll for-loop markup needs to happen after validateLimitations pass.
if (success && (compileOptions & SH_UNROLL_FOR_LOOP_WITH_INTEGER_INDEX))
ForLoopUnroll::MarkForLoopsWithIntegerIndicesForUnrolling(root);
// Built-in function emulation needs to happen after validateLimitations pass.
if (success && (compileOptions & SH_EMULATE_BUILT_IN_FUNCTIONS))
builtInFunctionEmulator.MarkBuiltInFunctionsForEmulation(root);
// Call mapLongVariableNames() before collectAttribsUniforms() so in
// collectAttribsUniforms() we already have the mapped symbol names and
// we could composite mapped and original variable names.
if (success && (compileOptions & SH_MAP_LONG_VARIABLE_NAMES))
mapLongVariableNames(root);
if (success && (compileOptions & SH_ATTRIBUTES_UNIFORMS))
collectAttribsUniforms(root);
if (success && (compileOptions & SH_INTERMEDIATE_TREE))
intermediate.outputTree(root);
if (success && (compileOptions & SH_OBJECT_CODE))
translate(root);
}
// Cleanup memory.
intermediate.remove(parseContext.treeRoot);
// Ensure symbol table is returned to the built-in level,
// throwing away all but the built-ins.
while (!symbolTable.atBuiltInLevel())
symbolTable.pop();
return success;
}
bool TCompiler::InitBuiltInSymbolTable(const ShBuiltInResources& resources)
{
TBuiltIns builtIns;
builtIns.initialize(shaderType, shaderSpec, resources);
return InitializeSymbolTable(builtIns.getBuiltInStrings(),
shaderType, shaderSpec, resources, infoSink, symbolTable);
}
void TCompiler::clearResults()
{
infoSink.info.erase();
infoSink.obj.erase();
infoSink.debug.erase();
attribs.clear();
uniforms.clear();
builtInFunctionEmulator.Cleanup();
}
bool TCompiler::detectRecursion(TIntermNode* root)
{
DetectRecursion detect;
root->traverse(&detect);
switch (detect.detectRecursion()) {
case DetectRecursion::kErrorNone:
return true;
case DetectRecursion::kErrorMissingMain:
infoSink.info.message(EPrefixError, "Missing main()");
return false;
case DetectRecursion::kErrorRecursion:
infoSink.info.message(EPrefixError, "Function recursion detected");
return false;
default:
UNREACHABLE();
return false;
}
}
bool TCompiler::validateLimitations(TIntermNode* root) {
ValidateLimitations validate(shaderType, infoSink.info);
root->traverse(&validate);
return validate.numErrors() == 0;
}
void TCompiler::collectAttribsUniforms(TIntermNode* root)
{
CollectAttribsUniforms collect(attribs, uniforms);
root->traverse(&collect);
}
void TCompiler::mapLongVariableNames(TIntermNode* root)
{
ASSERT(longNameMap);
MapLongVariableNames map(longNameMap);
root->traverse(&map);
}
int TCompiler::getMappedNameMaxLength() const
{
return MAX_SHORTENED_IDENTIFIER_SIZE + 1;
}
const TExtensionBehavior& TCompiler::getExtensionBehavior() const
{
return extensionBehavior;
}
const BuiltInFunctionEmulator& TCompiler::getBuiltInFunctionEmulator() const
{
return builtInFunctionEmulator;
}