blob: 41861cb97b7055ef8feac1e42898a4d11abcad9e [file] [log] [blame]
// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/decoder/intermediate_astc_block.h"
#include "src/decoder/test/image_utils.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <string>
namespace astc_codec {
namespace {
using ::testing::ElementsAre;
using ::testing::Eq;
using ::testing::HasSubstr;
using ::testing::SizeIs;
using ::testing::TestWithParam;
using ::testing::ValuesIn;
// Test to make sure that unpacking an error block returns false.
TEST(IntermediateASTCBlockTest, TestUnpackError) {
const PhysicalASTCBlock kErrorBlock(base::UInt128(0));
EXPECT_FALSE(UnpackVoidExtent(kErrorBlock));
EXPECT_FALSE(UnpackIntermediateBlock(kErrorBlock));
}
// Test to make sure that if we don't populate our weight data in the
// intermediate block than the resulting color range should error due to the
// mismatch.
TEST(IntermediateASTCBlockTest, TestEndpointRangeErrorOnNotSettingWeights) {
IntermediateBlockData data;
data.weight_range = 15;
for (auto& ep : data.endpoints) {
ep.mode = ColorEndpointMode::kLDRRGBDirect;
}
data.weight_grid_dim_x = 6;
data.weight_grid_dim_y = 6;
EXPECT_EQ(-1, EndpointRangeForBlock(data));
base::UInt128 dummy;
auto err_str = Pack(data, &dummy);
EXPECT_TRUE(err_str.hasValue());
EXPECT_THAT(err_str.value(), HasSubstr("Incorrect number of weights"));
}
// Test to make sure that if we run out of bits, then we should say so.
TEST(IntermediateASTCBlockTest, TestEndpointRangeErrorOnNotEnoughBits) {
IntermediateBlockData data;
data.weight_range = 1;
data.partition_id = 0;
data.endpoints.resize(3);
for (auto& ep : data.endpoints) {
ep.mode = ColorEndpointMode::kLDRRGBDirect;
}
data.weight_grid_dim_x = 8;
data.weight_grid_dim_y = 8;
EXPECT_EQ(-2, EndpointRangeForBlock(data));
// Resize the weights to get past the error that they do not match the grid
// dimensions.
data.weights.resize(64);
base::UInt128 dummy;
auto err_str = Pack(data, &dummy);
EXPECT_TRUE(err_str.hasValue());
EXPECT_THAT(err_str.value(), HasSubstr("illegal color range"));
}
// Test to make sure that as we increase the number of weights, we decrease the
// allowable range of colors
TEST(IntermediateASTCBlockTest, TestEndpointRangeForBlock) {
IntermediateBlockData data;
data.weight_range = 2;
data.endpoints.resize(2);
data.dual_plane_channel.clear();
for (auto& ep : data.endpoints) {
ep.mode = ColorEndpointMode::kLDRRGBDirect;
}
// Weight params control how many weights are present in a block
struct WeightParams {
int width;
int height;
// We should sort based on number of weights for these params
int NumWeights() const { return width * height; }
bool operator<(const WeightParams& other) const {
return NumWeights() < other.NumWeights();
}
};
std::vector<WeightParams> weight_params;
for (int y = 2; y < 8; ++y) {
for (int x = 2; x < 8; ++x) {
weight_params.emplace_back(WeightParams{x, y});
}
}
// Sort weights from fewest to largest such that the allowable color range
// should be monotonically decreasing
std::sort(weight_params.begin(), weight_params.end());
// Keep track of the largest available color range and measure that it
// decreases as we add more weights to our block
int last_color_range = 255;
for (const auto& params : weight_params) {
data.weight_grid_dim_x = params.width;
data.weight_grid_dim_y = params.height;
const int color_range = EndpointRangeForBlock(data);
EXPECT_LE(color_range, last_color_range);
last_color_range = std::min(color_range, last_color_range);
}
// Make sure that we actually changed it at some point.
EXPECT_LT(last_color_range, 255);
}
// Test to make sure that unpacking an legitimate ASTC block returns the encoded
// values that we expect.
TEST(IntermediateASTCBlockTest, TestUnpackNonVoidExtentBlock) {
PhysicalASTCBlock blk(0x0000000001FE000173ULL);
auto b = UnpackIntermediateBlock(blk);
ASSERT_TRUE(b);
const auto& data = b.value();
EXPECT_EQ(data.weight_grid_dim_x, 6);
EXPECT_EQ(data.weight_grid_dim_y, 5);
EXPECT_EQ(data.weight_range, 7);
EXPECT_FALSE(data.partition_id);
EXPECT_FALSE(data.dual_plane_channel);
ASSERT_EQ(data.weights.size(), 30);
for (auto weight : data.weights) {
EXPECT_EQ(weight, 0);
}
ASSERT_EQ(data.endpoints.size(), 1);
for (const auto& ep_data : data.endpoints) {
EXPECT_EQ(ep_data.mode, ColorEndpointMode::kLDRLumaDirect);
ASSERT_EQ(ep_data.colors.size(), 2);
EXPECT_EQ(ep_data.colors[0], 0);
EXPECT_EQ(ep_data.colors[1], 255);
}
}
// Make sure that we can pack blocks that aren't void extent blocks. (In other
// words, can we actually deal with intermediate ASTC data).
TEST(IntermediateASTCBlockTest, TestPackNonVoidExtentBlock) {
IntermediateBlockData data;
data.weight_grid_dim_x = 6;
data.weight_grid_dim_y = 5;
data.weight_range = 7;
data.partition_id = {};
data.dual_plane_channel = {};
data.weights.resize(30);
for (auto& weight : data.weights) {
weight = 0;
}
data.endpoints.resize(1);
for (auto& ep_data : data.endpoints) {
ep_data.mode = ColorEndpointMode::kLDRLumaDirect;
ep_data.colors.resize(2);
ep_data.colors[0] = 0;
ep_data.colors[1] = 255;
}
base::UInt128 packed;
auto error_str = Pack(data, &packed);
ASSERT_FALSE(error_str) << (error_str ? error_str.value() : std::string(""));
EXPECT_EQ(packed, 0x0000000001FE000173ULL);
}
// Make sure that we can unpack void extent blocks
TEST(IntermediateASTCBlockTest, TestUnpackVoidExtentBlock) {
PhysicalASTCBlock void_extent_block(0xFFFFFFFFFFFFFDFCULL);
auto b = UnpackVoidExtent(void_extent_block);
ASSERT_TRUE(b);
const auto& data = b.value();
EXPECT_EQ(data.r, 0);
EXPECT_EQ(data.g, 0);
EXPECT_EQ(data.b, 0);
EXPECT_EQ(data.a, 0);
for (const auto& coord : data.coords) {
EXPECT_EQ(coord, (1 << 13) - 1);
}
base::UInt128 more_interesting(0xdeadbeefdeadbeefULL, 0xFFF8003FFE000DFCULL);
b = UnpackVoidExtent(PhysicalASTCBlock(more_interesting));
ASSERT_TRUE(b);
const auto& other_data = b.value();
EXPECT_EQ(other_data.r, 0xbeef);
EXPECT_EQ(other_data.g, 0xdead);
EXPECT_EQ(other_data.b, 0xbeef);
EXPECT_EQ(other_data.a, 0xdead);
EXPECT_EQ(other_data.coords[0], 0);
EXPECT_EQ(other_data.coords[1], 8191);
EXPECT_EQ(other_data.coords[2], 0);
EXPECT_EQ(other_data.coords[3], 8191);
}
// Make sure that we can pack void extent blocks and void extent data.
TEST(IntermediateASTCBlockTest, TestPackVoidExtentBlock) {
VoidExtentData data;
data.r = 0;
data.g = 0;
data.b = 0;
data.a = 0;
for (auto& coord : data.coords) {
coord = (1 << 13) - 1;
}
base::UInt128 packed;
auto error_str = Pack(data, &packed);
ASSERT_FALSE(error_str) << (error_str ? error_str.value() : std::string(""));
EXPECT_EQ(packed, 0xFFFFFFFFFFFFFDFCULL);
data.r = 0xbeef;
data.g = 0xdead;
data.b = 0xbeef;
data.a = 0xdead;
data.coords[0] = 0;
data.coords[1] = 8191;
data.coords[2] = 0;
data.coords[3] = 8191;
error_str = Pack(data, &packed);
ASSERT_FALSE(error_str) << (error_str ? error_str.value() : std::string(""));
EXPECT_EQ(packed,
base::UInt128(0xdeadbeefdeadbeefULL, 0xFFF8003FFE000DFCULL));
}
// Make sure that the color endpoint mode is properly repacked. This test case
// was created as a bug during testing.
TEST(IntermediateASTCBlockTest, TestPackUnpackWithSameCEM) {
base::UInt128 orig(0xe8e8eaea20000980ULL, 0x20000200cb73f045ULL);
auto b = UnpackIntermediateBlock(PhysicalASTCBlock(orig));
ASSERT_TRUE(b);
base::UInt128 repacked;
auto err_str = Pack(b.value(), &repacked);
ASSERT_FALSE(err_str) << (err_str ? err_str.value() : std::string(""));
EXPECT_EQ(repacked, orig);
// Test case #2
orig = base::UInt128(0x3300c30700cb01c5ULL, 0x0573907b8c0f6879ULL);
b = UnpackIntermediateBlock(PhysicalASTCBlock(orig));
ASSERT_TRUE(b);
err_str = Pack(b.value(), &repacked);
ASSERT_FALSE(err_str) << (err_str ? err_str.value() : std::string(""));
EXPECT_EQ(repacked, orig);
}
// Test that we can encode/decode a block that uses a very large gap
// between weight and endpoint data.
TEST(IntermediateASTCBlockTest, TestPackingWithLargeGap) {
// We can construct this block by doing the following:
// -- choose a block mode that only gives 24 weight bits
// -- choose the smallest endpoint mode: grayscale direct
// -- make sure there are no partitions
const base::UInt128 orig(0xBEDEAD0000000000ULL, 0x0000000001FE032EULL);
const auto b = UnpackIntermediateBlock(PhysicalASTCBlock(orig));
ASSERT_TRUE(b);
const auto& data = b.value();
EXPECT_EQ(data.weight_grid_dim_x, 2);
EXPECT_EQ(data.weight_grid_dim_y, 3);
EXPECT_EQ(data.weight_range, 15);
EXPECT_FALSE(data.partition_id);
EXPECT_FALSE(data.dual_plane_channel);
ASSERT_EQ(data.endpoints.size(), 1);
EXPECT_EQ(data.endpoints.at(0).mode, ColorEndpointMode::kLDRLumaDirect);
ASSERT_EQ(data.endpoints.at(0).colors.size(), 2);
EXPECT_EQ(data.endpoints.at(0).colors.at(0), 255);
EXPECT_EQ(data.endpoints.at(0).colors.at(1), 0);
// Now encode it again
base::UInt128 repacked;
const auto err_str = Pack(b.value(), &repacked);
EXPECT_EQ(orig, repacked) << (err_str ? err_str.value() : std::string(""));
}
// Take a block that is encoded using direct luma with full byte values and see
// if we properly set the endpoint range.
TEST(IntermediateASTCBlockTest, TestEndpointRange) {
PhysicalASTCBlock blk(0x0000000001FE000173ULL);
EXPECT_TRUE(blk.ColorValuesRange().hasValue());
EXPECT_EQ(blk.ColorValuesRange().valueOr(0), 255);
auto b = UnpackIntermediateBlock(blk);
ASSERT_TRUE(b);
const auto& data = b.value();
ASSERT_THAT(data.endpoints, SizeIs(1));
EXPECT_THAT(data.endpoints[0].mode, Eq(ColorEndpointMode::kLDRLumaDirect));
EXPECT_THAT(data.endpoints[0].colors, ElementsAre(0, 255));
EXPECT_TRUE(data.endpoint_range.hasValue());
EXPECT_EQ(data.endpoint_range.valueOr(0), 255);
}
struct ImageTestParams {
std::string image_name;
int checkered_dim;
};
static void PrintTo(const ImageTestParams& params, std::ostream* os) {
*os << "ImageTestParams(" << params.image_name << ")";
}
class IntermediateASTCBlockTest : public TestWithParam<ImageTestParams> { };
// Test whether or not a real-world ASTC implementation can be unpacked and
// then repacked into the same implementation. In conjunction with the other
// tests, we make sure that we can recreate ASTC blocks that we have previously
// unpacked.
TEST_P(IntermediateASTCBlockTest, TestPackUnpack) {
const auto& params = GetParam();
const int astc_dim = 8;
const int img_dim = params.checkered_dim * astc_dim;
const std::string astc = LoadASTCFile(params.image_name);
// Make sure that unpacking and repacking all of the blocks works...
const int kNumASTCBlocks = (img_dim / astc_dim) * (img_dim / astc_dim);
for (int i = 0; i < kNumASTCBlocks; ++i) {
base::UInt128 block_bits;
memcpy(&block_bits, astc.data() + PhysicalASTCBlock::kSizeInBytes * i,
PhysicalASTCBlock::kSizeInBytes);
const PhysicalASTCBlock block(block_bits);
base::UInt128 repacked;
if (block.IsVoidExtent()) {
auto b = UnpackVoidExtent(block);
ASSERT_TRUE(b);
auto err_str = Pack(b.value(), &repacked);
ASSERT_FALSE(err_str) << (err_str ? err_str.value() : std::string(""));
} else {
auto b = UnpackIntermediateBlock(block);
ASSERT_TRUE(b);
// Check to see that we properly set the endpoint range when we decoded
// the block.
auto& block_data = b.value();
EXPECT_EQ(block_data.endpoint_range, block.ColorValuesRange());
// Reset the endpoint range here to see if we correctly reconstruct it
// below
block_data.endpoint_range = {};
auto err_str = Pack(b.value(), &repacked);
ASSERT_FALSE(err_str) << (err_str ? err_str.value() : std::string(""));
}
// You would expect the following line to be enough:
// EXPECT_EQ(repacked, block.GetBlockBits())
// ... except that the ASTC encoder makes some interesting decisions
// about how to encode the same logical bits. One example is that
// sometimes if all partitions share an endpoint mode, the encoded
// block will not use the shared CEM mode, and rather list each
// partition's mode explicitly. For that reason, we just need to make as
// close of an approximation as possible that we decode to the same
// physical values.
PhysicalASTCBlock pb(repacked);
ASSERT_FALSE(pb.IsIllegalEncoding());
base::UInt128 pb_color_mask =
(base::UInt128(1) << pb.NumColorBits().value()) - 1;
base::UInt128 pb_color_bits =
pb.GetBlockBits() >> pb.ColorStartBit().value();
pb_color_bits &= pb_color_mask;
base::UInt128 b_color_mask =
(base::UInt128(1) << pb.NumColorBits().value()) - 1;
base::UInt128 b_color_bits =
block.GetBlockBits() >> block.ColorStartBit().value();
b_color_bits &= b_color_mask;
EXPECT_EQ(pb_color_mask, b_color_mask);
EXPECT_EQ(pb_color_bits, b_color_bits);
EXPECT_EQ(pb.IsVoidExtent(), block.IsVoidExtent());
EXPECT_EQ(pb.VoidExtentCoords(), block.VoidExtentCoords());
EXPECT_EQ(pb.WeightGridDims(), block.WeightGridDims());
EXPECT_EQ(pb.WeightRange(), block.WeightRange());
EXPECT_EQ(pb.NumWeightBits(), block.NumWeightBits());
EXPECT_EQ(pb.WeightStartBit(), block.WeightStartBit());
EXPECT_EQ(pb.IsDualPlane(), block.IsDualPlane());
EXPECT_EQ(pb.DualPlaneChannel(), block.DualPlaneChannel());
EXPECT_EQ(pb.NumPartitions(), block.NumPartitions());
EXPECT_EQ(pb.PartitionID(), block.PartitionID());
EXPECT_EQ(pb.NumColorValues(), block.NumColorValues());
EXPECT_EQ(pb.ColorValuesRange(), block.ColorValuesRange());
for (int j = 0; j < pb.NumPartitions().valueOr(0); ++j) {
EXPECT_EQ(pb.GetEndpointMode(j), block.GetEndpointMode(j));
}
}
}
std::vector<ImageTestParams> GetImageTestParams() {
return {
// image_name checkered_dim
{ "checkered_4", 4 },
{ "checkered_5", 5 },
{ "checkered_6", 6 },
{ "checkered_7", 7 },
{ "checkered_8", 8 },
{ "checkered_9", 9 },
{ "checkered_10", 10 },
{ "checkered_11", 11 },
{ "checkered_12", 12 },
};
}
INSTANTIATE_TEST_CASE_P(Checkered, IntermediateASTCBlockTest,
ValuesIn(GetImageTestParams()));
} // namespace
} // namespace astc_codec