blob: 103a0ecf9458bd29eb8f7d03e3c191f50c2d2b5a [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.apksigner.core.internal.apk.v2;
import com.android.apksigner.core.internal.util.Pair;
import com.android.apksigner.core.internal.zip.ZipUtils;
import com.android.apksigner.core.util.DataSource;
import com.android.apksigner.core.util.DataSources;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.security.DigestException;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.KeyFactory;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.SignatureException;
import java.security.cert.CertificateEncodingException;
import java.security.cert.X509Certificate;
import java.security.interfaces.ECKey;
import java.security.interfaces.RSAKey;
import java.security.spec.AlgorithmParameterSpec;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.X509EncodedKeySpec;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
/**
* APK Signature Scheme v2 signer.
*
* <p>APK Signature Scheme v2 is a whole-file signature scheme which aims to protect every single
* bit of the APK, as opposed to the JAR Signature Scheme which protects only the names and
* uncompressed contents of ZIP entries.
*
* <p>TODO: Link to APK Signature Scheme v2 documentation once it's available.
*/
public abstract class V2SchemeSigner {
/*
* The two main goals of APK Signature Scheme v2 are:
* 1. Detect any unauthorized modifications to the APK. This is achieved by making the signature
* cover every byte of the APK being signed.
* 2. Enable much faster signature and integrity verification. This is achieved by requiring
* only a minimal amount of APK parsing before the signature is verified, thus completely
* bypassing ZIP entry decompression and by making integrity verification parallelizable by
* employing a hash tree.
*
* The generated signature block is wrapped into an APK Signing Block and inserted into the
* original APK immediately before the start of ZIP Central Directory. This is to ensure that
* JAR and ZIP parsers continue to work on the signed APK. The APK Signing Block is designed for
* extensibility. For example, a future signature scheme could insert its signatures there as
* well. The contract of the APK Signing Block is that all contents outside of the block must be
* protected by signatures inside the block.
*/
private static final int CONTENT_DIGESTED_CHUNK_MAX_SIZE_BYTES = 1024 * 1024;
private static final byte[] APK_SIGNING_BLOCK_MAGIC =
new byte[] {
0x41, 0x50, 0x4b, 0x20, 0x53, 0x69, 0x67, 0x20,
0x42, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x34, 0x32,
};
private static final int APK_SIGNATURE_SCHEME_V2_BLOCK_ID = 0x7109871a;
/**
* Signer configuration.
*/
public static class SignerConfig {
/** Private key. */
public PrivateKey privateKey;
/**
* Certificates, with the first certificate containing the public key corresponding to
* {@link #privateKey}.
*/
public List<X509Certificate> certificates;
/**
* List of signature algorithms with which to sign.
*/
public List<SignatureAlgorithm> signatureAlgorithms;
}
/** Hidden constructor to prevent instantiation. */
private V2SchemeSigner() {}
/**
* Gets the APK Signature Scheme v2 signature algorithms to be used for signing an APK using the
* provided key.
*
* @param minSdkVersion minimum API Level of the platform on which the APK may be installed (see
* AndroidManifest.xml minSdkVersion attribute).
*
* @throws InvalidKeyException if the provided key is not suitable for signing APKs using
* APK Signature Scheme v2
*/
public static List<SignatureAlgorithm> getSuggestedSignatureAlgorithms(
PublicKey signingKey, int minSdkVersion) throws InvalidKeyException {
String keyAlgorithm = signingKey.getAlgorithm();
if ("RSA".equalsIgnoreCase(keyAlgorithm)) {
// Use RSASSA-PKCS1-v1_5 signature scheme instead of RSASSA-PSS to guarantee
// deterministic signatures which make life easier for OTA updates (fewer files
// changed when deterministic signature schemes are used).
// Pick a digest which is no weaker than the key.
int modulusLengthBits = ((RSAKey) signingKey).getModulus().bitLength();
if (modulusLengthBits <= 3072) {
// 3072-bit RSA is roughly 128-bit strong, meaning SHA-256 is a good fit.
return Collections.singletonList(SignatureAlgorithm.RSA_PKCS1_V1_5_WITH_SHA256);
} else {
// Keys longer than 3072 bit need to be paired with a stronger digest to avoid the
// digest being the weak link. SHA-512 is the next strongest supported digest.
return Collections.singletonList(SignatureAlgorithm.RSA_PKCS1_V1_5_WITH_SHA512);
}
} else if ("DSA".equalsIgnoreCase(keyAlgorithm)) {
// DSA is supported only with SHA-256.
return Collections.singletonList(SignatureAlgorithm.DSA_WITH_SHA256);
} else if ("EC".equalsIgnoreCase(keyAlgorithm)) {
// Pick a digest which is no weaker than the key.
int keySizeBits = ((ECKey) signingKey).getParams().getOrder().bitLength();
if (keySizeBits <= 256) {
// 256-bit Elliptic Curve is roughly 128-bit strong, meaning SHA-256 is a good fit.
return Collections.singletonList(SignatureAlgorithm.ECDSA_WITH_SHA256);
} else {
// Keys longer than 256 bit need to be paired with a stronger digest to avoid the
// digest being the weak link. SHA-512 is the next strongest supported digest.
return Collections.singletonList(SignatureAlgorithm.ECDSA_WITH_SHA512);
}
} else {
throw new InvalidKeyException("Unsupported key algorithm: " + keyAlgorithm);
}
}
/**
* Signs the provided APK using APK Signature Scheme v2 and returns the APK Signing Block
* containing the signature.
*
* @param signerConfigs signer configurations, one for each signer At least one signer config
* must be provided.
*
* @throws IOException if an I/O error occurs
* @throws InvalidKeyException if a signing key is not suitable for this signature scheme or
* cannot be used in general
* @throws SignatureException if an error occurs when computing digests of generating
* signatures
*/
public static byte[] generateApkSigningBlock(
DataSource beforeCentralDir,
DataSource centralDir,
DataSource eocd,
List<SignerConfig> signerConfigs)
throws IOException, InvalidKeyException, SignatureException {
if (signerConfigs.isEmpty()) {
throw new IllegalArgumentException(
"No signer configs provided. At least one is required");
}
// Figure out which digest(s) to use for APK contents.
Set<ContentDigestAlgorithm> contentDigestAlgorithms = new HashSet<>(1);
for (SignerConfig signerConfig : signerConfigs) {
for (SignatureAlgorithm signatureAlgorithm : signerConfig.signatureAlgorithms) {
contentDigestAlgorithms.add(signatureAlgorithm.getContentDigestAlgorithm());
}
}
// Ensure that, when digesting, ZIP End of Central Directory record's Central Directory
// offset field is treated as pointing to the offset at which the APK Signing Block will
// start.
long centralDirOffsetForDigesting = beforeCentralDir.size();
ByteBuffer eocdBuf = ByteBuffer.allocate((int) eocd.size());
eocdBuf.order(ByteOrder.LITTLE_ENDIAN);
eocd.copyTo(0, (int) eocd.size(), eocdBuf);
eocdBuf.flip();
ZipUtils.setZipEocdCentralDirectoryOffset(eocdBuf, centralDirOffsetForDigesting);
// Compute digests of APK contents.
Map<ContentDigestAlgorithm, byte[]> contentDigests; // digest algorithm ID -> digest
try {
contentDigests =
computeContentDigests(
contentDigestAlgorithms,
new DataSource[] {
beforeCentralDir,
centralDir,
DataSources.asDataSource(eocdBuf)});
} catch (IOException e) {
throw new IOException("Failed to read APK being signed", e);
} catch (DigestException e) {
throw new SignatureException("Failed to compute digests of APK", e);
}
// Sign the digests and wrap the signatures and signer info into an APK Signing Block.
return generateApkSigningBlock(signerConfigs, contentDigests);
}
private static Map<ContentDigestAlgorithm, byte[]> computeContentDigests(
Set<ContentDigestAlgorithm> digestAlgorithms,
DataSource[] contents) throws IOException, DigestException {
// For each digest algorithm the result is computed as follows:
// 1. Each segment of contents is split into consecutive chunks of 1 MB in size.
// The final chunk will be shorter iff the length of segment is not a multiple of 1 MB.
// No chunks are produced for empty (zero length) segments.
// 2. The digest of each chunk is computed over the concatenation of byte 0xa5, the chunk's
// length in bytes (uint32 little-endian) and the chunk's contents.
// 3. The output digest is computed over the concatenation of the byte 0x5a, the number of
// chunks (uint32 little-endian) and the concatenation of digests of chunks of all
// segments in-order.
long chunkCountLong = 0;
for (DataSource input : contents) {
chunkCountLong +=
getChunkCount(input.size(), CONTENT_DIGESTED_CHUNK_MAX_SIZE_BYTES);
}
if (chunkCountLong > Integer.MAX_VALUE) {
throw new DigestException("Input too long: " + chunkCountLong + " chunks");
}
int chunkCount = (int) chunkCountLong;
ContentDigestAlgorithm[] digestAlgorithmsArray =
digestAlgorithms.toArray(new ContentDigestAlgorithm[digestAlgorithms.size()]);
MessageDigest[] mds = new MessageDigest[digestAlgorithmsArray.length];
byte[][] digestsOfChunks = new byte[digestAlgorithmsArray.length][];
int[] digestOutputSizes = new int[digestAlgorithmsArray.length];
for (int i = 0; i < digestAlgorithmsArray.length; i++) {
ContentDigestAlgorithm digestAlgorithm = digestAlgorithmsArray[i];
int digestOutputSizeBytes = digestAlgorithm.getChunkDigestOutputSizeBytes();
digestOutputSizes[i] = digestOutputSizeBytes;
byte[] concatenationOfChunkCountAndChunkDigests =
new byte[5 + chunkCount * digestOutputSizeBytes];
concatenationOfChunkCountAndChunkDigests[0] = 0x5a;
setUnsignedInt32LittleEndian(
chunkCount, concatenationOfChunkCountAndChunkDigests, 1);
digestsOfChunks[i] = concatenationOfChunkCountAndChunkDigests;
String jcaAlgorithm = digestAlgorithm.getJcaMessageDigestAlgorithm();
try {
mds[i] = MessageDigest.getInstance(jcaAlgorithm);
} catch (NoSuchAlgorithmException e) {
throw new RuntimeException(jcaAlgorithm + " MessageDigest not supported", e);
}
}
MessageDigestSink mdSink = new MessageDigestSink(mds);
byte[] chunkContentPrefix = new byte[5];
chunkContentPrefix[0] = (byte) 0xa5;
int chunkIndex = 0;
// Optimization opportunity: digests of chunks can be computed in parallel. However,
// determining the number of computations to be performed in parallel is non-trivial. This
// depends on a wide range of factors, such as data source type (e.g., in-memory or fetched
// from file), CPU/memory/disk cache bandwidth and latency, interconnect architecture of CPU
// cores, load on the system from other threads of execution and other processes, size of
// input.
// For now, we compute these digests sequentially and thus have the luxury of improving
// performance by writing the digest of each chunk into a pre-allocated buffer at exactly
// the right position. This avoids unnecessary allocations, copying, and enables the final
// digest to be more efficient because it's presented with all of its input in one go.
for (DataSource input : contents) {
long inputOffset = 0;
long inputRemaining = input.size();
while (inputRemaining > 0) {
int chunkSize =
(int) Math.min(inputRemaining, CONTENT_DIGESTED_CHUNK_MAX_SIZE_BYTES);
setUnsignedInt32LittleEndian(chunkSize, chunkContentPrefix, 1);
for (int i = 0; i < mds.length; i++) {
mds[i].update(chunkContentPrefix);
}
try {
input.feed(inputOffset, chunkSize, mdSink);
} catch (IOException e) {
throw new IOException("Failed to read chunk #" + chunkIndex, e);
}
for (int i = 0; i < digestAlgorithmsArray.length; i++) {
MessageDigest md = mds[i];
byte[] concatenationOfChunkCountAndChunkDigests = digestsOfChunks[i];
int expectedDigestSizeBytes = digestOutputSizes[i];
int actualDigestSizeBytes =
md.digest(
concatenationOfChunkCountAndChunkDigests,
5 + chunkIndex * expectedDigestSizeBytes,
expectedDigestSizeBytes);
if (actualDigestSizeBytes != expectedDigestSizeBytes) {
throw new RuntimeException(
"Unexpected output size of " + md.getAlgorithm()
+ " digest: " + actualDigestSizeBytes);
}
}
inputOffset += chunkSize;
inputRemaining -= chunkSize;
chunkIndex++;
}
}
Map<ContentDigestAlgorithm, byte[]> result = new HashMap<>(digestAlgorithmsArray.length);
for (int i = 0; i < digestAlgorithmsArray.length; i++) {
ContentDigestAlgorithm digestAlgorithm = digestAlgorithmsArray[i];
byte[] concatenationOfChunkCountAndChunkDigests = digestsOfChunks[i];
MessageDigest md = mds[i];
byte[] digest = md.digest(concatenationOfChunkCountAndChunkDigests);
result.put(digestAlgorithm, digest);
}
return result;
}
private static final long getChunkCount(long inputSize, int chunkSize) {
return (inputSize + chunkSize - 1) / chunkSize;
}
private static void setUnsignedInt32LittleEndian(int value, byte[] result, int offset) {
result[offset] = (byte) (value & 0xff);
result[offset + 1] = (byte) ((value >> 8) & 0xff);
result[offset + 2] = (byte) ((value >> 16) & 0xff);
result[offset + 3] = (byte) ((value >> 24) & 0xff);
}
private static byte[] generateApkSigningBlock(
List<SignerConfig> signerConfigs,
Map<ContentDigestAlgorithm, byte[]> contentDigests)
throws InvalidKeyException, SignatureException {
byte[] apkSignatureSchemeV2Block =
generateApkSignatureSchemeV2Block(signerConfigs, contentDigests);
return generateApkSigningBlock(apkSignatureSchemeV2Block);
}
private static byte[] generateApkSigningBlock(byte[] apkSignatureSchemeV2Block) {
// FORMAT:
// uint64: size (excluding this field)
// repeated ID-value pairs:
// uint64: size (excluding this field)
// uint32: ID
// (size - 4) bytes: value
// uint64: size (same as the one above)
// uint128: magic
int resultSize =
8 // size
+ 8 + 4 + apkSignatureSchemeV2Block.length // v2Block as ID-value pair
+ 8 // size
+ 16 // magic
;
ByteBuffer result = ByteBuffer.allocate(resultSize);
result.order(ByteOrder.LITTLE_ENDIAN);
long blockSizeFieldValue = resultSize - 8;
result.putLong(blockSizeFieldValue);
long pairSizeFieldValue = 4 + apkSignatureSchemeV2Block.length;
result.putLong(pairSizeFieldValue);
result.putInt(APK_SIGNATURE_SCHEME_V2_BLOCK_ID);
result.put(apkSignatureSchemeV2Block);
result.putLong(blockSizeFieldValue);
result.put(APK_SIGNING_BLOCK_MAGIC);
return result.array();
}
private static byte[] generateApkSignatureSchemeV2Block(
List<SignerConfig> signerConfigs,
Map<ContentDigestAlgorithm, byte[]> contentDigests)
throws InvalidKeyException, SignatureException {
// FORMAT:
// * length-prefixed sequence of length-prefixed signer blocks.
List<byte[]> signerBlocks = new ArrayList<>(signerConfigs.size());
int signerNumber = 0;
for (SignerConfig signerConfig : signerConfigs) {
signerNumber++;
byte[] signerBlock;
try {
signerBlock = generateSignerBlock(signerConfig, contentDigests);
} catch (InvalidKeyException e) {
throw new InvalidKeyException("Signer #" + signerNumber + " failed", e);
} catch (SignatureException e) {
throw new SignatureException("Signer #" + signerNumber + " failed", e);
}
signerBlocks.add(signerBlock);
}
return encodeAsSequenceOfLengthPrefixedElements(
new byte[][] {
encodeAsSequenceOfLengthPrefixedElements(signerBlocks),
});
}
private static byte[] generateSignerBlock(
SignerConfig signerConfig,
Map<ContentDigestAlgorithm, byte[]> contentDigests)
throws InvalidKeyException, SignatureException {
if (signerConfig.certificates.isEmpty()) {
throw new SignatureException("No certificates configured for signer");
}
PublicKey publicKey = signerConfig.certificates.get(0).getPublicKey();
byte[] encodedPublicKey = encodePublicKey(publicKey);
V2SignatureSchemeBlock.SignedData signedData = new V2SignatureSchemeBlock.SignedData();
try {
signedData.certificates = encodeCertificates(signerConfig.certificates);
} catch (CertificateEncodingException e) {
throw new SignatureException("Failed to encode certificates", e);
}
List<Pair<Integer, byte[]>> digests =
new ArrayList<>(signerConfig.signatureAlgorithms.size());
for (SignatureAlgorithm signatureAlgorithm : signerConfig.signatureAlgorithms) {
ContentDigestAlgorithm contentDigestAlgorithm =
signatureAlgorithm.getContentDigestAlgorithm();
byte[] contentDigest = contentDigests.get(contentDigestAlgorithm);
if (contentDigest == null) {
throw new RuntimeException(
contentDigestAlgorithm + " content digest for " + signatureAlgorithm
+ " not computed");
}
digests.add(Pair.of(signatureAlgorithm.getId(), contentDigest));
}
signedData.digests = digests;
V2SignatureSchemeBlock.Signer signer = new V2SignatureSchemeBlock.Signer();
// FORMAT:
// * length-prefixed sequence of length-prefixed digests:
// * uint32: signature algorithm ID
// * length-prefixed bytes: digest of contents
// * length-prefixed sequence of certificates:
// * length-prefixed bytes: X.509 certificate (ASN.1 DER encoded).
// * length-prefixed sequence of length-prefixed additional attributes:
// * uint32: ID
// * (length - 4) bytes: value
signer.signedData = encodeAsSequenceOfLengthPrefixedElements(new byte[][] {
encodeAsSequenceOfLengthPrefixedPairsOfIntAndLengthPrefixedBytes(signedData.digests),
encodeAsSequenceOfLengthPrefixedElements(signedData.certificates),
// additional attributes
new byte[0],
});
signer.publicKey = encodedPublicKey;
signer.signatures = new ArrayList<>(signerConfig.signatureAlgorithms.size());
for (SignatureAlgorithm signatureAlgorithm : signerConfig.signatureAlgorithms) {
Pair<String, ? extends AlgorithmParameterSpec> sigAlgAndParams =
signatureAlgorithm.getJcaSignatureAlgorithmAndParams();
String jcaSignatureAlgorithm = sigAlgAndParams.getFirst();
AlgorithmParameterSpec jcaSignatureAlgorithmParams = sigAlgAndParams.getSecond();
byte[] signatureBytes;
try {
Signature signature = Signature.getInstance(jcaSignatureAlgorithm);
signature.initSign(signerConfig.privateKey);
if (jcaSignatureAlgorithmParams != null) {
signature.setParameter(jcaSignatureAlgorithmParams);
}
signature.update(signer.signedData);
signatureBytes = signature.sign();
} catch (InvalidKeyException e) {
throw new InvalidKeyException("Failed sign using " + jcaSignatureAlgorithm, e);
} catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException
| SignatureException e) {
throw new SignatureException("Failed sign using " + jcaSignatureAlgorithm, e);
}
try {
Signature signature = Signature.getInstance(jcaSignatureAlgorithm);
signature.initVerify(publicKey);
if (jcaSignatureAlgorithmParams != null) {
signature.setParameter(jcaSignatureAlgorithmParams);
}
signature.update(signer.signedData);
if (!signature.verify(signatureBytes)) {
throw new SignatureException("Signature did not verify");
}
} catch (InvalidKeyException e) {
throw new InvalidKeyException("Failed to verify generated " + jcaSignatureAlgorithm
+ " signature using public key from certificate", e);
} catch (NoSuchAlgorithmException | InvalidAlgorithmParameterException
| SignatureException e) {
throw new SignatureException("Failed to verify generated " + jcaSignatureAlgorithm
+ " signature using public key from certificate", e);
}
signer.signatures.add(Pair.of(signatureAlgorithm.getId(), signatureBytes));
}
// FORMAT:
// * length-prefixed signed data
// * length-prefixed sequence of length-prefixed signatures:
// * uint32: signature algorithm ID
// * length-prefixed bytes: signature of signed data
// * length-prefixed bytes: public key (X.509 SubjectPublicKeyInfo, ASN.1 DER encoded)
return encodeAsSequenceOfLengthPrefixedElements(
new byte[][] {
signer.signedData,
encodeAsSequenceOfLengthPrefixedPairsOfIntAndLengthPrefixedBytes(
signer.signatures),
signer.publicKey,
});
}
private static final class V2SignatureSchemeBlock {
private static final class Signer {
public byte[] signedData;
public List<Pair<Integer, byte[]>> signatures;
public byte[] publicKey;
}
private static final class SignedData {
public List<Pair<Integer, byte[]>> digests;
public List<byte[]> certificates;
}
}
private static byte[] encodePublicKey(PublicKey publicKey) throws InvalidKeyException {
byte[] encodedPublicKey = null;
if ("X.509".equals(publicKey.getFormat())) {
encodedPublicKey = publicKey.getEncoded();
}
if (encodedPublicKey == null) {
try {
encodedPublicKey =
KeyFactory.getInstance(publicKey.getAlgorithm())
.getKeySpec(publicKey, X509EncodedKeySpec.class)
.getEncoded();
} catch (NoSuchAlgorithmException e) {
throw new InvalidKeyException(
"Failed to obtain X.509 encoded form of public key " + publicKey
+ " of class " + publicKey.getClass().getName(),
e);
} catch (InvalidKeySpecException e) {
throw new InvalidKeyException(
"Failed to obtain X.509 encoded form of public key " + publicKey
+ " of class " + publicKey.getClass().getName(),
e);
}
}
if ((encodedPublicKey == null) || (encodedPublicKey.length == 0)) {
throw new InvalidKeyException(
"Failed to obtain X.509 encoded form of public key " + publicKey
+ " of class " + publicKey.getClass().getName());
}
return encodedPublicKey;
}
private static List<byte[]> encodeCertificates(List<X509Certificate> certificates)
throws CertificateEncodingException {
List<byte[]> result = new ArrayList<>(certificates.size());
for (X509Certificate certificate : certificates) {
result.add(certificate.getEncoded());
}
return result;
}
private static byte[] encodeAsSequenceOfLengthPrefixedElements(List<byte[]> sequence) {
return encodeAsSequenceOfLengthPrefixedElements(
sequence.toArray(new byte[sequence.size()][]));
}
private static byte[] encodeAsSequenceOfLengthPrefixedElements(byte[][] sequence) {
int payloadSize = 0;
for (byte[] element : sequence) {
payloadSize += 4 + element.length;
}
ByteBuffer result = ByteBuffer.allocate(payloadSize);
result.order(ByteOrder.LITTLE_ENDIAN);
for (byte[] element : sequence) {
result.putInt(element.length);
result.put(element);
}
return result.array();
}
private static byte[] encodeAsSequenceOfLengthPrefixedPairsOfIntAndLengthPrefixedBytes(
List<Pair<Integer, byte[]>> sequence) {
int resultSize = 0;
for (Pair<Integer, byte[]> element : sequence) {
resultSize += 12 + element.getSecond().length;
}
ByteBuffer result = ByteBuffer.allocate(resultSize);
result.order(ByteOrder.LITTLE_ENDIAN);
for (Pair<Integer, byte[]> element : sequence) {
byte[] second = element.getSecond();
result.putInt(8 + second.length);
result.putInt(element.getFirst());
result.putInt(second.length);
result.put(second);
}
return result.array();
}
}