blob: 2eb618fbff02736943cfa378446789ba0a86f16b [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This program constructs binary patches for images -- such as boot.img
* and recovery.img -- that consist primarily of large chunks of gzipped
* data interspersed with uncompressed data. Doing a naive bsdiff of
* these files is not useful because small changes in the data lead to
* large changes in the compressed bitstream; bsdiff patches of gzipped
* data are typically as large as the data itself.
*
* To patch these usefully, we break the source and target images up into
* chunks of two types: "normal" and "gzip". Normal chunks are simply
* patched using a plain bsdiff. Gzip chunks are first expanded, then a
* bsdiff is applied to the uncompressed data, then the patched data is
* gzipped using the same encoder parameters. Patched chunks are
* concatenated together to create the output file; the output image
* should be *exactly* the same series of bytes as the target image used
* originally to generate the patch.
*
* To work well with this tool, the gzipped sections of the target
* image must have been generated using the same deflate encoder that
* is available in applypatch, namely, the one in the zlib library.
* In practice this means that images should be compressed using the
* "minigzip" tool included in the zlib distribution, not the GNU gzip
* program.
*
* An "imgdiff" patch consists of a header describing the chunk structure
* of the file and any encoding parameters needed for the gzipped
* chunks, followed by N bsdiff patches, one per chunk.
*
* For a diff to be generated, the source and target images must have the
* same "chunk" structure: that is, the same number of gzipped and normal
* chunks in the same order. Android boot and recovery images currently
* consist of five chunks: a small normal header, a gzipped kernel, a
* small normal section, a gzipped ramdisk, and finally a small normal
* footer.
*
* Caveats: we locate gzipped sections within the source and target
* images by searching for the byte sequence 1f8b0800: 1f8b is the gzip
* magic number; 08 specifies the "deflate" encoding [the only encoding
* supported by the gzip standard]; and 00 is the flags byte. We do not
* currently support any extra header fields (which would be indicated by
* a nonzero flags byte). We also don't handle the case when that byte
* sequence appears spuriously in the file. (Note that it would have to
* occur spuriously within a normal chunk to be a problem.)
*
*
* The imgdiff patch header looks like this:
*
* "IMGDIFF1" (8) [magic number and version]
* chunk count (4)
* for each chunk:
* chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}]
* if chunk type == CHUNK_NORMAL:
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* if chunk type == CHUNK_GZIP: (version 1 only)
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* source expanded len (8) [size of uncompressed source]
* target expected len (8) [size of uncompressed target]
* gzip level (4)
* method (4)
* windowBits (4)
* memLevel (4)
* strategy (4)
* gzip header len (4)
* gzip header (gzip header len)
* gzip footer (8)
* if chunk type == CHUNK_DEFLATE: (version 2 only)
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* source expanded len (8) [size of uncompressed source]
* target expected len (8) [size of uncompressed target]
* gzip level (4)
* method (4)
* windowBits (4)
* memLevel (4)
* strategy (4)
* if chunk type == RAW: (version 2 only)
* target len (4)
* data (target len)
*
* All integers are little-endian. "source start" and "source len"
* specify the section of the input image that comprises this chunk,
* including the gzip header and footer for gzip chunks. "source
* expanded len" is the size of the uncompressed source data. "target
* expected len" is the size of the uncompressed data after applying
* the bsdiff patch. The next five parameters specify the zlib
* parameters to be used when compressing the patched data, and the
* next three specify the header and footer to be wrapped around the
* compressed data to create the output chunk (so that header contents
* like the timestamp are recreated exactly).
*
* After the header there are 'chunk count' bsdiff patches; the offset
* of each from the beginning of the file is specified in the header.
*
* This tool can take an optional file of "bonus data". This is an
* extra file of data that is appended to chunk #1 after it is
* compressed (it must be a CHUNK_DEFLATE chunk). The same file must
* be available (and passed to applypatch with -b) when applying the
* patch. This is used to reduce the size of recovery-from-boot
* patches by combining the boot image with recovery ramdisk
* information that is stored on the system partition.
*/
#include "applypatch/imgdiff.h"
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <string>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/memory.h>
#include <android-base/parseint.h>
#include <android-base/unique_fd.h>
#include <bsdiff.h>
#include <ziparchive/zip_archive.h>
#include <zlib.h>
#include "applypatch/imgdiff_image.h"
#include "rangeset.h"
using android::base::get_unaligned;
static constexpr size_t BLOCK_SIZE = 4096;
static constexpr size_t BUFFER_SIZE = 0x8000;
// If we use this function to write the offset and length (type size_t), their values should not
// exceed 2^63; because the signed bit will be casted away.
static inline bool Write8(int fd, int64_t value) {
return android::base::WriteFully(fd, &value, sizeof(int64_t));
}
// Similarly, the value should not exceed 2^31 if we are casting from size_t (e.g. target chunk
// size).
static inline bool Write4(int fd, int32_t value) {
return android::base::WriteFully(fd, &value, sizeof(int32_t));
}
// Trim the head or tail to align with the block size. Return false if the chunk has nothing left
// after alignment.
static bool AlignHead(size_t* start, size_t* length) {
size_t residual = (*start % BLOCK_SIZE == 0) ? 0 : BLOCK_SIZE - *start % BLOCK_SIZE;
if (*length <= residual) {
*length = 0;
return false;
}
// Trim the data in the beginning.
*start += residual;
*length -= residual;
return true;
}
static bool AlignTail(size_t* start, size_t* length) {
size_t residual = (*start + *length) % BLOCK_SIZE;
if (*length <= residual) {
*length = 0;
return false;
}
// Trim the data in the end.
*length -= residual;
return true;
}
// Remove the used blocks from the source chunk to make sure the source ranges are mutually
// exclusive after split. Return false if we fail to get the non-overlapped ranges. In such
// a case, we'll skip the entire source chunk.
static bool RemoveUsedBlocks(size_t* start, size_t* length, const SortedRangeSet& used_ranges) {
if (!used_ranges.Overlaps(*start, *length)) {
return true;
}
// TODO find the largest non-overlap chunk.
printf("Removing block %s from %zu - %zu\n", used_ranges.ToString().c_str(), *start,
*start + *length - 1);
// If there's no duplicate entry name, we should only overlap in the head or tail block. Try to
// trim both blocks. Skip this source chunk in case it still overlaps with the used ranges.
if (AlignHead(start, length) && !used_ranges.Overlaps(*start, *length)) {
return true;
}
if (AlignTail(start, length) && !used_ranges.Overlaps(*start, *length)) {
return true;
}
printf("Failed to remove the overlapped block ranges; skip the source\n");
return false;
}
static const struct option OPTIONS[] = {
{ "zip-mode", no_argument, nullptr, 'z' },
{ "bonus-file", required_argument, nullptr, 'b' },
{ "block-limit", required_argument, nullptr, 0 },
{ "debug-dir", required_argument, nullptr, 0 },
{ nullptr, 0, nullptr, 0 },
};
ImageChunk::ImageChunk(int type, size_t start, const std::vector<uint8_t>* file_content,
size_t raw_data_len, std::string entry_name)
: type_(type),
start_(start),
input_file_ptr_(file_content),
raw_data_len_(raw_data_len),
compress_level_(6),
entry_name_(std::move(entry_name)) {
CHECK(file_content != nullptr) << "input file container can't be nullptr";
}
const uint8_t* ImageChunk::GetRawData() const {
CHECK_LE(start_ + raw_data_len_, input_file_ptr_->size());
return input_file_ptr_->data() + start_;
}
const uint8_t * ImageChunk::DataForPatch() const {
if (type_ == CHUNK_DEFLATE) {
return uncompressed_data_.data();
}
return GetRawData();
}
size_t ImageChunk::DataLengthForPatch() const {
if (type_ == CHUNK_DEFLATE) {
return uncompressed_data_.size();
}
return raw_data_len_;
}
bool ImageChunk::operator==(const ImageChunk& other) const {
if (type_ != other.type_) {
return false;
}
return (raw_data_len_ == other.raw_data_len_ &&
memcmp(GetRawData(), other.GetRawData(), raw_data_len_) == 0);
}
void ImageChunk::SetUncompressedData(std::vector<uint8_t> data) {
uncompressed_data_ = std::move(data);
}
bool ImageChunk::SetBonusData(const std::vector<uint8_t>& bonus_data) {
if (type_ != CHUNK_DEFLATE) {
return false;
}
uncompressed_data_.insert(uncompressed_data_.end(), bonus_data.begin(), bonus_data.end());
return true;
}
void ImageChunk::ChangeDeflateChunkToNormal() {
if (type_ != CHUNK_DEFLATE) return;
type_ = CHUNK_NORMAL;
// No need to clear the entry name.
uncompressed_data_.clear();
}
bool ImageChunk::IsAdjacentNormal(const ImageChunk& other) const {
if (type_ != CHUNK_NORMAL || other.type_ != CHUNK_NORMAL) {
return false;
}
return (other.start_ == start_ + raw_data_len_);
}
void ImageChunk::MergeAdjacentNormal(const ImageChunk& other) {
CHECK(IsAdjacentNormal(other));
raw_data_len_ = raw_data_len_ + other.raw_data_len_;
}
bool ImageChunk::MakePatch(const ImageChunk& tgt, const ImageChunk& src,
std::vector<uint8_t>* patch_data, saidx_t** bsdiff_cache) {
#if defined(__ANDROID__)
char ptemp[] = "/data/local/tmp/imgdiff-patch-XXXXXX";
#else
char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
#endif
int fd = mkstemp(ptemp);
if (fd == -1) {
printf("MakePatch failed to create a temporary file: %s\n", strerror(errno));
return false;
}
close(fd);
int r = bsdiff::bsdiff(src.DataForPatch(), src.DataLengthForPatch(), tgt.DataForPatch(),
tgt.DataLengthForPatch(), ptemp, bsdiff_cache);
if (r != 0) {
printf("bsdiff() failed: %d\n", r);
return false;
}
android::base::unique_fd patch_fd(open(ptemp, O_RDONLY));
if (patch_fd == -1) {
printf("failed to open %s: %s\n", ptemp, strerror(errno));
return false;
}
struct stat st;
if (fstat(patch_fd, &st) != 0) {
printf("failed to stat patch file %s: %s\n", ptemp, strerror(errno));
return false;
}
size_t sz = static_cast<size_t>(st.st_size);
patch_data->resize(sz);
if (!android::base::ReadFully(patch_fd, patch_data->data(), sz)) {
printf("failed to read \"%s\" %s\n", ptemp, strerror(errno));
unlink(ptemp);
return false;
}
unlink(ptemp);
return true;
}
bool ImageChunk::ReconstructDeflateChunk() {
if (type_ != CHUNK_DEFLATE) {
printf("attempt to reconstruct non-deflate chunk\n");
return false;
}
// We only check two combinations of encoder parameters: level 6 (the default) and level 9
// (the maximum).
for (int level = 6; level <= 9; level += 3) {
if (TryReconstruction(level)) {
compress_level_ = level;
return true;
}
}
return false;
}
/*
* Takes the uncompressed data stored in the chunk, compresses it using the zlib parameters stored
* in the chunk, and checks that it matches exactly the compressed data we started with (also
* stored in the chunk).
*/
bool ImageChunk::TryReconstruction(int level) {
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = uncompressed_data_.size();
strm.next_in = uncompressed_data_.data();
int ret = deflateInit2(&strm, level, METHOD, WINDOWBITS, MEMLEVEL, STRATEGY);
if (ret < 0) {
printf("failed to initialize deflate: %d\n", ret);
return false;
}
std::vector<uint8_t> buffer(BUFFER_SIZE);
size_t offset = 0;
do {
strm.avail_out = buffer.size();
strm.next_out = buffer.data();
ret = deflate(&strm, Z_FINISH);
if (ret < 0) {
printf("failed to deflate: %d\n", ret);
return false;
}
size_t compressed_size = buffer.size() - strm.avail_out;
if (memcmp(buffer.data(), input_file_ptr_->data() + start_ + offset, compressed_size) != 0) {
// mismatch; data isn't the same.
deflateEnd(&strm);
return false;
}
offset += compressed_size;
} while (ret != Z_STREAM_END);
deflateEnd(&strm);
if (offset != raw_data_len_) {
// mismatch; ran out of data before we should have.
return false;
}
return true;
}
PatchChunk::PatchChunk(const ImageChunk& tgt, const ImageChunk& src, std::vector<uint8_t> data)
: type_(tgt.GetType()),
source_start_(src.GetStartOffset()),
source_len_(src.GetRawDataLength()),
source_uncompressed_len_(src.DataLengthForPatch()),
target_start_(tgt.GetStartOffset()),
target_len_(tgt.GetRawDataLength()),
target_uncompressed_len_(tgt.DataLengthForPatch()),
target_compress_level_(tgt.GetCompressLevel()),
data_(std::move(data)) {}
// Construct a CHUNK_RAW patch from the target data directly.
PatchChunk::PatchChunk(const ImageChunk& tgt)
: type_(CHUNK_RAW),
source_start_(0),
source_len_(0),
source_uncompressed_len_(0),
target_start_(tgt.GetStartOffset()),
target_len_(tgt.GetRawDataLength()),
target_uncompressed_len_(tgt.DataLengthForPatch()),
target_compress_level_(tgt.GetCompressLevel()),
data_(tgt.DataForPatch(), tgt.DataForPatch() + tgt.DataLengthForPatch()) {}
// Return true if raw data is smaller than the patch size.
bool PatchChunk::RawDataIsSmaller(const ImageChunk& tgt, size_t patch_size) {
size_t target_len = tgt.GetRawDataLength();
return (tgt.GetType() == CHUNK_NORMAL && (target_len <= 160 || target_len < patch_size));
}
void PatchChunk::UpdateSourceOffset(const SortedRangeSet& src_range) {
if (type_ == CHUNK_DEFLATE) {
source_start_ = src_range.GetOffsetInRangeSet(source_start_);
}
}
// Header size:
// header_type 4 bytes
// CHUNK_NORMAL 8*3 = 24 bytes
// CHUNK_DEFLATE 8*5 + 4*5 = 60 bytes
// CHUNK_RAW 4 bytes + patch_size
size_t PatchChunk::GetHeaderSize() const {
switch (type_) {
case CHUNK_NORMAL:
return 4 + 8 * 3;
case CHUNK_DEFLATE:
return 4 + 8 * 5 + 4 * 5;
case CHUNK_RAW:
return 4 + 4 + data_.size();
default:
CHECK(false) << "unexpected chunk type: " << type_; // Should not reach here.
return 0;
}
}
// Return the offset of the next patch into the patch data.
size_t PatchChunk::WriteHeaderToFd(int fd, size_t offset) const {
Write4(fd, type_);
switch (type_) {
case CHUNK_NORMAL:
printf("normal (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size());
Write8(fd, static_cast<int64_t>(source_start_));
Write8(fd, static_cast<int64_t>(source_len_));
Write8(fd, static_cast<int64_t>(offset));
return offset + data_.size();
case CHUNK_DEFLATE:
printf("deflate (%10zu, %10zu) %10zu\n", target_start_, target_len_, data_.size());
Write8(fd, static_cast<int64_t>(source_start_));
Write8(fd, static_cast<int64_t>(source_len_));
Write8(fd, static_cast<int64_t>(offset));
Write8(fd, static_cast<int64_t>(source_uncompressed_len_));
Write8(fd, static_cast<int64_t>(target_uncompressed_len_));
Write4(fd, target_compress_level_);
Write4(fd, ImageChunk::METHOD);
Write4(fd, ImageChunk::WINDOWBITS);
Write4(fd, ImageChunk::MEMLEVEL);
Write4(fd, ImageChunk::STRATEGY);
return offset + data_.size();
case CHUNK_RAW:
printf("raw (%10zu, %10zu)\n", target_start_, target_len_);
Write4(fd, static_cast<int32_t>(data_.size()));
if (!android::base::WriteFully(fd, data_.data(), data_.size())) {
CHECK(false) << "failed to write " << data_.size() << " bytes patch";
}
return offset;
default:
CHECK(false) << "unexpected chunk type: " << type_;
return offset;
}
}
// Write the contents of |patch_chunks| to |patch_fd|.
bool PatchChunk::WritePatchDataToFd(const std::vector<PatchChunk>& patch_chunks, int patch_fd) {
// Figure out how big the imgdiff file header is going to be, so that we can correctly compute
// the offset of each bsdiff patch within the file.
size_t total_header_size = 12;
for (const auto& patch : patch_chunks) {
total_header_size += patch.GetHeaderSize();
}
size_t offset = total_header_size;
// Write out the headers.
if (!android::base::WriteStringToFd("IMGDIFF2", patch_fd)) {
printf("failed to write \"IMGDIFF2\": %s\n", strerror(errno));
return false;
}
Write4(patch_fd, static_cast<int32_t>(patch_chunks.size()));
for (size_t i = 0; i < patch_chunks.size(); ++i) {
printf("chunk %zu: ", i);
offset = patch_chunks[i].WriteHeaderToFd(patch_fd, offset);
}
// Append each chunk's bsdiff patch, in order.
for (const auto& patch : patch_chunks) {
if (patch.type_ == CHUNK_RAW) {
continue;
}
if (!android::base::WriteFully(patch_fd, patch.data_.data(), patch.data_.size())) {
printf("failed to write %zu bytes patch to patch_fd\n", patch.data_.size());
return false;
}
}
return true;
}
ImageChunk& Image::operator[](size_t i) {
CHECK_LT(i, chunks_.size());
return chunks_[i];
}
const ImageChunk& Image::operator[](size_t i) const {
CHECK_LT(i, chunks_.size());
return chunks_[i];
}
void Image::MergeAdjacentNormalChunks() {
size_t merged_last = 0, cur = 0;
while (cur < chunks_.size()) {
// Look for normal chunks adjacent to the current one. If such chunk exists, extend the
// length of the current normal chunk.
size_t to_check = cur + 1;
while (to_check < chunks_.size() && chunks_[cur].IsAdjacentNormal(chunks_[to_check])) {
chunks_[cur].MergeAdjacentNormal(chunks_[to_check]);
to_check++;
}
if (merged_last != cur) {
chunks_[merged_last] = std::move(chunks_[cur]);
}
merged_last++;
cur = to_check;
}
if (merged_last < chunks_.size()) {
chunks_.erase(chunks_.begin() + merged_last, chunks_.end());
}
}
void Image::DumpChunks() const {
std::string type = is_source_ ? "source" : "target";
printf("Dumping chunks for %s\n", type.c_str());
for (size_t i = 0; i < chunks_.size(); ++i) {
printf("chunk %zu: ", i);
chunks_[i].Dump();
}
}
bool Image::ReadFile(const std::string& filename, std::vector<uint8_t>* file_content) {
CHECK(file_content != nullptr);
android::base::unique_fd fd(open(filename.c_str(), O_RDONLY));
if (fd == -1) {
printf("failed to open \"%s\" %s\n", filename.c_str(), strerror(errno));
return false;
}
struct stat st;
if (fstat(fd, &st) != 0) {
printf("failed to stat \"%s\": %s\n", filename.c_str(), strerror(errno));
return false;
}
size_t sz = static_cast<size_t>(st.st_size);
file_content->resize(sz);
if (!android::base::ReadFully(fd, file_content->data(), sz)) {
printf("failed to read \"%s\" %s\n", filename.c_str(), strerror(errno));
return false;
}
fd.reset();
return true;
}
bool ZipModeImage::Initialize(const std::string& filename) {
if (!ReadFile(filename, &file_content_)) {
return false;
}
// Omit the trailing zeros before we pass the file to ziparchive handler.
size_t zipfile_size;
if (!GetZipFileSize(&zipfile_size)) {
printf("failed to parse the actual size of %s\n", filename.c_str());
return false;
}
ZipArchiveHandle handle;
int err = OpenArchiveFromMemory(const_cast<uint8_t*>(file_content_.data()), zipfile_size,
filename.c_str(), &handle);
if (err != 0) {
printf("failed to open zip file %s: %s\n", filename.c_str(), ErrorCodeString(err));
CloseArchive(handle);
return false;
}
if (!InitializeChunks(filename, handle)) {
CloseArchive(handle);
return false;
}
CloseArchive(handle);
return true;
}
// Iterate the zip entries and compose the image chunks accordingly.
bool ZipModeImage::InitializeChunks(const std::string& filename, ZipArchiveHandle handle) {
void* cookie;
int ret = StartIteration(handle, &cookie, nullptr, nullptr);
if (ret != 0) {
printf("failed to iterate over entries in %s: %s\n", filename.c_str(), ErrorCodeString(ret));
return false;
}
// Create a list of deflated zip entries, sorted by offset.
std::vector<std::pair<std::string, ZipEntry>> temp_entries;
ZipString name;
ZipEntry entry;
while ((ret = Next(cookie, &entry, &name)) == 0) {
if (entry.method == kCompressDeflated || limit_ > 0) {
std::string entry_name(name.name, name.name + name.name_length);
temp_entries.emplace_back(entry_name, entry);
}
}
if (ret != -1) {
printf("Error while iterating over zip entries: %s\n", ErrorCodeString(ret));
return false;
}
std::sort(temp_entries.begin(), temp_entries.end(),
[](auto& entry1, auto& entry2) { return entry1.second.offset < entry2.second.offset; });
EndIteration(cookie);
// For source chunks, we don't need to compose chunks for the metadata.
if (is_source_) {
for (auto& entry : temp_entries) {
if (!AddZipEntryToChunks(handle, entry.first, &entry.second)) {
printf("Failed to add %s to source chunks\n", entry.first.c_str());
return false;
}
}
// Add the end of zip file (mainly central directory) as a normal chunk.
size_t entries_end = 0;
if (!temp_entries.empty()) {
entries_end = static_cast<size_t>(temp_entries.back().second.offset +
temp_entries.back().second.compressed_length);
}
CHECK_LT(entries_end, file_content_.size());
chunks_.emplace_back(CHUNK_NORMAL, entries_end, &file_content_,
file_content_.size() - entries_end);
return true;
}
// For target chunks, add the deflate entries as CHUNK_DEFLATE and the contents between two
// deflate entries as CHUNK_NORMAL.
size_t pos = 0;
size_t nextentry = 0;
while (pos < file_content_.size()) {
if (nextentry < temp_entries.size() &&
static_cast<off64_t>(pos) == temp_entries[nextentry].second.offset) {
// Add the next zip entry.
std::string entry_name = temp_entries[nextentry].first;
if (!AddZipEntryToChunks(handle, entry_name, &temp_entries[nextentry].second)) {
printf("Failed to add %s to target chunks\n", entry_name.c_str());
return false;
}
pos += temp_entries[nextentry].second.compressed_length;
++nextentry;
continue;
}
// Use a normal chunk to take all the data up to the start of the next entry.
size_t raw_data_len;
if (nextentry < temp_entries.size()) {
raw_data_len = temp_entries[nextentry].second.offset - pos;
} else {
raw_data_len = file_content_.size() - pos;
}
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, raw_data_len);
pos += raw_data_len;
}
return true;
}
bool ZipModeImage::AddZipEntryToChunks(ZipArchiveHandle handle, const std::string& entry_name,
ZipEntry* entry) {
size_t compressed_len = entry->compressed_length;
if (compressed_len == 0) return true;
// Split the entry into several normal chunks if it's too large.
if (limit_ > 0 && compressed_len > limit_) {
int count = 0;
while (compressed_len > 0) {
size_t length = std::min(limit_, compressed_len);
std::string name = entry_name + "-" + std::to_string(count);
chunks_.emplace_back(CHUNK_NORMAL, entry->offset + limit_ * count, &file_content_, length,
name);
count++;
compressed_len -= length;
}
} else if (entry->method == kCompressDeflated) {
size_t uncompressed_len = entry->uncompressed_length;
std::vector<uint8_t> uncompressed_data(uncompressed_len);
int ret = ExtractToMemory(handle, entry, uncompressed_data.data(), uncompressed_len);
if (ret != 0) {
printf("failed to extract %s with size %zu: %s\n", entry_name.c_str(), uncompressed_len,
ErrorCodeString(ret));
return false;
}
ImageChunk curr(CHUNK_DEFLATE, entry->offset, &file_content_, compressed_len, entry_name);
curr.SetUncompressedData(std::move(uncompressed_data));
chunks_.push_back(std::move(curr));
} else {
chunks_.emplace_back(CHUNK_NORMAL, entry->offset, &file_content_, compressed_len, entry_name);
}
return true;
}
// EOCD record
// offset 0: signature 0x06054b50, 4 bytes
// offset 4: number of this disk, 2 bytes
// ...
// offset 20: comment length, 2 bytes
// offset 22: comment, n bytes
bool ZipModeImage::GetZipFileSize(size_t* input_file_size) {
if (file_content_.size() < 22) {
printf("file is too small to be a zip file\n");
return false;
}
// Look for End of central directory record of the zip file, and calculate the actual
// zip_file size.
for (int i = file_content_.size() - 22; i >= 0; i--) {
if (file_content_[i] == 0x50) {
if (get_unaligned<uint32_t>(&file_content_[i]) == 0x06054b50) {
// double-check: this archive consists of a single "disk".
CHECK_EQ(get_unaligned<uint16_t>(&file_content_[i + 4]), 0);
uint16_t comment_length = get_unaligned<uint16_t>(&file_content_[i + 20]);
size_t file_size = i + 22 + comment_length;
CHECK_LE(file_size, file_content_.size());
*input_file_size = file_size;
return true;
}
}
}
// EOCD not found, this file is likely not a valid zip file.
return false;
}
ImageChunk ZipModeImage::PseudoSource() const {
CHECK(is_source_);
return ImageChunk(CHUNK_NORMAL, 0, &file_content_, file_content_.size());
}
const ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) const {
if (name.empty()) {
return nullptr;
}
for (auto& chunk : chunks_) {
if (chunk.GetType() != CHUNK_DEFLATE && !find_normal) {
continue;
}
if (chunk.GetEntryName() == name) {
return &chunk;
}
// Edge case when target chunk is split due to size limit but source chunk isn't.
if (name == (chunk.GetEntryName() + "-0") || chunk.GetEntryName() == (name + "-0")) {
return &chunk;
}
// TODO handle the .so files with incremental version number.
// (e.g. lib/arm64-v8a/libcronet.59.0.3050.4.so)
}
return nullptr;
}
ImageChunk* ZipModeImage::FindChunkByName(const std::string& name, bool find_normal) {
return const_cast<ImageChunk*>(
static_cast<const ZipModeImage*>(this)->FindChunkByName(name, find_normal));
}
bool ZipModeImage::CheckAndProcessChunks(ZipModeImage* tgt_image, ZipModeImage* src_image) {
for (auto& tgt_chunk : *tgt_image) {
if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
continue;
}
ImageChunk* src_chunk = src_image->FindChunkByName(tgt_chunk.GetEntryName());
if (src_chunk == nullptr) {
tgt_chunk.ChangeDeflateChunkToNormal();
} else if (tgt_chunk == *src_chunk) {
// If two deflate chunks are identical (eg, the kernel has not changed between two builds),
// treat them as normal chunks. This makes applypatch much faster -- it can apply a trivial
// patch to the compressed data, rather than uncompressing and recompressing to apply the
// trivial patch to the uncompressed data.
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk->ChangeDeflateChunkToNormal();
} else if (!tgt_chunk.ReconstructDeflateChunk()) {
// We cannot recompress the data and get exactly the same bits as are in the input target
// image. Treat the chunk as a normal non-deflated chunk.
printf("failed to reconstruct target deflate chunk [%s]; treating as normal\n",
tgt_chunk.GetEntryName().c_str());
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk->ChangeDeflateChunkToNormal();
}
}
// For zips, we only need merge normal chunks for the target: deflated chunks are matched via
// filename, and normal chunks are patched using the entire source file as the source.
if (tgt_image->limit_ == 0) {
tgt_image->MergeAdjacentNormalChunks();
tgt_image->DumpChunks();
}
return true;
}
// For each target chunk, look for the corresponding source chunk by the zip_entry name. If
// found, add the range of this chunk in the original source file to the block aligned source
// ranges. Construct the split src & tgt image once the size of source range reaches limit.
bool ZipModeImage::SplitZipModeImageWithLimit(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
std::vector<ZipModeImage>* split_tgt_images,
std::vector<ZipModeImage>* split_src_images,
std::vector<SortedRangeSet>* split_src_ranges) {
CHECK_EQ(tgt_image.limit_, src_image.limit_);
size_t limit = tgt_image.limit_;
src_image.DumpChunks();
printf("Splitting %zu tgt chunks...\n", tgt_image.NumOfChunks());
SortedRangeSet used_src_ranges; // ranges used for previous split source images.
// Reserve the central directory in advance for the last split image.
const auto& central_directory = src_image.cend() - 1;
CHECK_EQ(CHUNK_NORMAL, central_directory->GetType());
used_src_ranges.Insert(central_directory->GetStartOffset(),
central_directory->DataLengthForPatch());
SortedRangeSet src_ranges;
std::vector<ImageChunk> split_src_chunks;
std::vector<ImageChunk> split_tgt_chunks;
for (auto tgt = tgt_image.cbegin(); tgt != tgt_image.cend(); tgt++) {
const ImageChunk* src = src_image.FindChunkByName(tgt->GetEntryName(), true);
if (src == nullptr) {
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
continue;
}
size_t src_offset = src->GetStartOffset();
size_t src_length = src->GetRawDataLength();
CHECK(src_length > 0);
CHECK_LE(src_length, limit);
// Make sure this source range hasn't been used before so that the src_range pieces don't
// overlap with each other.
if (!RemoveUsedBlocks(&src_offset, &src_length, used_src_ranges)) {
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
} else if (src_ranges.blocks() * BLOCK_SIZE + src_length <= limit) {
src_ranges.Insert(src_offset, src_length);
// Add the deflate source chunk if it hasn't been aligned.
if (src->GetType() == CHUNK_DEFLATE && src_length == src->GetRawDataLength()) {
split_src_chunks.push_back(*src);
split_tgt_chunks.push_back(*tgt);
} else {
// TODO split smarter to avoid alignment of large deflate chunks
split_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt->GetStartOffset(), &tgt_image.file_content_,
tgt->GetRawDataLength());
}
} else {
ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks,
split_src_chunks, split_tgt_images,
split_src_images);
split_tgt_chunks.clear();
split_src_chunks.clear();
used_src_ranges.Insert(src_ranges);
split_src_ranges->push_back(std::move(src_ranges));
src_ranges.Clear();
// We don't have enough space for the current chunk; start a new split image and handle
// this chunk there.
tgt--;
}
}
// TODO Trim it in case the CD exceeds limit too much.
src_ranges.Insert(central_directory->GetStartOffset(), central_directory->DataLengthForPatch());
ZipModeImage::AddSplitImageFromChunkList(tgt_image, src_image, src_ranges, split_tgt_chunks,
split_src_chunks, split_tgt_images, split_src_images);
split_src_ranges->push_back(std::move(src_ranges));
ValidateSplitImages(*split_tgt_images, *split_src_images, *split_src_ranges,
tgt_image.file_content_.size());
return true;
}
void ZipModeImage::AddSplitImageFromChunkList(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
const SortedRangeSet& split_src_ranges,
const std::vector<ImageChunk>& split_tgt_chunks,
const std::vector<ImageChunk>& split_src_chunks,
std::vector<ZipModeImage>* split_tgt_images,
std::vector<ZipModeImage>* split_src_images) {
CHECK(!split_tgt_chunks.empty());
// Target chunks should occupy at least one block.
// TODO put a warning and change the type to raw if it happens in extremely rare cases.
size_t tgt_size = split_tgt_chunks.back().GetStartOffset() +
split_tgt_chunks.back().DataLengthForPatch() -
split_tgt_chunks.front().GetStartOffset();
CHECK_GE(tgt_size, BLOCK_SIZE);
std::vector<ImageChunk> aligned_tgt_chunks;
// Align the target chunks in the beginning with BLOCK_SIZE.
size_t i = 0;
while (i < split_tgt_chunks.size()) {
size_t tgt_start = split_tgt_chunks[i].GetStartOffset();
size_t tgt_length = split_tgt_chunks[i].GetRawDataLength();
// Current ImageChunk is long enough to align.
if (AlignHead(&tgt_start, &tgt_length)) {
aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, tgt_start, &tgt_image.file_content_,
tgt_length);
break;
}
i++;
}
CHECK_LT(i, split_tgt_chunks.size());
aligned_tgt_chunks.insert(aligned_tgt_chunks.end(), split_tgt_chunks.begin() + i + 1,
split_tgt_chunks.end());
CHECK(!aligned_tgt_chunks.empty());
// Add a normal chunk to align the contents in the end.
size_t end_offset =
aligned_tgt_chunks.back().GetStartOffset() + aligned_tgt_chunks.back().GetRawDataLength();
if (end_offset % BLOCK_SIZE != 0 && end_offset < tgt_image.file_content_.size()) {
aligned_tgt_chunks.emplace_back(CHUNK_NORMAL, end_offset, &tgt_image.file_content_,
BLOCK_SIZE - (end_offset % BLOCK_SIZE));
}
ZipModeImage split_tgt_image(false);
split_tgt_image.Initialize(std::move(aligned_tgt_chunks), {});
split_tgt_image.MergeAdjacentNormalChunks();
// Construct the dummy source file based on the src_ranges.
std::vector<uint8_t> src_content;
for (const auto& r : split_src_ranges) {
size_t end = std::min(src_image.file_content_.size(), r.second * BLOCK_SIZE);
src_content.insert(src_content.end(), src_image.file_content_.begin() + r.first * BLOCK_SIZE,
src_image.file_content_.begin() + end);
}
// We should not have an empty src in our design; otherwise we will encounter an error in
// bsdiff since src_content.data() == nullptr.
CHECK(!src_content.empty());
ZipModeImage split_src_image(true);
split_src_image.Initialize(split_src_chunks, std::move(src_content));
split_tgt_images->push_back(std::move(split_tgt_image));
split_src_images->push_back(std::move(split_src_image));
}
void ZipModeImage::ValidateSplitImages(const std::vector<ZipModeImage>& split_tgt_images,
const std::vector<ZipModeImage>& split_src_images,
std::vector<SortedRangeSet>& split_src_ranges,
size_t total_tgt_size) {
CHECK_EQ(split_tgt_images.size(), split_src_images.size());
printf("Validating %zu images\n", split_tgt_images.size());
// Verify that the target image pieces is continuous and can add up to the total size.
size_t last_offset = 0;
for (const auto& tgt_image : split_tgt_images) {
CHECK(!tgt_image.chunks_.empty());
CHECK_EQ(last_offset, tgt_image.chunks_.front().GetStartOffset());
CHECK(last_offset % BLOCK_SIZE == 0);
// Check the target chunks within the split image are continuous.
for (const auto& chunk : tgt_image.chunks_) {
CHECK_EQ(last_offset, chunk.GetStartOffset());
last_offset += chunk.GetRawDataLength();
}
}
CHECK_EQ(total_tgt_size, last_offset);
// Verify that the source ranges are mutually exclusive.
CHECK_EQ(split_src_images.size(), split_src_ranges.size());
SortedRangeSet used_src_ranges;
for (size_t i = 0; i < split_src_ranges.size(); i++) {
CHECK(!used_src_ranges.Overlaps(split_src_ranges[i]))
<< "src range " << split_src_ranges[i].ToString() << " overlaps "
<< used_src_ranges.ToString();
used_src_ranges.Insert(split_src_ranges[i]);
}
}
bool ZipModeImage::GeneratePatchesInternal(const ZipModeImage& tgt_image,
const ZipModeImage& src_image,
std::vector<PatchChunk>* patch_chunks) {
printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks());
patch_chunks->clear();
saidx_t* bsdiff_cache = nullptr;
for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
const auto& tgt_chunk = tgt_image[i];
if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
patch_chunks->emplace_back(tgt_chunk);
continue;
}
const ImageChunk* src_chunk = (tgt_chunk.GetType() != CHUNK_DEFLATE)
? nullptr
: src_image.FindChunkByName(tgt_chunk.GetEntryName());
const auto& src_ref = (src_chunk == nullptr) ? src_image.PseudoSource() : *src_chunk;
saidx_t** bsdiff_cache_ptr = (src_chunk == nullptr) ? &bsdiff_cache : nullptr;
std::vector<uint8_t> patch_data;
if (!ImageChunk::MakePatch(tgt_chunk, src_ref, &patch_data, bsdiff_cache_ptr)) {
printf("Failed to generate patch, name: %s\n", tgt_chunk.GetEntryName().c_str());
return false;
}
printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(),
tgt_chunk.GetRawDataLength());
if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
patch_chunks->emplace_back(tgt_chunk);
} else {
patch_chunks->emplace_back(tgt_chunk, src_ref, std::move(patch_data));
}
}
free(bsdiff_cache);
CHECK_EQ(patch_chunks->size(), tgt_image.NumOfChunks());
return true;
}
bool ZipModeImage::GeneratePatches(const ZipModeImage& tgt_image, const ZipModeImage& src_image,
const std::string& patch_name) {
std::vector<PatchChunk> patch_chunks;
ZipModeImage::GeneratePatchesInternal(tgt_image, src_image, &patch_chunks);
CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
return false;
}
return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
bool ZipModeImage::GeneratePatches(const std::vector<ZipModeImage>& split_tgt_images,
const std::vector<ZipModeImage>& split_src_images,
const std::vector<SortedRangeSet>& split_src_ranges,
const std::string& patch_name, const std::string& debug_dir) {
printf("Construct patches for %zu split images...\n", split_tgt_images.size());
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
return false;
}
for (size_t i = 0; i < split_tgt_images.size(); i++) {
std::vector<PatchChunk> patch_chunks;
if (!ZipModeImage::GeneratePatchesInternal(split_tgt_images[i], split_src_images[i],
&patch_chunks)) {
printf("failed to generate split patch\n");
return false;
}
for (auto& p : patch_chunks) {
p.UpdateSourceOffset(split_src_ranges[i]);
}
if (!PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd)) {
return false;
}
// Write the split source & patch into the debug directory.
if (!debug_dir.empty()) {
std::string src_name = android::base::StringPrintf("%s/src-%zu", debug_dir.c_str(), i);
android::base::unique_fd fd(
open(src_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (fd == -1) {
printf("Failed to open %s\n", src_name.c_str());
return false;
}
if (!android::base::WriteFully(fd, split_src_images[i].PseudoSource().DataForPatch(),
split_src_images[i].PseudoSource().DataLengthForPatch())) {
printf("Failed to write split source data into %s\n", src_name.c_str());
return false;
}
std::string patch_name = android::base::StringPrintf("%s/patch-%zu", debug_dir.c_str(), i);
fd.reset(open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (fd == -1) {
printf("Failed to open %s\n", patch_name.c_str());
return false;
}
if (!PatchChunk::WritePatchDataToFd(patch_chunks, fd)) {
return false;
}
}
}
return true;
}
bool ImageModeImage::Initialize(const std::string& filename) {
if (!ReadFile(filename, &file_content_)) {
return false;
}
size_t sz = file_content_.size();
size_t pos = 0;
while (pos < sz) {
// 0x00 no header flags, 0x08 deflate compression, 0x1f8b gzip magic number
if (sz - pos >= 4 && get_unaligned<uint32_t>(file_content_.data() + pos) == 0x00088b1f) {
// 'pos' is the offset of the start of a gzip chunk.
size_t chunk_offset = pos;
// The remaining data is too small to be a gzip chunk; treat them as a normal chunk.
if (sz - pos < GZIP_HEADER_LEN + GZIP_FOOTER_LEN) {
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, sz - pos);
break;
}
// We need three chunks for the deflated image in total, one normal chunk for the header,
// one deflated chunk for the body, and another normal chunk for the footer.
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_HEADER_LEN);
pos += GZIP_HEADER_LEN;
// We must decompress this chunk in order to discover where it ends, and so we can update
// the uncompressed_data of the image body and its length.
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = sz - pos;
strm.next_in = file_content_.data() + pos;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
int ret = inflateInit2(&strm, -15);
if (ret < 0) {
printf("failed to initialize inflate: %d\n", ret);
return false;
}
size_t allocated = BUFFER_SIZE;
std::vector<uint8_t> uncompressed_data(allocated);
size_t uncompressed_len = 0, raw_data_len = 0;
do {
strm.avail_out = allocated - uncompressed_len;
strm.next_out = uncompressed_data.data() + uncompressed_len;
ret = inflate(&strm, Z_NO_FLUSH);
if (ret < 0) {
printf("Warning: inflate failed [%s] at offset [%zu], treating as a normal chunk\n",
strm.msg, chunk_offset);
break;
}
uncompressed_len = allocated - strm.avail_out;
if (strm.avail_out == 0) {
allocated *= 2;
uncompressed_data.resize(allocated);
}
} while (ret != Z_STREAM_END);
raw_data_len = sz - strm.avail_in - pos;
inflateEnd(&strm);
if (ret < 0) {
continue;
}
// The footer contains the size of the uncompressed data. Double-check to make sure that it
// matches the size of the data we got when we actually did the decompression.
size_t footer_index = pos + raw_data_len + GZIP_FOOTER_LEN - 4;
if (sz - footer_index < 4) {
printf("Warning: invalid footer position; treating as a nomal chunk\n");
continue;
}
size_t footer_size = get_unaligned<uint32_t>(file_content_.data() + footer_index);
if (footer_size != uncompressed_len) {
printf("Warning: footer size %zu != decompressed size %zu; treating as a nomal chunk\n",
footer_size, uncompressed_len);
continue;
}
ImageChunk body(CHUNK_DEFLATE, pos, &file_content_, raw_data_len);
uncompressed_data.resize(uncompressed_len);
body.SetUncompressedData(std::move(uncompressed_data));
chunks_.push_back(std::move(body));
pos += raw_data_len;
// create a normal chunk for the footer
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, GZIP_FOOTER_LEN);
pos += GZIP_FOOTER_LEN;
} else {
// Use a normal chunk to take all the contents until the next gzip chunk (or EOF); we expect
// the number of chunks to be small (5 for typical boot and recovery images).
// Scan forward until we find a gzip header.
size_t data_len = 0;
while (data_len + pos < sz) {
if (data_len + pos + 4 <= sz &&
get_unaligned<uint32_t>(file_content_.data() + pos + data_len) == 0x00088b1f) {
break;
}
data_len++;
}
chunks_.emplace_back(CHUNK_NORMAL, pos, &file_content_, data_len);
pos += data_len;
}
}
return true;
}
bool ImageModeImage::SetBonusData(const std::vector<uint8_t>& bonus_data) {
CHECK(is_source_);
if (chunks_.size() < 2 || !chunks_[1].SetBonusData(bonus_data)) {
printf("Failed to set bonus data\n");
DumpChunks();
return false;
}
printf(" using %zu bytes of bonus data\n", bonus_data.size());
return true;
}
// In Image Mode, verify that the source and target images have the same chunk structure (ie, the
// same sequence of deflate and normal chunks).
bool ImageModeImage::CheckAndProcessChunks(ImageModeImage* tgt_image, ImageModeImage* src_image) {
// In image mode, merge the gzip header and footer in with any adjacent normal chunks.
tgt_image->MergeAdjacentNormalChunks();
src_image->MergeAdjacentNormalChunks();
if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
printf("source and target don't have same number of chunks!\n");
tgt_image->DumpChunks();
src_image->DumpChunks();
return false;
}
for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
if ((*tgt_image)[i].GetType() != (*src_image)[i].GetType()) {
printf("source and target don't have same chunk structure! (chunk %zu)\n", i);
tgt_image->DumpChunks();
src_image->DumpChunks();
return false;
}
}
for (size_t i = 0; i < tgt_image->NumOfChunks(); ++i) {
auto& tgt_chunk = (*tgt_image)[i];
auto& src_chunk = (*src_image)[i];
if (tgt_chunk.GetType() != CHUNK_DEFLATE) {
continue;
}
// If two deflate chunks are identical treat them as normal chunks.
if (tgt_chunk == src_chunk) {
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk.ChangeDeflateChunkToNormal();
} else if (!tgt_chunk.ReconstructDeflateChunk()) {
// We cannot recompress the data and get exactly the same bits as are in the input target
// image, fall back to normal
printf("failed to reconstruct target deflate chunk %zu [%s]; treating as normal\n", i,
tgt_chunk.GetEntryName().c_str());
tgt_chunk.ChangeDeflateChunkToNormal();
src_chunk.ChangeDeflateChunkToNormal();
}
}
// For images, we need to maintain the parallel structure of the chunk lists, so do the merging
// in both the source and target lists.
tgt_image->MergeAdjacentNormalChunks();
src_image->MergeAdjacentNormalChunks();
if (tgt_image->NumOfChunks() != src_image->NumOfChunks()) {
// This shouldn't happen.
printf("merging normal chunks went awry\n");
return false;
}
return true;
}
// In image mode, generate patches against the given source chunks and bonus_data; write the
// result to |patch_name|.
bool ImageModeImage::GeneratePatches(const ImageModeImage& tgt_image,
const ImageModeImage& src_image,
const std::string& patch_name) {
printf("Construct patches for %zu chunks...\n", tgt_image.NumOfChunks());
std::vector<PatchChunk> patch_chunks;
patch_chunks.reserve(tgt_image.NumOfChunks());
for (size_t i = 0; i < tgt_image.NumOfChunks(); i++) {
const auto& tgt_chunk = tgt_image[i];
const auto& src_chunk = src_image[i];
if (PatchChunk::RawDataIsSmaller(tgt_chunk, 0)) {
patch_chunks.emplace_back(tgt_chunk);
continue;
}
std::vector<uint8_t> patch_data;
if (!ImageChunk::MakePatch(tgt_chunk, src_chunk, &patch_data, nullptr)) {
printf("Failed to generate patch for target chunk %zu: ", i);
return false;
}
printf("patch %3zu is %zu bytes (of %zu)\n", i, patch_data.size(),
tgt_chunk.GetRawDataLength());
if (PatchChunk::RawDataIsSmaller(tgt_chunk, patch_data.size())) {
patch_chunks.emplace_back(tgt_chunk);
} else {
patch_chunks.emplace_back(tgt_chunk, src_chunk, std::move(patch_data));
}
}
CHECK_EQ(tgt_image.NumOfChunks(), patch_chunks.size());
android::base::unique_fd patch_fd(
open(patch_name.c_str(), O_CREAT | O_WRONLY | O_TRUNC, S_IRUSR | S_IWUSR));
if (patch_fd == -1) {
printf("failed to open \"%s\": %s\n", patch_name.c_str(), strerror(errno));
return false;
}
return PatchChunk::WritePatchDataToFd(patch_chunks, patch_fd);
}
int imgdiff(int argc, const char** argv) {
bool zip_mode = false;
std::vector<uint8_t> bonus_data;
size_t blocks_limit = 0;
std::string debug_dir;
int opt;
int option_index;
optind = 1; // Reset the getopt state so that we can call it multiple times for test.
while ((opt = getopt_long(argc, const_cast<char**>(argv), "zb:", OPTIONS, &option_index)) != -1) {
switch (opt) {
case 'z':
zip_mode = true;
break;
case 'b': {
android::base::unique_fd fd(open(optarg, O_RDONLY));
if (fd == -1) {
printf("failed to open bonus file %s: %s\n", optarg, strerror(errno));
return 1;
}
struct stat st;
if (fstat(fd, &st) != 0) {
printf("failed to stat bonus file %s: %s\n", optarg, strerror(errno));
return 1;
}
size_t bonus_size = st.st_size;
bonus_data.resize(bonus_size);
if (!android::base::ReadFully(fd, bonus_data.data(), bonus_size)) {
printf("failed to read bonus file %s: %s\n", optarg, strerror(errno));
return 1;
}
break;
}
case 0: {
std::string name = OPTIONS[option_index].name;
if (name == "block-limit" && !android::base::ParseUint(optarg, &blocks_limit)) {
printf("failed to parse size blocks_limit: %s\n", optarg);
return 1;
} else if (name == "debug-dir") {
debug_dir = optarg;
}
break;
}
default:
printf("unexpected opt: %s\n", optarg);
return 2;
}
}
if (argc - optind != 3) {
printf("usage: %s [options] <src-img> <tgt-img> <patch-file>\n", argv[0]);
printf(
" -z <zip-mode>, Generate patches in zip mode, src and tgt should be zip files.\n"
" -b <bonus-file>, Bonus file in addition to src, image mode only.\n"
" --block-limit, For large zips, split the src and tgt based on the block limit;\n"
" and generate patches between each pair of pieces. Concatenate these\n"
" patches together and output them into <patch-file>.\n"
" --debug_dir, Debug directory to put the split srcs and patches, zip mode only.\n");
return 2;
}
if (zip_mode) {
ZipModeImage src_image(true, blocks_limit * BLOCK_SIZE);
ZipModeImage tgt_image(false, blocks_limit * BLOCK_SIZE);
if (!src_image.Initialize(argv[optind])) {
return 1;
}
if (!tgt_image.Initialize(argv[optind + 1])) {
return 1;
}
if (!ZipModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
// TODO save and output the split information so that caller can create split transfer lists
// accordingly.
// Compute bsdiff patches for each chunk's data (the uncompressed data, in the case of
// deflate chunks).
if (blocks_limit > 0) {
std::vector<ZipModeImage> split_tgt_images;
std::vector<ZipModeImage> split_src_images;
std::vector<SortedRangeSet> split_src_ranges;
ZipModeImage::SplitZipModeImageWithLimit(tgt_image, src_image, &split_tgt_images,
&split_src_images, &split_src_ranges);
if (!ZipModeImage::GeneratePatches(split_tgt_images, split_src_images, split_src_ranges,
argv[optind + 2], debug_dir)) {
return 1;
}
} else if (!ZipModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
return 1;
}
} else {
ImageModeImage src_image(true);
ImageModeImage tgt_image(false);
if (!src_image.Initialize(argv[optind])) {
return 1;
}
if (!tgt_image.Initialize(argv[optind + 1])) {
return 1;
}
if (!ImageModeImage::CheckAndProcessChunks(&tgt_image, &src_image)) {
return 1;
}
if (!bonus_data.empty() && !src_image.SetBonusData(bonus_data)) {
return 1;
}
if (!ImageModeImage::GeneratePatches(tgt_image, src_image, argv[optind + 2])) {
return 1;
}
}
return 0;
}