blob: 0f90ec894e22548911c4663949b1b6d59d3934b0 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_x86_64.h"
#include "base/casts.h"
#include "base/memory_region.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "thread.h"
namespace art {
namespace x86_64 {
std::ostream& operator<<(std::ostream& os, const CpuRegister& reg) {
return os << reg.AsRegister();
}
std::ostream& operator<<(std::ostream& os, const XmmRegister& reg) {
return os << reg.AsFloatRegister();
}
std::ostream& operator<<(std::ostream& os, const X87Register& reg) {
return os << "ST" << static_cast<int>(reg);
}
std::ostream& operator<<(std::ostream& os, const Address& addr) {
switch (addr.mod()) {
case 0:
if (addr.rm() != RSP || addr.cpu_index().AsRegister() == RSP) {
return os << "(%" << addr.cpu_rm() << ")";
} else if (addr.base() == RBP) {
return os << static_cast<int>(addr.disp32()) << "(,%" << addr.cpu_index()
<< "," << (1 << addr.scale()) << ")";
}
return os << "(%" << addr.cpu_base() << ",%"
<< addr.cpu_index() << "," << (1 << addr.scale()) << ")";
case 1:
if (addr.rm() != RSP || addr.cpu_index().AsRegister() == RSP) {
return os << static_cast<int>(addr.disp8()) << "(%" << addr.cpu_rm() << ")";
}
return os << static_cast<int>(addr.disp8()) << "(%" << addr.cpu_base() << ",%"
<< addr.cpu_index() << "," << (1 << addr.scale()) << ")";
case 2:
if (addr.rm() != RSP || addr.cpu_index().AsRegister() == RSP) {
return os << static_cast<int>(addr.disp32()) << "(%" << addr.cpu_rm() << ")";
}
return os << static_cast<int>(addr.disp32()) << "(%" << addr.cpu_base() << ",%"
<< addr.cpu_index() << "," << (1 << addr.scale()) << ")";
default:
return os << "<address?>";
}
}
bool X86_64Assembler::CpuHasAVXorAVX2FeatureFlag() {
if (has_AVX_ || has_AVX2_) {
return true;
}
return false;
}
void X86_64Assembler::call(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xFF);
EmitRegisterOperand(2, reg.LowBits());
}
void X86_64Assembler::call(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xFF);
EmitOperand(2, address);
}
void X86_64Assembler::call(Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xE8);
static const int kSize = 5;
// Offset by one because we already have emitted the opcode.
EmitLabel(label, kSize - 1);
}
void X86_64Assembler::pushq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0x50 + reg.LowBits());
}
void X86_64Assembler::pushq(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xFF);
EmitOperand(6, address);
}
void X86_64Assembler::pushq(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // pushq only supports 32b immediate.
if (imm.is_int8()) {
EmitUint8(0x6A);
EmitUint8(imm.value() & 0xFF);
} else {
EmitUint8(0x68);
EmitImmediate(imm);
}
}
void X86_64Assembler::popq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0x58 + reg.LowBits());
}
void X86_64Assembler::popq(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0x8F);
EmitOperand(0, address);
}
void X86_64Assembler::movq(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (imm.is_int32()) {
// 32 bit. Note: sign-extends.
EmitRex64(dst);
EmitUint8(0xC7);
EmitRegisterOperand(0, dst.LowBits());
EmitInt32(static_cast<int32_t>(imm.value()));
} else {
EmitRex64(dst);
EmitUint8(0xB8 + dst.LowBits());
EmitInt64(imm.value());
}
}
void X86_64Assembler::movl(CpuRegister dst, const Immediate& imm) {
CHECK(imm.is_int32());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitUint8(0xB8 + dst.LowBits());
EmitImmediate(imm);
}
void X86_64Assembler::movq(const Address& dst, const Immediate& imm) {
CHECK(imm.is_int32());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst);
EmitUint8(0xC7);
EmitOperand(0, dst);
EmitImmediate(imm);
}
void X86_64Assembler::movq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// 0x89 is movq r/m64 <- r64, with op1 in r/m and op2 in reg: so reverse EmitRex64
EmitRex64(src, dst);
EmitUint8(0x89);
EmitRegisterOperand(src.LowBits(), dst.LowBits());
}
void X86_64Assembler::movl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x8B);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x8B);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movl(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x8B);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movq(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(src, dst);
EmitUint8(0x89);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movl(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(src, dst);
EmitUint8(0x89);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movl(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitUint8(0xC7);
EmitOperand(0, dst);
EmitImmediate(imm);
}
void X86_64Assembler::movntl(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0xC3);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movntq(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(src, dst);
EmitUint8(0x0F);
EmitUint8(0xC3);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::cmov(Condition c, CpuRegister dst, CpuRegister src) {
cmov(c, dst, src, true);
}
void X86_64Assembler::cmov(Condition c, CpuRegister dst, CpuRegister src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex(false, is64bit, dst.NeedsRex(), false, src.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x40 + c);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::cmov(Condition c, CpuRegister dst, const Address& src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (is64bit) {
EmitRex64(dst, src);
} else {
EmitOptionalRex32(dst, src);
}
EmitUint8(0x0F);
EmitUint8(0x40 + c);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movzxb(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB6);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movzxb(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// Byte register is only in the source register form, so we don't use
// EmitOptionalByteRegNormalizingRex32(dst, src);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB6);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movsxb(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBE);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movsxb(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// Byte register is only in the source register form, so we don't use
// EmitOptionalByteRegNormalizingRex32(dst, src);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBE);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movb(CpuRegister /*dst*/, const Address& /*src*/) {
LOG(FATAL) << "Use movzxb or movsxb instead.";
}
void X86_64Assembler::movb(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(src, dst);
EmitUint8(0x88);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movb(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitUint8(0xC6);
EmitOperand(Register::RAX, dst);
CHECK(imm.is_int8());
EmitUint8(imm.value() & 0xFF);
}
void X86_64Assembler::movzxw(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB7);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movzxw(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB7);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movsxw(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBF);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movsxw(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBF);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movw(CpuRegister /*dst*/, const Address& /*src*/) {
LOG(FATAL) << "Use movzxw or movsxw instead.";
}
void X86_64Assembler::movw(const Address& dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOptionalRex32(src, dst);
EmitUint8(0x89);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movw(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOptionalRex32(dst);
EmitUint8(0xC7);
EmitOperand(Register::RAX, dst);
CHECK(imm.is_uint16() || imm.is_int16());
EmitUint8(imm.value() & 0xFF);
EmitUint8(imm.value() >> 8);
}
void X86_64Assembler::leaq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x8D);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::leal(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x8D);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movaps(XmmRegister dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovaps(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x28);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
/**VEX.128.0F.WIG 28 /r VMOVAPS xmm1, xmm2 */
void X86_64Assembler::vmovaps(XmmRegister dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
uint8_t byte_zero, byte_one, byte_two;
bool is_twobyte_form = true;
bool load = dst.NeedsRex();
bool store = !load;
if (src.NeedsRex()&& dst.NeedsRex()) {
is_twobyte_form = false;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// Instruction VEX Prefix
byte_zero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
if (is_twobyte_form) {
bool rex_bit = (load) ? dst.NeedsRex() : src.NeedsRex();
byte_one = EmitVexPrefixByteOne(rex_bit,
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_NONE);
} else {
byte_one = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src.NeedsRex(),
SET_VEX_M_0F);
byte_two = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_NONE);
}
EmitUint8(byte_zero);
EmitUint8(byte_one);
if (!is_twobyte_form) {
EmitUint8(byte_two);
}
// Instruction Opcode
if (is_twobyte_form && store) {
EmitUint8(0x29);
} else {
EmitUint8(0x28);
}
// Instruction Operands
if (is_twobyte_form && store) {
EmitXmmRegisterOperand(src.LowBits(), dst);
} else {
EmitXmmRegisterOperand(dst.LowBits(), src);
}
}
void X86_64Assembler::movaps(XmmRegister dst, const Address& src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovaps(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x28);
EmitOperand(dst.LowBits(), src);
}
/**VEX.128.0F.WIG 28 /r VMOVAPS xmm1, m128 */
void X86_64Assembler::vmovaps(XmmRegister dst, const Address& src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = false;
// Instruction VEX Prefix
uint8_t rex = src.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_b && !Rex_x) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x28);
// Instruction Operands
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movups(XmmRegister dst, const Address& src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovups(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst.LowBits(), src);
}
/** VEX.128.0F.WIG 10 /r VMOVUPS xmm1, m128 */
void X86_64Assembler::vmovups(XmmRegister dst, const Address& src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = false;
// Instruction VEX Prefix
uint8_t rex = src.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_x && !Rex_b) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x10);
// Instruction Operands
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movaps(const Address& dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovaps(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x29);
EmitOperand(src.LowBits(), dst);
}
/** VEX.128.0F.WIG 29 /r VMOVAPS m128, xmm1 */
void X86_64Assembler::vmovaps(const Address& dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = false;
// Instruction VEX Prefix
uint8_t rex = dst.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_b && !Rex_x) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x29);
// Instruction Operands
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movups(const Address& dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovups(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src.LowBits(), dst);
}
/** VEX.128.0F.WIG 11 /r VMOVUPS m128, xmm1 */
void X86_64Assembler::vmovups(const Address& dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = false;
// Instruction VEX Prefix
uint8_t rex = dst.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_b && !Rex_x) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x11);
// Instruction Operands
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movss(const Address& dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(src, dst); // Movss is MR encoding instead of the usual RM.
EmitUint8(0x0F);
EmitUint8(0x11);
EmitXmmRegisterOperand(src.LowBits(), dst);
}
void X86_64Assembler::movsxd(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x63);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::movsxd(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x63);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movd(XmmRegister dst, CpuRegister src) {
movd(dst, src, true);
}
void X86_64Assembler::movd(CpuRegister dst, XmmRegister src) {
movd(dst, src, true);
}
void X86_64Assembler::movd(XmmRegister dst, CpuRegister src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, is64bit, dst.NeedsRex(), false, src.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x6E);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::movd(CpuRegister dst, XmmRegister src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, is64bit, src.NeedsRex(), false, dst.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x7E);
EmitOperand(src.LowBits(), Operand(dst));
}
void X86_64Assembler::addss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::addss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::subss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::subss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::mulss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::mulss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::divss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::divss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::addps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::subps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vaddps(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x58);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::vsubps(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t byte_zero = 0x00, byte_one = 0x00, byte_two = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
byte_zero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg = X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
if (is_twobyte_form) {
byte_one = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
} else {
byte_one = EmitVexPrefixByteOne(dst.NeedsRex(), /*X=*/ false, src2.NeedsRex(), SET_VEX_M_0F);
byte_two = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
}
EmitUint8(byte_zero);
EmitUint8(byte_one);
if (!is_twobyte_form) {
EmitUint8(byte_two);
}
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::mulps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vmulps(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x59);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::divps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vdivps(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::flds(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(0, src);
}
void X86_64Assembler::fsts(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(2, dst);
}
void X86_64Assembler::fstps(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(3, dst);
}
void X86_64Assembler::movapd(XmmRegister dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovapd(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x28);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
/** VEX.128.66.0F.WIG 28 /r VMOVAPD xmm1, xmm2 */
void X86_64Assembler::vmovapd(XmmRegister dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = true;
if (src.NeedsRex() && dst.NeedsRex()) {
is_twobyte_form = false;
}
// Instruction VEX Prefix
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
bool load = dst.NeedsRex();
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
bool rex_bit = load ? dst.NeedsRex() : src.NeedsRex();
ByteOne = EmitVexPrefixByteOne(rex_bit,
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
if (is_twobyte_form && !load) {
EmitUint8(0x29);
} else {
EmitUint8(0x28);
}
// Instruction Operands
if (is_twobyte_form && !load) {
EmitXmmRegisterOperand(src.LowBits(), dst);
} else {
EmitXmmRegisterOperand(dst.LowBits(), src);
}
}
void X86_64Assembler::movapd(XmmRegister dst, const Address& src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovapd(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x28);
EmitOperand(dst.LowBits(), src);
}
/** VEX.128.66.0F.WIG 28 /r VMOVAPD xmm1, m128 */
void X86_64Assembler::vmovapd(XmmRegister dst, const Address& src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = false;
// Instruction VEX Prefix
uint8_t rex = src.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_b && !Rex_x) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x28);
// Instruction Operands
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movupd(XmmRegister dst, const Address& src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovupd(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst.LowBits(), src);
}
/** VEX.128.66.0F.WIG 10 /r VMOVUPD xmm1, m128 */
void X86_64Assembler::vmovupd(XmmRegister dst, const Address& src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero, ByteOne, ByteTwo;
// Instruction VEX Prefix
uint8_t rex = src.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_b && !Rex_x) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form)
EmitUint8(ByteTwo);
// Instruction Opcode
EmitUint8(0x10);
// Instruction Operands
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movapd(const Address& dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovapd(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x29);
EmitOperand(src.LowBits(), dst);
}
/** VEX.128.66.0F.WIG 29 /r VMOVAPD m128, xmm1 */
void X86_64Assembler::vmovapd(const Address& dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero, ByteOne, ByteTwo;
// Instruction VEX Prefix
uint8_t rex = dst.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_x && !Rex_b) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x29);
// Instruction Operands
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movupd(const Address& dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovupd(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src.LowBits(), dst);
}
/** VEX.128.66.0F.WIG 11 /r VMOVUPD m128, xmm1 */
void X86_64Assembler::vmovupd(const Address& dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero, ByteOne, ByteTwo;
// Instruction VEX Prefix
uint8_t rex = dst.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_x && !Rex_b) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x11);
// Instruction Operands
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x10);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movsd(const Address& dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x11);
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(src, dst); // Movsd is MR encoding instead of the usual RM.
EmitUint8(0x0F);
EmitUint8(0x11);
EmitXmmRegisterOperand(src.LowBits(), dst);
}
void X86_64Assembler::addsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::addsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::subsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::subsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::mulsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::mulsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::divsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::divsd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::addpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x58);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vaddpd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x58);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::subpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vsubpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x5C);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::mulpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x59);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vmulpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x59);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::divpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vdivpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x5E);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::movdqa(XmmRegister dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovdqa(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x6F);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
/** VEX.128.66.0F.WIG 6F /r VMOVDQA xmm1, xmm2 */
void X86_64Assembler::vmovdqa(XmmRegister dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = true;
// Instruction VEX Prefix
if (src.NeedsRex() && dst.NeedsRex()) {
is_twobyte_form = false;
}
bool load = dst.NeedsRex();
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
bool rex_bit = load ? dst.NeedsRex() : src.NeedsRex();
ByteOne = EmitVexPrefixByteOne(rex_bit,
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
if (is_twobyte_form && !load) {
EmitUint8(0x7F);
} else {
EmitUint8(0x6F);
}
// Instruction Operands
if (is_twobyte_form && !load) {
EmitXmmRegisterOperand(src.LowBits(), dst);
} else {
EmitXmmRegisterOperand(dst.LowBits(), src);
}
}
void X86_64Assembler::movdqa(XmmRegister dst, const Address& src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovdqa(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x6F);
EmitOperand(dst.LowBits(), src);
}
/** VEX.128.66.0F.WIG 6F /r VMOVDQA xmm1, m128 */
void X86_64Assembler::vmovdqa(XmmRegister dst, const Address& src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = false;
// Instruction VEX Prefix
uint8_t rex = src.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_x && !Rex_b) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x6F);
// Instruction Operands
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movdqu(XmmRegister dst, const Address& src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovdqu(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x6F);
EmitOperand(dst.LowBits(), src);
}
/** VEX.128.F3.0F.WIG 6F /r VMOVDQU xmm1, m128
Load Unaligned */
void X86_64Assembler::vmovdqu(XmmRegister dst, const Address& src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = false;
// Instruction VEX Prefix
uint8_t rex = src.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_x && !Rex_b) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_F3);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_F3);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x6F);
// Instruction Operands
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::movdqa(const Address& dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovdqa(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x7F);
EmitOperand(src.LowBits(), dst);
}
/** VEX.128.66.0F.WIG 7F /r VMOVDQA m128, xmm1 */
void X86_64Assembler::vmovdqa(const Address& dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero, ByteOne, ByteTwo;
// Instruction VEX Prefix
uint8_t rex = dst.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_x && !Rex_b) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x7F);
// Instruction Operands
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::movdqu(const Address& dst, XmmRegister src) {
if (CpuHasAVXorAVX2FeatureFlag()) {
vmovdqu(dst, src);
return;
}
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0x7F);
EmitOperand(src.LowBits(), dst);
}
/** VEX.128.F3.0F.WIG 7F /r VMOVDQU m128, xmm1 */
void X86_64Assembler::vmovdqu(const Address& dst, XmmRegister src) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero, ByteOne, ByteTwo;
bool is_twobyte_form = false;
// Instruction VEX Prefix
uint8_t rex = dst.rex();
bool Rex_x = rex & GET_REX_X;
bool Rex_b = rex & GET_REX_B;
if (!Rex_b && !Rex_x) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
X86_64ManagedRegister vvvv_reg = ManagedRegister::NoRegister().AsX86_64();
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
vvvv_reg,
SET_VEX_L_128,
SET_VEX_PP_F3);
} else {
ByteOne = EmitVexPrefixByteOne(src.NeedsRex(),
Rex_x,
Rex_b,
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false,
SET_VEX_L_128,
SET_VEX_PP_F3);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
// Instruction Opcode
EmitUint8(0x7F);
// Instruction Operands
EmitOperand(src.LowBits(), dst);
}
void X86_64Assembler::paddb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xFC);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpaddb(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteOne = 0x00, ByteZero = 0x00, ByteTwo = 0x00;
bool is_twobyte_form = true;
if (add_right.NeedsRex()) {
is_twobyte_form = false;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xFC);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::psubb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xF8);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpsubb(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xF8);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::paddw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xFD);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpaddw(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xFD);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::psubw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xF9);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpsubw(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xF9);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::pmullw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xD5);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpmullw(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xD5);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::paddd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xFE);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpaddd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xFE);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::psubd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xFA);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pmulld(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x40);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpmulld(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
ByteZero = EmitVexPrefixByteZero(/*is_twobyte_form*/ false);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F_38);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
EmitUint8(ByteZero);
EmitUint8(ByteOne);
EmitUint8(ByteTwo);
EmitUint8(0x40);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::paddq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xD4);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpaddq(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xD4);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::psubq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xFB);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpsubq(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xFB);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::paddusb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xDC);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::paddsb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xEC);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::paddusw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xDD);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::paddsw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xED);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::psubusb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xD8);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::psubsb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xE8);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpsubd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!add_right.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(add_left.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
add_right.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xFA);
EmitXmmRegisterOperand(dst.LowBits(), add_right);
}
void X86_64Assembler::psubusw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xD9);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::psubsw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xE9);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtsi2ss(XmmRegister dst, CpuRegister src) {
cvtsi2ss(dst, src, false);
}
void X86_64Assembler::cvtsi2ss(XmmRegister dst, CpuRegister src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
if (is64bit) {
// Emit a REX.W prefix if the operand size is 64 bits.
EmitRex64(dst, src);
} else {
EmitOptionalRex32(dst, src);
}
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::cvtsi2ss(XmmRegister dst, const Address& src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
if (is64bit) {
// Emit a REX.W prefix if the operand size is 64 bits.
EmitRex64(dst, src);
} else {
EmitOptionalRex32(dst, src);
}
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtsi2sd(XmmRegister dst, CpuRegister src) {
cvtsi2sd(dst, src, false);
}
void X86_64Assembler::cvtsi2sd(XmmRegister dst, CpuRegister src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
if (is64bit) {
// Emit a REX.W prefix if the operand size is 64 bits.
EmitRex64(dst, src);
} else {
EmitOptionalRex32(dst, src);
}
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::cvtsi2sd(XmmRegister dst, const Address& src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
if (is64bit) {
// Emit a REX.W prefix if the operand size is 64 bits.
EmitRex64(dst, src);
} else {
EmitOptionalRex32(dst, src);
}
EmitUint8(0x0F);
EmitUint8(0x2A);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtss2si(CpuRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x2D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtss2sd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtss2sd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtsd2si(CpuRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x2D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvttss2si(CpuRegister dst, XmmRegister src) {
cvttss2si(dst, src, false);
}
void X86_64Assembler::cvttss2si(CpuRegister dst, XmmRegister src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
if (is64bit) {
// Emit a REX.W prefix if the operand size is 64 bits.
EmitRex64(dst, src);
} else {
EmitOptionalRex32(dst, src);
}
EmitUint8(0x0F);
EmitUint8(0x2C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvttsd2si(CpuRegister dst, XmmRegister src) {
cvttsd2si(dst, src, false);
}
void X86_64Assembler::cvttsd2si(CpuRegister dst, XmmRegister src, bool is64bit) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
if (is64bit) {
// Emit a REX.W prefix if the operand size is 64 bits.
EmitRex64(dst, src);
} else {
EmitOptionalRex32(dst, src);
}
EmitUint8(0x0F);
EmitUint8(0x2C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtsd2ss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtsd2ss(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5A);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtdq2ps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5B);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::cvtdq2pd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xE6);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::comiss(XmmRegister a, XmmRegister b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitXmmRegisterOperand(a.LowBits(), b);
}
void X86_64Assembler::comiss(XmmRegister a, const Address& b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitOperand(a.LowBits(), b);
}
void X86_64Assembler::comisd(XmmRegister a, XmmRegister b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitXmmRegisterOperand(a.LowBits(), b);
}
void X86_64Assembler::comisd(XmmRegister a, const Address& b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2F);
EmitOperand(a.LowBits(), b);
}
void X86_64Assembler::ucomiss(XmmRegister a, XmmRegister b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2E);
EmitXmmRegisterOperand(a.LowBits(), b);
}
void X86_64Assembler::ucomiss(XmmRegister a, const Address& b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2E);
EmitOperand(a.LowBits(), b);
}
void X86_64Assembler::ucomisd(XmmRegister a, XmmRegister b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2E);
EmitXmmRegisterOperand(a.LowBits(), b);
}
void X86_64Assembler::ucomisd(XmmRegister a, const Address& b) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(a, b);
EmitUint8(0x0F);
EmitUint8(0x2E);
EmitOperand(a.LowBits(), b);
}
void X86_64Assembler::roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x3A);
EmitUint8(0x0B);
EmitXmmRegisterOperand(dst.LowBits(), src);
EmitUint8(imm.value());
}
void X86_64Assembler::roundss(XmmRegister dst, XmmRegister src, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x3A);
EmitUint8(0x0A);
EmitXmmRegisterOperand(dst.LowBits(), src);
EmitUint8(imm.value());
}
void X86_64Assembler::sqrtsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x51);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::sqrtss(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x51);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorpd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorps(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x57);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pxor(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xEF);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
/* VEX.128.66.0F.WIG EF /r VPXOR xmm1, xmm2, xmm3/m128 */
void X86_64Assembler::vpxor(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xEF);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
/* VEX.128.0F.WIG 57 /r VXORPS xmm1,xmm2, xmm3/m128 */
void X86_64Assembler::vxorps(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x57);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
/* VEX.128.66.0F.WIG 57 /r VXORPD xmm1,xmm2, xmm3/m128 */
void X86_64Assembler::vxorpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x57);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::andpd(XmmRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x54);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::andpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x54);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::andps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x54);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pand(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xDB);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
/* VEX.128.66.0F.WIG DB /r VPAND xmm1, xmm2, xmm3/m128 */
void X86_64Assembler::vpand(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xDB);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
/* VEX.128.0F 54 /r VANDPS xmm1,xmm2, xmm3/m128 */
void X86_64Assembler::vandps(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x54);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
/* VEX.128.66.0F 54 /r VANDPD xmm1, xmm2, xmm3/m128 */
void X86_64Assembler::vandpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x54);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::andn(CpuRegister dst, CpuRegister src1, CpuRegister src2) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t byte_zero = EmitVexPrefixByteZero(/*is_twobyte_form=*/ false);
uint8_t byte_one = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F_38);
uint8_t byte_two = EmitVexPrefixByteTwo(/*W=*/ true,
X86_64ManagedRegister::FromCpuRegister(src1.AsRegister()),
SET_VEX_L_128,
SET_VEX_PP_NONE);
EmitUint8(byte_zero);
EmitUint8(byte_one);
EmitUint8(byte_two);
// Opcode field
EmitUint8(0xF2);
EmitRegisterOperand(dst.LowBits(), src2.LowBits());
}
void X86_64Assembler::andnpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x55);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::andnps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x55);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pandn(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xDF);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
/* VEX.128.66.0F.WIG DF /r VPANDN xmm1, xmm2, xmm3/m128 */
void X86_64Assembler::vpandn(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xDF);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
/* VEX.128.0F 55 /r VANDNPS xmm1, xmm2, xmm3/m128 */
void X86_64Assembler::vandnps(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x55);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
/* VEX.128.66.0F 55 /r VANDNPD xmm1, xmm2, xmm3/m128 */
void X86_64Assembler::vandnpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x55);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::orpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x56);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::orps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x56);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::por(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xEB);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
/* VEX.128.66.0F.WIG EB /r VPOR xmm1, xmm2, xmm3/m128 */
void X86_64Assembler::vpor(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xEB);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
/* VEX.128.0F 56 /r VORPS xmm1,xmm2, xmm3/m128 */
void X86_64Assembler::vorps(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_NONE);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x56);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
/* VEX.128.66.0F 56 /r VORPD xmm1,xmm2, xmm3/m128 */
void X86_64Assembler::vorpd(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0x56);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::pavgb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xE0);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pavgw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xE3);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::psadbw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xF6);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pmaddwd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xF5);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::vpmaddwd(XmmRegister dst, XmmRegister src1, XmmRegister src2) {
DCHECK(CpuHasAVXorAVX2FeatureFlag());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
bool is_twobyte_form = false;
uint8_t ByteZero = 0x00, ByteOne = 0x00, ByteTwo = 0x00;
if (!src2.NeedsRex()) {
is_twobyte_form = true;
}
ByteZero = EmitVexPrefixByteZero(is_twobyte_form);
X86_64ManagedRegister vvvv_reg =
X86_64ManagedRegister::FromXmmRegister(src1.AsFloatRegister());
if (is_twobyte_form) {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(), vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
} else {
ByteOne = EmitVexPrefixByteOne(dst.NeedsRex(),
/*X=*/ false,
src2.NeedsRex(),
SET_VEX_M_0F);
ByteTwo = EmitVexPrefixByteTwo(/*W=*/ false, vvvv_reg, SET_VEX_L_128, SET_VEX_PP_66);
}
EmitUint8(ByteZero);
EmitUint8(ByteOne);
if (!is_twobyte_form) {
EmitUint8(ByteTwo);
}
EmitUint8(0xF5);
EmitXmmRegisterOperand(dst.LowBits(), src2);
}
void X86_64Assembler::phaddw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x01);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::phaddd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x02);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::haddps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x7C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::haddpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x7C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::phsubw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x05);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::phsubd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x06);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::hsubps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x7D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::hsubpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x7D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pminsb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x38);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pmaxsb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x3C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pminsw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xEA);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pmaxsw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xEE);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pminsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x39);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pmaxsd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x3D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pminub(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xDA);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pmaxub(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xDE);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pminuw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x3A);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pmaxuw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x3E);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pminud(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x3B);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pmaxud(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x3F);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::minps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::maxps(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5F);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::minpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::maxpd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x5F);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pcmpeqb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x74);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pcmpeqw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x75);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pcmpeqd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x76);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pcmpeqq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x29);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pcmpgtb(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x64);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pcmpgtw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x65);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pcmpgtd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x66);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::pcmpgtq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x38);
EmitUint8(0x37);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::shufpd(XmmRegister dst, XmmRegister src, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC6);
EmitXmmRegisterOperand(dst.LowBits(), src);
EmitUint8(imm.value());
}
void X86_64Assembler::shufps(XmmRegister dst, XmmRegister src, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xC6);
EmitXmmRegisterOperand(dst.LowBits(), src);
EmitUint8(imm.value());
}
void X86_64Assembler::pshufd(XmmRegister dst, XmmRegister src, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x70);
EmitXmmRegisterOperand(dst.LowBits(), src);
EmitUint8(imm.value());
}
void X86_64Assembler::punpcklbw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x60);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::punpcklwd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x61);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::punpckldq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x62);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::punpcklqdq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x6C);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::punpckhbw(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x68);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::punpckhwd(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x69);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::punpckhdq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x6A);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::punpckhqdq(XmmRegister dst, XmmRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0x6D);
EmitXmmRegisterOperand(dst.LowBits(), src);
}
void X86_64Assembler::psllw(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x71);
EmitXmmRegisterOperand(6, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::pslld(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x72);
EmitXmmRegisterOperand(6, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::psllq(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x73);
EmitXmmRegisterOperand(6, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::psraw(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x71);
EmitXmmRegisterOperand(4, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::psrad(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x72);
EmitXmmRegisterOperand(4, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::psrlw(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x71);
EmitXmmRegisterOperand(2, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::psrld(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x72);
EmitXmmRegisterOperand(2, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::psrlq(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x73);
EmitXmmRegisterOperand(2, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::psrldq(XmmRegister reg, const Immediate& shift_count) {
DCHECK(shift_count.is_uint8());
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0x73);
EmitXmmRegisterOperand(3, reg);
EmitUint8(shift_count.value());
}
void X86_64Assembler::fldl(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(0, src);
}
void X86_64Assembler::fstl(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(2, dst);
}
void X86_64Assembler::fstpl(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitOperand(3, dst);
}
void X86_64Assembler::fstsw() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x9B);
EmitUint8(0xDF);
EmitUint8(0xE0);
}
void X86_64Assembler::fnstcw(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(7, dst);
}
void X86_64Assembler::fldcw(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitOperand(5, src);
}
void X86_64Assembler::fistpl(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDF);
EmitOperand(7, dst);
}
void X86_64Assembler::fistps(const Address& dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDB);
EmitOperand(3, dst);
}
void X86_64Assembler::fildl(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDF);
EmitOperand(5, src);
}
void X86_64Assembler::filds(const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDB);
EmitOperand(0, src);
}
void X86_64Assembler::fincstp() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xF7);
}
void X86_64Assembler::ffree(const Immediate& index) {
CHECK_LT(index.value(), 7);
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDD);
EmitUint8(0xC0 + index.value());
}
void X86_64Assembler::fsin() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xFE);
}
void X86_64Assembler::fcos() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xFF);
}
void X86_64Assembler::fptan() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xF2);
}
void X86_64Assembler::fucompp() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xDA);
EmitUint8(0xE9);
}
void X86_64Assembler::fprem() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xD9);
EmitUint8(0xF8);
}
bool X86_64Assembler::try_xchg_rax(CpuRegister dst,
CpuRegister src,
void (X86_64Assembler::*prefix_fn)(CpuRegister)) {
Register src_reg = src.AsRegister();
Register dst_reg = dst.AsRegister();
if (src_reg != RAX && dst_reg != RAX) {
return false;
}
if (dst_reg == RAX) {
std::swap(src_reg, dst_reg);
}
if (dst_reg != RAX) {
// Prefix is needed only if one of the registers is not RAX, otherwise it's a pure NOP.
(this->*prefix_fn)(CpuRegister(dst_reg));
}
EmitUint8(0x90 + CpuRegister(dst_reg).LowBits());
return true;
}
void X86_64Assembler::xchgb(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// There is no short version for AL.
EmitOptionalByteRegNormalizingRex32(dst, src, /*normalize_both=*/ true);
EmitUint8(0x86);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::xchgb(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(reg, address);
EmitUint8(0x86);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::xchgw(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
if (try_xchg_rax(dst, src, &X86_64Assembler::EmitOptionalRex32)) {
// A short version for AX.
return;
}
// General case.
EmitOptionalRex32(dst, src);
EmitUint8(0x87);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::xchgw(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOptionalRex32(reg, address);
EmitUint8(0x87);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::xchgl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (try_xchg_rax(dst, src, &X86_64Assembler::EmitOptionalRex32)) {
// A short version for EAX.
return;
}
// General case.
EmitOptionalRex32(dst, src);
EmitUint8(0x87);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::xchgl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x87);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::xchgq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (try_xchg_rax(dst, src, &X86_64Assembler::EmitRex64)) {
// A short version for RAX.
return;
}
// General case.
EmitRex64(dst, src);
EmitUint8(0x87);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::xchgq(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg, address);
EmitUint8(0x87);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::xaddb(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(src, dst, /*normalize_both=*/ true);
EmitUint8(0x0F);
EmitUint8(0xC0);
EmitRegisterOperand(src.LowBits(), dst.LowBits());
}
void X86_64Assembler::xaddb(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xC0);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::xaddw(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0xC1);
EmitRegisterOperand(src.LowBits(), dst.LowBits());
}
void X86_64Assembler::xaddw(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOptionalRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xC1);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::xaddl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(src, dst);
EmitUint8(0x0F);
EmitUint8(0xC1);
EmitRegisterOperand(src.LowBits(), dst.LowBits());
}
void X86_64Assembler::xaddl(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xC1);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::xaddq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(src, dst);
EmitUint8(0x0F);
EmitUint8(0xC1);
EmitRegisterOperand(src.LowBits(), dst.LowBits());
}
void X86_64Assembler::xaddq(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg, address);
EmitUint8(0x0F);
EmitUint8(0xC1);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpb(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32());
EmitOptionalRex32(address);
EmitUint8(0x80);
EmitOperand(7, address);
EmitUint8(imm.value() & 0xFF);
}
void X86_64Assembler::cmpw(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32());
EmitOperandSizeOverride();
EmitOptionalRex32(address);
EmitComplex(7, address, imm, /* is_16_op= */ true);
}
void X86_64Assembler::cmpl(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32());
EmitOptionalRex32(reg);
EmitComplex(7, Operand(reg), imm);
}
void X86_64Assembler::cmpl(CpuRegister reg0, CpuRegister reg1) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg0, reg1);
EmitUint8(0x3B);
EmitOperand(reg0.LowBits(), Operand(reg1));
}
void X86_64Assembler::cmpl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x3B);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpl(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x39);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpl(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32());
EmitOptionalRex32(address);
EmitComplex(7, address, imm);
}
void X86_64Assembler::cmpq(CpuRegister reg0, CpuRegister reg1) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg0, reg1);
EmitUint8(0x3B);
EmitOperand(reg0.LowBits(), Operand(reg1));
}
void X86_64Assembler::cmpq(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // cmpq only supports 32b immediate.
EmitRex64(reg);
EmitComplex(7, Operand(reg), imm);
}
void X86_64Assembler::cmpq(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg, address);
EmitUint8(0x3B);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpq(const Address& address, const Immediate& imm) {
CHECK(imm.is_int32()); // cmpq only supports 32b immediate.
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(address);
EmitComplex(7, address, imm);
}
void X86_64Assembler::addl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x03);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::addl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x03);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::testl(CpuRegister reg1, CpuRegister reg2) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg1, reg2);
EmitUint8(0x85);
EmitRegisterOperand(reg1.LowBits(), reg2.LowBits());
}
void X86_64Assembler::testl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x85);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::testl(CpuRegister reg, const Immediate& immediate) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// For registers that have a byte variant (RAX, RBX, RCX, and RDX)
// we only test the byte CpuRegister to keep the encoding short.
if (immediate.is_uint8() && reg.AsRegister() < 4) {
// Use zero-extended 8-bit immediate.
if (reg.AsRegister() == RAX) {
EmitUint8(0xA8);
} else {
EmitUint8(0xF6);
EmitUint8(0xC0 + reg.AsRegister());
}
EmitUint8(immediate.value() & 0xFF);
} else if (reg.AsRegister() == RAX) {
// Use short form if the destination is RAX.
EmitUint8(0xA9);
EmitImmediate(immediate);
} else {
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitOperand(0, Operand(reg));
EmitImmediate(immediate);
}
}
void X86_64Assembler::testq(CpuRegister reg1, CpuRegister reg2) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg1, reg2);
EmitUint8(0x85);
EmitRegisterOperand(reg1.LowBits(), reg2.LowBits());
}
void X86_64Assembler::testq(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg, address);
EmitUint8(0x85);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::testb(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitUint8(0xF6);
EmitOperand(Register::RAX, dst);
CHECK(imm.is_int8());
EmitUint8(imm.value() & 0xFF);
}
void X86_64Assembler::testl(const Address& dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitUint8(0xF7);
EmitOperand(0, dst);
EmitImmediate(imm);
}
void X86_64Assembler::andl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x23);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::andl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x23);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::andl(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitComplex(4, Operand(dst), imm);
}
void X86_64Assembler::andq(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // andq only supports 32b immediate.
EmitRex64(reg);
EmitComplex(4, Operand(reg), imm);
}
void X86_64Assembler::andq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x23);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::andq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x23);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::andw(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_uint16() || imm.is_int16()) << imm.value();
EmitUint8(0x66);
EmitOptionalRex32(address);
EmitComplex(4, address, imm, /* is_16_op= */ true);
}
void X86_64Assembler::orl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0B);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::orl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x0B);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::orl(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitComplex(1, Operand(dst), imm);
}
void X86_64Assembler::orq(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // orq only supports 32b immediate.
EmitRex64(dst);
EmitComplex(1, Operand(dst), imm);
}
void X86_64Assembler::orq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x0B);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::orq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x0B);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::xorl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x33);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::xorl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x33);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::xorl(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst);
EmitComplex(6, Operand(dst), imm);
}
void X86_64Assembler::xorq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x33);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::xorq(CpuRegister dst, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // xorq only supports 32b immediate.
EmitRex64(dst);
EmitComplex(6, Operand(dst), imm);
}
void X86_64Assembler::xorq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x33);
EmitOperand(dst.LowBits(), src);
}
#if 0
void X86_64Assembler::rex(bool force, bool w, Register* r, Register* x, Register* b) {
// REX.WRXB
// W - 64-bit operand
// R - MODRM.reg
// X - SIB.index
// B - MODRM.rm/SIB.base
uint8_t rex = force ? 0x40 : 0;
if (w) {
rex |= 0x48; // REX.W000
}
if (r != nullptr && *r >= Register::R8 && *r < Register::kNumberOfCpuRegisters) {
rex |= 0x44; // REX.0R00
*r = static_cast<Register>(*r - 8);
}
if (x != nullptr && *x >= Register::R8 && *x < Register::kNumberOfCpuRegisters) {
rex |= 0x42; // REX.00X0
*x = static_cast<Register>(*x - 8);
}
if (b != nullptr && *b >= Register::R8 && *b < Register::kNumberOfCpuRegisters) {
rex |= 0x41; // REX.000B
*b = static_cast<Register>(*b - 8);
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::rex_reg_mem(bool force, bool w, Register* dst, const Address& mem) {
// REX.WRXB
// W - 64-bit operand
// R - MODRM.reg
// X - SIB.index
// B - MODRM.rm/SIB.base
uint8_t rex = mem->rex();
if (force) {
rex |= 0x40; // REX.0000
}
if (w) {
rex |= 0x48; // REX.W000
}
if (dst != nullptr && *dst >= Register::R8 && *dst < Register::kNumberOfCpuRegisters) {
rex |= 0x44; // REX.0R00
*dst = static_cast<Register>(*dst - 8);
}
if (rex != 0) {
EmitUint8(rex);
}
}
void rex_mem_reg(bool force, bool w, Address* mem, Register* src);
#endif
void X86_64Assembler::addl(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitComplex(0, Operand(reg), imm);
}
void X86_64Assembler::addq(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // addq only supports 32b immediate.
EmitRex64(reg);
EmitComplex(0, Operand(reg), imm);
}
void X86_64Assembler::addq(CpuRegister dst, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, address);
EmitUint8(0x03);
EmitOperand(dst.LowBits(), address);
}
void X86_64Assembler::addq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// 0x01 is addq r/m64 <- r/m64 + r64, with op1 in r/m and op2 in reg: so reverse EmitRex64
EmitRex64(src, dst);
EmitUint8(0x01);
EmitRegisterOperand(src.LowBits(), dst.LowBits());
}
void X86_64Assembler::addl(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x01);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::addl(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitComplex(0, address, imm);
}
void X86_64Assembler::addw(const Address& address, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_uint16() || imm.is_int16()) << imm.value();
EmitUint8(0x66);
EmitOptionalRex32(address);
EmitComplex(0, address, imm, /* is_16_op= */ true);
}
void X86_64Assembler::subl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x2B);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::subl(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitComplex(5, Operand(reg), imm);
}
void X86_64Assembler::subq(CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // subq only supports 32b immediate.
EmitRex64(reg);
EmitComplex(5, Operand(reg), imm);
}
void X86_64Assembler::subq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x2B);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::subq(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg, address);
EmitUint8(0x2B);
EmitOperand(reg.LowBits() & 7, address);
}
void X86_64Assembler::subl(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x2B);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cdq() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x99);
}
void X86_64Assembler::cqo() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64();
EmitUint8(0x99);
}
void X86_64Assembler::idivl(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitUint8(0xF8 | reg.LowBits());
}
void X86_64Assembler::idivq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg);
EmitUint8(0xF7);
EmitUint8(0xF8 | reg.LowBits());
}
void X86_64Assembler::divl(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitUint8(0xF0 | reg.LowBits());
}
void X86_64Assembler::divq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg);
EmitUint8(0xF7);
EmitUint8(0xF0 | reg.LowBits());
}
void X86_64Assembler::imull(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(dst.LowBits(), Operand(src));
}
void X86_64Assembler::imull(CpuRegister dst, CpuRegister src, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // imull only supports 32b immediate.
EmitOptionalRex32(dst, src);
// See whether imm can be represented as a sign-extended 8bit value.
int32_t v32 = static_cast<int32_t>(imm.value());
if (IsInt<8>(v32)) {
// Sign-extension works.
EmitUint8(0x6B);
EmitOperand(dst.LowBits(), Operand(src));
EmitUint8(static_cast<uint8_t>(v32 & 0xFF));
} else {
// Not representable, use full immediate.
EmitUint8(0x69);
EmitOperand(dst.LowBits(), Operand(src));
EmitImmediate(imm);
}
}
void X86_64Assembler::imull(CpuRegister reg, const Immediate& imm) {
imull(reg, reg, imm);
}
void X86_64Assembler::imull(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::imulq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::imulq(CpuRegister reg, const Immediate& imm) {
imulq(reg, reg, imm);
}
void X86_64Assembler::imulq(CpuRegister dst, CpuRegister reg, const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int32()); // imulq only supports 32b immediate.
EmitRex64(dst, reg);
// See whether imm can be represented as a sign-extended 8bit value.
int64_t v64 = imm.value();
if (IsInt<8>(v64)) {
// Sign-extension works.
EmitUint8(0x6B);
EmitOperand(dst.LowBits(), Operand(reg));
EmitUint8(static_cast<uint8_t>(v64 & 0xFF));
} else {
// Not representable, use full immediate.
EmitUint8(0x69);
EmitOperand(dst.LowBits(), Operand(reg));
EmitImmediate(imm);
}
}
void X86_64Assembler::imulq(CpuRegister reg, const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg, address);
EmitUint8(0x0F);
EmitUint8(0xAF);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::imull(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitOperand(5, Operand(reg));
}
void X86_64Assembler::imulq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg);
EmitUint8(0xF7);
EmitOperand(5, Operand(reg));
}
void X86_64Assembler::imull(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xF7);
EmitOperand(5, address);
}
void X86_64Assembler::mull(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitOperand(4, Operand(reg));
}
void X86_64Assembler::mull(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xF7);
EmitOperand(4, address);
}
void X86_64Assembler::shll(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(false, 4, reg, imm);
}
void X86_64Assembler::shlq(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(true, 4, reg, imm);
}
void X86_64Assembler::shll(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(false, 4, operand, shifter);
}
void X86_64Assembler::shlq(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(true, 4, operand, shifter);
}
void X86_64Assembler::shrl(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(false, 5, reg, imm);
}
void X86_64Assembler::shrq(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(true, 5, reg, imm);
}
void X86_64Assembler::shrl(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(false, 5, operand, shifter);
}
void X86_64Assembler::shrq(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(true, 5, operand, shifter);
}
void X86_64Assembler::sarl(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(false, 7, reg, imm);
}
void X86_64Assembler::sarl(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(false, 7, operand, shifter);
}
void X86_64Assembler::sarq(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(true, 7, reg, imm);
}
void X86_64Assembler::sarq(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(true, 7, operand, shifter);
}
void X86_64Assembler::roll(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(false, 0, reg, imm);
}
void X86_64Assembler::roll(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(false, 0, operand, shifter);
}
void X86_64Assembler::rorl(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(false, 1, reg, imm);
}
void X86_64Assembler::rorl(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(false, 1, operand, shifter);
}
void X86_64Assembler::rolq(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(true, 0, reg, imm);
}
void X86_64Assembler::rolq(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(true, 0, operand, shifter);
}
void X86_64Assembler::rorq(CpuRegister reg, const Immediate& imm) {
EmitGenericShift(true, 1, reg, imm);
}
void X86_64Assembler::rorq(CpuRegister operand, CpuRegister shifter) {
EmitGenericShift(true, 1, operand, shifter);
}
void X86_64Assembler::negl(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitOperand(3, Operand(reg));
}
void X86_64Assembler::negq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg);
EmitUint8(0xF7);
EmitOperand(3, Operand(reg));
}
void X86_64Assembler::notl(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xF7);
EmitUint8(0xD0 | reg.LowBits());
}
void X86_64Assembler::notq(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg);
EmitUint8(0xF7);
EmitOperand(2, Operand(reg));
}
void X86_64Assembler::enter(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC8);
CHECK(imm.is_uint16()) << imm.value();
EmitUint8(imm.value() & 0xFF);
EmitUint8((imm.value() >> 8) & 0xFF);
EmitUint8(0x00);
}
void X86_64Assembler::leave() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC9);
}
void X86_64Assembler::ret() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC3);
}
void X86_64Assembler::ret(const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xC2);
CHECK(imm.is_uint16());
EmitUint8(imm.value() & 0xFF);
EmitUint8((imm.value() >> 8) & 0xFF);
}
void X86_64Assembler::nop() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x90);
}
void X86_64Assembler::int3() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xCC);
}
void X86_64Assembler::hlt() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF4);
}
void X86_64Assembler::j(Condition condition, Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
static const int kLongSize = 6;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
if (IsInt<8>(offset - kShortSize)) {
EmitUint8(0x70 + condition);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0x0F);
EmitUint8(0x80 + condition);
EmitInt32(offset - kLongSize);
}
} else {
EmitUint8(0x0F);
EmitUint8(0x80 + condition);
EmitLabelLink(label);
}
}
void X86_64Assembler::j(Condition condition, NearLabel* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
CHECK(IsInt<8>(offset - kShortSize));
EmitUint8(0x70 + condition);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0x70 + condition);
EmitLabelLink(label);
}
}
void X86_64Assembler::jrcxz(NearLabel* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
CHECK(IsInt<8>(offset - kShortSize));
EmitUint8(0xE3);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0xE3);
EmitLabelLink(label);
}
}
void X86_64Assembler::jmp(CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg);
EmitUint8(0xFF);
EmitRegisterOperand(4, reg.LowBits());
}
void X86_64Assembler::jmp(const Address& address) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(address);
EmitUint8(0xFF);
EmitOperand(4, address);
}
void X86_64Assembler::jmp(Label* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
static const int kLongSize = 5;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
if (IsInt<8>(offset - kShortSize)) {
EmitUint8(0xEB);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0xE9);
EmitInt32(offset - kLongSize);
}
} else {
EmitUint8(0xE9);
EmitLabelLink(label);
}
}
void X86_64Assembler::jmp(NearLabel* label) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
if (label->IsBound()) {
static const int kShortSize = 2;
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
CHECK(IsInt<8>(offset - kShortSize));
EmitUint8(0xEB);
EmitUint8((offset - kShortSize) & 0xFF);
} else {
EmitUint8(0xEB);
EmitLabelLink(label);
}
}
void X86_64Assembler::rep_movsw() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0xF3);
EmitUint8(0xA5);
}
X86_64Assembler* X86_64Assembler::lock() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF0);
return this;
}
void X86_64Assembler::cmpxchgb(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalByteRegNormalizingRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xB0);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpxchgw(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOperandSizeOverride();
EmitOptionalRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xB1);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpxchgl(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(reg, address);
EmitUint8(0x0F);
EmitUint8(0xB1);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::cmpxchgq(const Address& address, CpuRegister reg) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(reg, address);
EmitUint8(0x0F);
EmitUint8(0xB1);
EmitOperand(reg.LowBits(), address);
}
void X86_64Assembler::mfence() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x0F);
EmitUint8(0xAE);
EmitUint8(0xF0);
}
X86_64Assembler* X86_64Assembler::gs() {
// TODO: gs is a prefix and not an instruction
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x65);
return this;
}
void X86_64Assembler::AddImmediate(CpuRegister reg, const Immediate& imm) {
int value = imm.value();
if (value != 0) {
if (value > 0) {
addl(reg, imm);
} else {
subl(reg, Immediate(value));
}
}
}
void X86_64Assembler::setcc(Condition condition, CpuRegister dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
// RSP, RBP, RDI, RSI need rex prefix (else the pattern encodes ah/bh/ch/dh).
if (dst.NeedsRex() || dst.AsRegister() > 3) {
EmitOptionalRex(true, false, false, false, dst.NeedsRex());
}
EmitUint8(0x0F);
EmitUint8(0x90 + condition);
EmitUint8(0xC0 + dst.LowBits());
}
void X86_64Assembler::blsi(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t byte_zero = EmitVexPrefixByteZero(/*is_twobyte_form=*/ false);
uint8_t byte_one = EmitVexPrefixByteOne(/*R=*/ false,
/*X=*/ false,
src.NeedsRex(),
SET_VEX_M_0F_38);
uint8_t byte_two = EmitVexPrefixByteTwo(/*W=*/true,
X86_64ManagedRegister::FromCpuRegister(dst.AsRegister()),
SET_VEX_L_128,
SET_VEX_PP_NONE);
EmitUint8(byte_zero);
EmitUint8(byte_one);
EmitUint8(byte_two);
EmitUint8(0xF3);
EmitRegisterOperand(3, src.LowBits());
}
void X86_64Assembler::blsmsk(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t byte_zero = EmitVexPrefixByteZero(/*is_twobyte_form=*/ false);
uint8_t byte_one = EmitVexPrefixByteOne(/*R=*/ false,
/*X=*/ false,
src.NeedsRex(),
SET_VEX_M_0F_38);
uint8_t byte_two = EmitVexPrefixByteTwo(/*W=*/ true,
X86_64ManagedRegister::FromCpuRegister(dst.AsRegister()),
SET_VEX_L_128,
SET_VEX_PP_NONE);
EmitUint8(byte_zero);
EmitUint8(byte_one);
EmitUint8(byte_two);
EmitUint8(0xF3);
EmitRegisterOperand(2, src.LowBits());
}
void X86_64Assembler::blsr(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
uint8_t byte_zero = EmitVexPrefixByteZero(/*is_twobyte_form=*/false);
uint8_t byte_one = EmitVexPrefixByteOne(/*R=*/ false,
/*X=*/ false,
src.NeedsRex(),
SET_VEX_M_0F_38);
uint8_t byte_two = EmitVexPrefixByteTwo(/*W=*/ true,
X86_64ManagedRegister::FromCpuRegister(dst.AsRegister()),
SET_VEX_L_128,
SET_VEX_PP_NONE);
EmitUint8(byte_zero);
EmitUint8(byte_one);
EmitUint8(byte_two);
EmitUint8(0xF3);
EmitRegisterOperand(1, src.LowBits());
}
void X86_64Assembler::bswapl(CpuRegister dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex(false, false, false, false, dst.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0xC8 + dst.LowBits());
}
void X86_64Assembler::bswapq(CpuRegister dst) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex(false, true, false, false, dst.NeedsRex());
EmitUint8(0x0F);
EmitUint8(0xC8 + dst.LowBits());
}
void X86_64Assembler::bsfl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBC);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::bsfl(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBC);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::bsfq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBC);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::bsfq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBC);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::bsrl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBD);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::bsrl(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBD);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::bsrq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBD);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::bsrq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitRex64(dst, src);
EmitUint8(0x0F);
EmitUint8(0xBD);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::popcntl(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB8);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::popcntl(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitOptionalRex32(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB8);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::popcntq(CpuRegister dst, CpuRegister src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitRex64(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB8);
EmitRegisterOperand(dst.LowBits(), src.LowBits());
}
void X86_64Assembler::popcntq(CpuRegister dst, const Address& src) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitRex64(dst, src);
EmitUint8(0x0F);
EmitUint8(0xB8);
EmitOperand(dst.LowBits(), src);
}
void X86_64Assembler::repne_scasb() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF2);
EmitUint8(0xAE);
}
void X86_64Assembler::repne_scasw() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0xF2);
EmitUint8(0xAF);
}
void X86_64Assembler::repe_cmpsw() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0x66);
EmitUint8(0xF3);
EmitUint8(0xA7);
}
void X86_64Assembler::repe_cmpsl() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitUint8(0xA7);
}
void X86_64Assembler::repe_cmpsq() {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitUint8(0xF3);
EmitRex64();
EmitUint8(0xA7);
}
void X86_64Assembler::LoadDoubleConstant(XmmRegister dst, double value) {
// TODO: Need to have a code constants table.
int64_t constant = bit_cast<int64_t, double>(value);
pushq(Immediate(High32Bits(constant)));
pushq(Immediate(Low32Bits(constant)));
movsd(dst, Address(CpuRegister(RSP), 0));
addq(CpuRegister(RSP), Immediate(2 * sizeof(intptr_t)));
}
void X86_64Assembler::Align(int alignment, int offset) {
CHECK(IsPowerOfTwo(alignment));
// Emit nop instruction until the real position is aligned.
while (((offset + buffer_.GetPosition()) & (alignment-1)) != 0) {
nop();
}
}
void X86_64Assembler::Bind(Label* label) {
int bound = buffer_.Size();
CHECK(!label->IsBound()); // Labels can only be bound once.
while (label->IsLinked()) {
int position = label->LinkPosition();
int next = buffer_.Load<int32_t>(position);
buffer_.Store<int32_t>(position, bound - (position + 4));
label->position_ = next;
}
label->BindTo(bound);
}
void X86_64Assembler::Bind(NearLabel* label) {
int bound = buffer_.Size();
CHECK(!label->IsBound()); // Labels can only be bound once.
while (label->IsLinked()) {
int position = label->LinkPosition();
uint8_t delta = buffer_.Load<uint8_t>(position);
int offset = bound - (position + 1);
CHECK(IsInt<8>(offset));
buffer_.Store<int8_t>(position, offset);
label->position_ = delta != 0u ? label->position_ - delta : 0;
}
label->BindTo(bound);
}
void X86_64Assembler::EmitOperand(uint8_t reg_or_opcode, const Operand& operand) {
CHECK_GE(reg_or_opcode, 0);
CHECK_LT(reg_or_opcode, 8);
const int length = operand.length_;
CHECK_GT(length, 0);
// Emit the ModRM byte updated with the given reg value.
CHECK_EQ(operand.encoding_[0] & 0x38, 0);
EmitUint8(operand.encoding_[0] + (reg_or_opcode << 3));
// Emit the rest of the encoded operand.
for (int i = 1; i < length; i++) {
EmitUint8(operand.encoding_[i]);
}
AssemblerFixup* fixup = operand.GetFixup();
if (fixup != nullptr) {
EmitFixup(fixup);
}
}
void X86_64Assembler::EmitImmediate(const Immediate& imm, bool is_16_op) {
if (is_16_op) {
EmitUint8(imm.value() & 0xFF);
EmitUint8(imm.value() >> 8);
} else if (imm.is_int32()) {
EmitInt32(static_cast<int32_t>(imm.value()));
} else {
EmitInt64(imm.value());
}
}
void X86_64Assembler::EmitComplex(uint8_t reg_or_opcode,
const Operand& operand,
const Immediate& immediate,
bool is_16_op) {
CHECK_GE(reg_or_opcode, 0);
CHECK_LT(reg_or_opcode, 8);
if (immediate.is_int8()) {
// Use sign-extended 8-bit immediate.
EmitUint8(0x83);
EmitOperand(reg_or_opcode, operand);
EmitUint8(immediate.value() & 0xFF);
} else if (operand.IsRegister(CpuRegister(RAX))) {
// Use short form if the destination is eax.
EmitUint8(0x05 + (reg_or_opcode << 3));
EmitImmediate(immediate, is_16_op);
} else {
EmitUint8(0x81);
EmitOperand(reg_or_opcode, operand);
EmitImmediate(immediate, is_16_op);
}
}
void X86_64Assembler::EmitLabel(Label* label, int instruction_size) {
if (label->IsBound()) {
int offset = label->Position() - buffer_.Size();
CHECK_LE(offset, 0);
EmitInt32(offset - instruction_size);
} else {
EmitLabelLink(label);
}
}
void X86_64Assembler::EmitLabelLink(Label* label) {
CHECK(!label->IsBound());
int position = buffer_.Size();
EmitInt32(label->position_);
label->LinkTo(position);
}
void X86_64Assembler::EmitLabelLink(NearLabel* label) {
CHECK(!label->IsBound());
int position = buffer_.Size();
if (label->IsLinked()) {
// Save the delta in the byte that we have to play with.
uint32_t delta = position - label->LinkPosition();
CHECK(IsUint<8>(delta));
EmitUint8(delta & 0xFF);
} else {
EmitUint8(0);
}
label->LinkTo(position);
}
void X86_64Assembler::EmitGenericShift(bool wide,
int reg_or_opcode,
CpuRegister reg,
const Immediate& imm) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK(imm.is_int8());
if (wide) {
EmitRex64(reg);
} else {
EmitOptionalRex32(reg);
}
if (imm.value() == 1) {
EmitUint8(0xD1);
EmitOperand(reg_or_opcode, Operand(reg));
} else {
EmitUint8(0xC1);
EmitOperand(reg_or_opcode, Operand(reg));
EmitUint8(imm.value() & 0xFF);
}
}
void X86_64Assembler::EmitGenericShift(bool wide,
int reg_or_opcode,
CpuRegister operand,
CpuRegister shifter) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
CHECK_EQ(shifter.AsRegister(), RCX);
if (wide) {
EmitRex64(operand);
} else {
EmitOptionalRex32(operand);
}
EmitUint8(0xD3);
EmitOperand(reg_or_opcode, Operand(operand));
}
void X86_64Assembler::EmitOptionalRex(bool force, bool w, bool r, bool x, bool b) {
// REX.WRXB
// W - 64-bit operand
// R - MODRM.reg
// X - SIB.index
// B - MODRM.rm/SIB.base
uint8_t rex = force ? 0x40 : 0;
if (w) {
rex |= 0x48; // REX.W000
}
if (r) {
rex |= 0x44; // REX.0R00
}
if (x) {
rex |= 0x42; // REX.00X0
}
if (b) {
rex |= 0x41; // REX.000B
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitOptionalRex32(CpuRegister reg) {
EmitOptionalRex(false, false, false, false, reg.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, CpuRegister src) {
EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, XmmRegister src) {
EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, XmmRegister src) {
EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, CpuRegister src) {
EmitOptionalRex(false, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalRex32(const Operand& operand) {
uint8_t rex = operand.rex();
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitOptionalRex32(CpuRegister dst, const Operand& operand) {
uint8_t rex = operand.rex();
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitOptionalRex32(XmmRegister dst, const Operand& operand) {
uint8_t rex = operand.rex();
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::EmitRex64() {
EmitOptionalRex(false, true, false, false, false);
}
void X86_64Assembler::EmitRex64(CpuRegister reg) {
EmitOptionalRex(false, true, false, false, reg.NeedsRex());
}
void X86_64Assembler::EmitRex64(const Operand& operand) {
uint8_t rex = operand.rex();
rex |= 0x48; // REX.W000
EmitUint8(rex);
}
void X86_64Assembler::EmitRex64(CpuRegister dst, CpuRegister src) {
EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitRex64(XmmRegister dst, CpuRegister src) {
EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitRex64(CpuRegister dst, XmmRegister src) {
EmitOptionalRex(false, true, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitRex64(CpuRegister dst, const Operand& operand) {
uint8_t rex = 0x48 | operand.rex(); // REX.W000
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
EmitUint8(rex);
}
void X86_64Assembler::EmitRex64(XmmRegister dst, const Operand& operand) {
uint8_t rex = 0x48 | operand.rex(); // REX.W000
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
EmitUint8(rex);
}
void X86_64Assembler::EmitOptionalByteRegNormalizingRex32(CpuRegister dst,
CpuRegister src,
bool normalize_both) {
// SPL, BPL, SIL, DIL need the REX prefix.
bool force = src.AsRegister() > 3;
if (normalize_both) {
// Some instructions take two byte registers, such as `xchg bpl, al`, so they need the REX
// prefix if either `src` or `dst` needs it.
force |= dst.AsRegister() > 3;
} else {
// Other instructions take one byte register and one full register, such as `movzxb rax, bpl`.
// They need REX prefix only if `src` needs it, but not `dst`.
}
EmitOptionalRex(force, false, dst.NeedsRex(), false, src.NeedsRex());
}
void X86_64Assembler::EmitOptionalByteRegNormalizingRex32(CpuRegister dst, const Operand& operand) {
uint8_t rex = operand.rex();
// For dst, SPL, BPL, SIL, DIL need the rex prefix.
bool force = dst.AsRegister() > 3;
if (force) {
rex |= 0x40; // REX.0000
}
if (dst.NeedsRex()) {
rex |= 0x44; // REX.0R00
}
if (rex != 0) {
EmitUint8(rex);
}
}
void X86_64Assembler::AddConstantArea() {
ArrayRef<const int32_t> area = constant_area_.GetBuffer();
for (size_t i = 0, e = area.size(); i < e; i++) {
AssemblerBuffer::EnsureCapacity ensured(&buffer_);
EmitInt32(area[i]);
}
}
size_t ConstantArea::AppendInt32(int32_t v) {
size_t result = buffer_.size() * elem_size_;
buffer_.push_back(v);
return result;
}
size_t ConstantArea::AddInt32(int32_t v) {
// Look for an existing match.
for (size_t i = 0, e = buffer_.size(); i < e; i++) {
if (v == buffer_[i]) {
return i * elem_size_;
}
}
// Didn't match anything.
return AppendInt32(v);
}
size_t ConstantArea::AddInt64(int64_t v) {
int32_t v_low = v;
int32_t v_high = v >> 32;
if (buffer_.size() > 1) {
// Ensure we don't pass the end of the buffer.
for (size_t i = 0, e = buffer_.size() - 1; i < e; i++) {
if (v_low == buffer_[i] && v_high == buffer_[i + 1]) {
return i * elem_size_;
}
}
}
// Didn't match anything.
size_t result = buffer_.size() * elem_size_;
buffer_.push_back(v_low);
buffer_.push_back(v_high);
return result;
}
size_t ConstantArea::AddDouble(double v) {
// Treat the value as a 64-bit integer value.
return AddInt64(bit_cast<int64_t, double>(v));
}
size_t ConstantArea::AddFloat(float v) {
// Treat the value as a 32-bit integer value.
return AddInt32(bit_cast<int32_t, float>(v));
}
uint8_t X86_64Assembler::EmitVexPrefixByteZero(bool is_twobyte_form) {
// Vex Byte 0,
// Bits [7:0] must contain the value 11000101b (0xC5) for 2-byte Vex
// Bits [7:0] must contain the value 11000100b (0xC4) for 3-byte Vex
uint8_t vex_prefix = 0xC0;
if (is_twobyte_form) {
vex_prefix |= TWO_BYTE_VEX; // 2-Byte Vex
} else {
vex_prefix |= THREE_BYTE_VEX; // 3-Byte Vex
}
return vex_prefix;
}
uint8_t X86_64Assembler::EmitVexPrefixByteOne(bool R, bool X, bool B, int SET_VEX_M) {
// Vex Byte 1,
uint8_t vex_prefix = VEX_INIT;
/** Bit[7] This bit needs to be set to '1'
otherwise the instruction is LES or LDS */
if (!R) {
// R .
vex_prefix |= SET_VEX_R;
}
/** Bit[6] This bit needs to be set to '1'
otherwise the instruction is LES or LDS */
if (!X) {
// X .
vex_prefix |= SET_VEX_X;
}
/** Bit[5] This bit needs to be set to '1' */
if (!B) {
// B .
vex_prefix |= SET_VEX_B;
}
/** Bits[4:0], Based on the instruction documentaion */
vex_prefix |= SET_VEX_M;
return vex_prefix;
}
uint8_t X86_64Assembler::EmitVexPrefixByteOne(bool R,
X86_64ManagedRegister operand,
int SET_VEX_L,
int SET_VEX_PP) {
// Vex Byte 1,
uint8_t vex_prefix = VEX_INIT;
/** Bit[7] This bit needs to be set to '1'
otherwise the instruction is LES or LDS */
if (!R) {
// R .
vex_prefix |= SET_VEX_R;
}
/**Bits[6:3] - 'vvvv' the source or dest register specifier */
if (operand.IsNoRegister()) {
vex_prefix |= 0x78;
} else if (operand.IsXmmRegister()) {
XmmRegister vvvv = operand.AsXmmRegister();
int inverted_reg = 15 - static_cast<int>(vvvv.AsFloatRegister());
uint8_t reg = static_cast<uint8_t>(inverted_reg);
vex_prefix |= ((reg & 0x0F) << 3);
} else if (operand.IsCpuRegister()) {
CpuRegister vvvv = operand.AsCpuRegister();
int inverted_reg = 15 - static_cast<int>(vvvv.AsRegister());
uint8_t reg = static_cast<uint8_t>(inverted_reg);
vex_prefix |= ((reg & 0x0F) << 3);
}
/** Bit[2] - "L" If VEX.L = 1 indicates 256-bit vector operation,
VEX.L = 0 indicates 128 bit vector operation */
vex_prefix |= SET_VEX_L;
// Bits[1:0] - "pp"
vex_prefix |= SET_VEX_PP;
return vex_prefix;
}
uint8_t X86_64Assembler::EmitVexPrefixByteTwo(bool W,
X86_64ManagedRegister operand,
int SET_VEX_L,
int SET_VEX_PP) {
// Vex Byte 2,
uint8_t vex_prefix = VEX_INIT;
/** Bit[7] This bits needs to be set to '1' with default value.
When using C4H form of VEX prefix, REX.W value is ignored */
if (W) {
vex_prefix |= SET_VEX_W;
}
// Bits[6:3] - 'vvvv' the source or dest register specifier
if (operand.IsXmmRegister()) {
XmmRegister vvvv = operand.AsXmmRegister();
int inverted_reg = 15 - static_cast<int>(vvvv.AsFloatRegister());
uint8_t reg = static_cast<uint8_t>(inverted_reg);
vex_prefix |= ((reg & 0x0F) << 3);
} else if (operand.IsCpuRegister()) {
CpuRegister vvvv = operand.AsCpuRegister();
int inverted_reg = 15 - static_cast<int>(vvvv.AsRegister());
uint8_t reg = static_cast<uint8_t>(inverted_reg);
vex_prefix |= ((reg & 0x0F) << 3);
}
/** Bit[2] - "L" If VEX.L = 1 indicates 256-bit vector operation,
VEX.L = 0 indicates 128 bit vector operation */
vex_prefix |= SET_VEX_L;
// Bits[1:0] - "pp"
vex_prefix |= SET_VEX_PP;
return vex_prefix;
}
uint8_t X86_64Assembler::EmitVexPrefixByteTwo(bool W,
int SET_VEX_L,
int SET_VEX_PP) {
// Vex Byte 2,
uint8_t vex_prefix = VEX_INIT;
/** Bit[7] This bits needs to be set to '1' with default value.
When using C4H form of VEX prefix, REX.W value is ignored */
if (W) {
vex_prefix |= SET_VEX_W;
}
/** Bits[6:3] - 'vvvv' the source or dest register specifier */
vex_prefix |= (0x0F << 3);
/** Bit[2] - "L" If VEX.L = 1 indicates 256-bit vector operation,
VEX.L = 0 indicates 128 bit vector operation */
vex_prefix |= SET_VEX_L;
// Bits[1:0] - "pp"
if (SET_VEX_PP != SET_VEX_PP_NONE) {
vex_prefix |= SET_VEX_PP;
}
return vex_prefix;
}
} // namespace x86_64
} // namespace art