| /* |
| * Linux Socket Filter - Kernel level socket filtering |
| * |
| * Author: |
| * Jay Schulist <jschlst@samba.org> |
| * |
| * Based on the design of: |
| * - The Berkeley Packet Filter |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Andi Kleen - Fix a few bad bugs and races. |
| * Kris Katterjohn - Added many additional checks in sk_chk_filter() |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/fcntl.h> |
| #include <linux/socket.h> |
| #include <linux/in.h> |
| #include <linux/inet.h> |
| #include <linux/netdevice.h> |
| #include <linux/if_packet.h> |
| #include <linux/gfp.h> |
| #include <net/ip.h> |
| #include <net/protocol.h> |
| #include <net/netlink.h> |
| #include <linux/skbuff.h> |
| #include <net/sock.h> |
| #include <linux/errno.h> |
| #include <linux/timer.h> |
| #include <asm/uaccess.h> |
| #include <asm/unaligned.h> |
| #include <linux/filter.h> |
| #include <linux/reciprocal_div.h> |
| #include <linux/ratelimit.h> |
| #include <linux/seccomp.h> |
| #include <linux/if_vlan.h> |
| |
| /* No hurry in this branch |
| * |
| * Exported for the bpf jit load helper. |
| */ |
| void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size) |
| { |
| u8 *ptr = NULL; |
| |
| if (k >= SKF_NET_OFF) |
| ptr = skb_network_header(skb) + k - SKF_NET_OFF; |
| else if (k >= SKF_LL_OFF) |
| ptr = skb_mac_header(skb) + k - SKF_LL_OFF; |
| |
| if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb)) |
| return ptr; |
| return NULL; |
| } |
| |
| static inline void *load_pointer(const struct sk_buff *skb, int k, |
| unsigned int size, void *buffer) |
| { |
| if (k >= 0) |
| return skb_header_pointer(skb, k, size, buffer); |
| return bpf_internal_load_pointer_neg_helper(skb, k, size); |
| } |
| |
| /** |
| * sk_filter - run a packet through a socket filter |
| * @sk: sock associated with &sk_buff |
| * @skb: buffer to filter |
| * |
| * Run the filter code and then cut skb->data to correct size returned by |
| * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller |
| * than pkt_len we keep whole skb->data. This is the socket level |
| * wrapper to sk_run_filter. It returns 0 if the packet should |
| * be accepted or -EPERM if the packet should be tossed. |
| * |
| */ |
| int sk_filter(struct sock *sk, struct sk_buff *skb) |
| { |
| int err; |
| struct sk_filter *filter; |
| |
| /* |
| * If the skb was allocated from pfmemalloc reserves, only |
| * allow SOCK_MEMALLOC sockets to use it as this socket is |
| * helping free memory |
| */ |
| if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) |
| return -ENOMEM; |
| |
| err = security_sock_rcv_skb(sk, skb); |
| if (err) |
| return err; |
| |
| rcu_read_lock(); |
| filter = rcu_dereference(sk->sk_filter); |
| if (filter) { |
| unsigned int pkt_len = SK_RUN_FILTER(filter, skb); |
| |
| err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM; |
| } |
| rcu_read_unlock(); |
| |
| return err; |
| } |
| EXPORT_SYMBOL(sk_filter); |
| |
| /** |
| * sk_run_filter - run a filter on a socket |
| * @skb: buffer to run the filter on |
| * @fentry: filter to apply |
| * |
| * Decode and apply filter instructions to the skb->data. |
| * Return length to keep, 0 for none. @skb is the data we are |
| * filtering, @filter is the array of filter instructions. |
| * Because all jumps are guaranteed to be before last instruction, |
| * and last instruction guaranteed to be a RET, we dont need to check |
| * flen. (We used to pass to this function the length of filter) |
| */ |
| unsigned int sk_run_filter(const struct sk_buff *skb, |
| const struct sock_filter *fentry) |
| { |
| void *ptr; |
| u32 A = 0; /* Accumulator */ |
| u32 X = 0; /* Index Register */ |
| u32 mem[BPF_MEMWORDS]; /* Scratch Memory Store */ |
| u32 tmp; |
| int k; |
| |
| /* |
| * Process array of filter instructions. |
| */ |
| for (;; fentry++) { |
| #if defined(CONFIG_X86_32) |
| #define K (fentry->k) |
| #else |
| const u32 K = fentry->k; |
| #endif |
| |
| switch (fentry->code) { |
| case BPF_S_ALU_ADD_X: |
| A += X; |
| continue; |
| case BPF_S_ALU_ADD_K: |
| A += K; |
| continue; |
| case BPF_S_ALU_SUB_X: |
| A -= X; |
| continue; |
| case BPF_S_ALU_SUB_K: |
| A -= K; |
| continue; |
| case BPF_S_ALU_MUL_X: |
| A *= X; |
| continue; |
| case BPF_S_ALU_MUL_K: |
| A *= K; |
| continue; |
| case BPF_S_ALU_DIV_X: |
| if (X == 0) |
| return 0; |
| A /= X; |
| continue; |
| case BPF_S_ALU_DIV_K: |
| A = reciprocal_divide(A, K); |
| continue; |
| case BPF_S_ALU_MOD_X: |
| if (X == 0) |
| return 0; |
| A %= X; |
| continue; |
| case BPF_S_ALU_MOD_K: |
| A %= K; |
| continue; |
| case BPF_S_ALU_AND_X: |
| A &= X; |
| continue; |
| case BPF_S_ALU_AND_K: |
| A &= K; |
| continue; |
| case BPF_S_ALU_OR_X: |
| A |= X; |
| continue; |
| case BPF_S_ALU_OR_K: |
| A |= K; |
| continue; |
| case BPF_S_ANC_ALU_XOR_X: |
| case BPF_S_ALU_XOR_X: |
| A ^= X; |
| continue; |
| case BPF_S_ALU_XOR_K: |
| A ^= K; |
| continue; |
| case BPF_S_ALU_LSH_X: |
| A <<= X; |
| continue; |
| case BPF_S_ALU_LSH_K: |
| A <<= K; |
| continue; |
| case BPF_S_ALU_RSH_X: |
| A >>= X; |
| continue; |
| case BPF_S_ALU_RSH_K: |
| A >>= K; |
| continue; |
| case BPF_S_ALU_NEG: |
| A = -A; |
| continue; |
| case BPF_S_JMP_JA: |
| fentry += K; |
| continue; |
| case BPF_S_JMP_JGT_K: |
| fentry += (A > K) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JGE_K: |
| fentry += (A >= K) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JEQ_K: |
| fentry += (A == K) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JSET_K: |
| fentry += (A & K) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JGT_X: |
| fentry += (A > X) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JGE_X: |
| fentry += (A >= X) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JEQ_X: |
| fentry += (A == X) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_JMP_JSET_X: |
| fentry += (A & X) ? fentry->jt : fentry->jf; |
| continue; |
| case BPF_S_LD_W_ABS: |
| k = K; |
| load_w: |
| ptr = load_pointer(skb, k, 4, &tmp); |
| if (ptr != NULL) { |
| A = get_unaligned_be32(ptr); |
| continue; |
| } |
| return 0; |
| case BPF_S_LD_H_ABS: |
| k = K; |
| load_h: |
| ptr = load_pointer(skb, k, 2, &tmp); |
| if (ptr != NULL) { |
| A = get_unaligned_be16(ptr); |
| continue; |
| } |
| return 0; |
| case BPF_S_LD_B_ABS: |
| k = K; |
| load_b: |
| ptr = load_pointer(skb, k, 1, &tmp); |
| if (ptr != NULL) { |
| A = *(u8 *)ptr; |
| continue; |
| } |
| return 0; |
| case BPF_S_LD_W_LEN: |
| A = skb->len; |
| continue; |
| case BPF_S_LDX_W_LEN: |
| X = skb->len; |
| continue; |
| case BPF_S_LD_W_IND: |
| k = X + K; |
| goto load_w; |
| case BPF_S_LD_H_IND: |
| k = X + K; |
| goto load_h; |
| case BPF_S_LD_B_IND: |
| k = X + K; |
| goto load_b; |
| case BPF_S_LDX_B_MSH: |
| ptr = load_pointer(skb, K, 1, &tmp); |
| if (ptr != NULL) { |
| X = (*(u8 *)ptr & 0xf) << 2; |
| continue; |
| } |
| return 0; |
| case BPF_S_LD_IMM: |
| A = K; |
| continue; |
| case BPF_S_LDX_IMM: |
| X = K; |
| continue; |
| case BPF_S_LD_MEM: |
| A = mem[K]; |
| continue; |
| case BPF_S_LDX_MEM: |
| X = mem[K]; |
| continue; |
| case BPF_S_MISC_TAX: |
| X = A; |
| continue; |
| case BPF_S_MISC_TXA: |
| A = X; |
| continue; |
| case BPF_S_RET_K: |
| return K; |
| case BPF_S_RET_A: |
| return A; |
| case BPF_S_ST: |
| mem[K] = A; |
| continue; |
| case BPF_S_STX: |
| mem[K] = X; |
| continue; |
| case BPF_S_ANC_PROTOCOL: |
| A = ntohs(skb->protocol); |
| continue; |
| case BPF_S_ANC_PKTTYPE: |
| A = skb->pkt_type; |
| continue; |
| case BPF_S_ANC_IFINDEX: |
| if (!skb->dev) |
| return 0; |
| A = skb->dev->ifindex; |
| continue; |
| case BPF_S_ANC_MARK: |
| A = skb->mark; |
| continue; |
| case BPF_S_ANC_QUEUE: |
| A = skb->queue_mapping; |
| continue; |
| case BPF_S_ANC_HATYPE: |
| if (!skb->dev) |
| return 0; |
| A = skb->dev->type; |
| continue; |
| case BPF_S_ANC_RXHASH: |
| A = skb->rxhash; |
| continue; |
| case BPF_S_ANC_CPU: |
| A = raw_smp_processor_id(); |
| continue; |
| case BPF_S_ANC_VLAN_TAG: |
| A = vlan_tx_tag_get(skb); |
| continue; |
| case BPF_S_ANC_VLAN_TAG_PRESENT: |
| A = !!vlan_tx_tag_present(skb); |
| continue; |
| case BPF_S_ANC_PAY_OFFSET: |
| A = __skb_get_poff(skb); |
| continue; |
| case BPF_S_ANC_NLATTR: { |
| struct nlattr *nla; |
| |
| if (skb_is_nonlinear(skb)) |
| return 0; |
| if (skb->len < sizeof(struct nlattr)) |
| return 0; |
| if (A > skb->len - sizeof(struct nlattr)) |
| return 0; |
| |
| nla = nla_find((struct nlattr *)&skb->data[A], |
| skb->len - A, X); |
| if (nla) |
| A = (void *)nla - (void *)skb->data; |
| else |
| A = 0; |
| continue; |
| } |
| case BPF_S_ANC_NLATTR_NEST: { |
| struct nlattr *nla; |
| |
| if (skb_is_nonlinear(skb)) |
| return 0; |
| if (skb->len < sizeof(struct nlattr)) |
| return 0; |
| if (A > skb->len - sizeof(struct nlattr)) |
| return 0; |
| |
| nla = (struct nlattr *)&skb->data[A]; |
| if (nla->nla_len > skb->len - A) |
| return 0; |
| |
| nla = nla_find_nested(nla, X); |
| if (nla) |
| A = (void *)nla - (void *)skb->data; |
| else |
| A = 0; |
| continue; |
| } |
| #ifdef CONFIG_SECCOMP_FILTER |
| case BPF_S_ANC_SECCOMP_LD_W: |
| A = seccomp_bpf_load(fentry->k); |
| continue; |
| #endif |
| default: |
| WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n", |
| fentry->code, fentry->jt, |
| fentry->jf, fentry->k); |
| return 0; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(sk_run_filter); |
| |
| /* |
| * Security : |
| * A BPF program is able to use 16 cells of memory to store intermediate |
| * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter()) |
| * As we dont want to clear mem[] array for each packet going through |
| * sk_run_filter(), we check that filter loaded by user never try to read |
| * a cell if not previously written, and we check all branches to be sure |
| * a malicious user doesn't try to abuse us. |
| */ |
| static int check_load_and_stores(struct sock_filter *filter, int flen) |
| { |
| u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */ |
| int pc, ret = 0; |
| |
| BUILD_BUG_ON(BPF_MEMWORDS > 16); |
| masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL); |
| if (!masks) |
| return -ENOMEM; |
| memset(masks, 0xff, flen * sizeof(*masks)); |
| |
| for (pc = 0; pc < flen; pc++) { |
| memvalid &= masks[pc]; |
| |
| switch (filter[pc].code) { |
| case BPF_S_ST: |
| case BPF_S_STX: |
| memvalid |= (1 << filter[pc].k); |
| break; |
| case BPF_S_LD_MEM: |
| case BPF_S_LDX_MEM: |
| if (!(memvalid & (1 << filter[pc].k))) { |
| ret = -EINVAL; |
| goto error; |
| } |
| break; |
| case BPF_S_JMP_JA: |
| /* a jump must set masks on target */ |
| masks[pc + 1 + filter[pc].k] &= memvalid; |
| memvalid = ~0; |
| break; |
| case BPF_S_JMP_JEQ_K: |
| case BPF_S_JMP_JEQ_X: |
| case BPF_S_JMP_JGE_K: |
| case BPF_S_JMP_JGE_X: |
| case BPF_S_JMP_JGT_K: |
| case BPF_S_JMP_JGT_X: |
| case BPF_S_JMP_JSET_X: |
| case BPF_S_JMP_JSET_K: |
| /* a jump must set masks on targets */ |
| masks[pc + 1 + filter[pc].jt] &= memvalid; |
| masks[pc + 1 + filter[pc].jf] &= memvalid; |
| memvalid = ~0; |
| break; |
| } |
| } |
| error: |
| kfree(masks); |
| return ret; |
| } |
| |
| /** |
| * sk_chk_filter - verify socket filter code |
| * @filter: filter to verify |
| * @flen: length of filter |
| * |
| * Check the user's filter code. If we let some ugly |
| * filter code slip through kaboom! The filter must contain |
| * no references or jumps that are out of range, no illegal |
| * instructions, and must end with a RET instruction. |
| * |
| * All jumps are forward as they are not signed. |
| * |
| * Returns 0 if the rule set is legal or -EINVAL if not. |
| */ |
| int sk_chk_filter(struct sock_filter *filter, unsigned int flen) |
| { |
| /* |
| * Valid instructions are initialized to non-0. |
| * Invalid instructions are initialized to 0. |
| */ |
| static const u8 codes[] = { |
| [BPF_ALU|BPF_ADD|BPF_K] = BPF_S_ALU_ADD_K, |
| [BPF_ALU|BPF_ADD|BPF_X] = BPF_S_ALU_ADD_X, |
| [BPF_ALU|BPF_SUB|BPF_K] = BPF_S_ALU_SUB_K, |
| [BPF_ALU|BPF_SUB|BPF_X] = BPF_S_ALU_SUB_X, |
| [BPF_ALU|BPF_MUL|BPF_K] = BPF_S_ALU_MUL_K, |
| [BPF_ALU|BPF_MUL|BPF_X] = BPF_S_ALU_MUL_X, |
| [BPF_ALU|BPF_DIV|BPF_X] = BPF_S_ALU_DIV_X, |
| [BPF_ALU|BPF_MOD|BPF_K] = BPF_S_ALU_MOD_K, |
| [BPF_ALU|BPF_MOD|BPF_X] = BPF_S_ALU_MOD_X, |
| [BPF_ALU|BPF_AND|BPF_K] = BPF_S_ALU_AND_K, |
| [BPF_ALU|BPF_AND|BPF_X] = BPF_S_ALU_AND_X, |
| [BPF_ALU|BPF_OR|BPF_K] = BPF_S_ALU_OR_K, |
| [BPF_ALU|BPF_OR|BPF_X] = BPF_S_ALU_OR_X, |
| [BPF_ALU|BPF_XOR|BPF_K] = BPF_S_ALU_XOR_K, |
| [BPF_ALU|BPF_XOR|BPF_X] = BPF_S_ALU_XOR_X, |
| [BPF_ALU|BPF_LSH|BPF_K] = BPF_S_ALU_LSH_K, |
| [BPF_ALU|BPF_LSH|BPF_X] = BPF_S_ALU_LSH_X, |
| [BPF_ALU|BPF_RSH|BPF_K] = BPF_S_ALU_RSH_K, |
| [BPF_ALU|BPF_RSH|BPF_X] = BPF_S_ALU_RSH_X, |
| [BPF_ALU|BPF_NEG] = BPF_S_ALU_NEG, |
| [BPF_LD|BPF_W|BPF_ABS] = BPF_S_LD_W_ABS, |
| [BPF_LD|BPF_H|BPF_ABS] = BPF_S_LD_H_ABS, |
| [BPF_LD|BPF_B|BPF_ABS] = BPF_S_LD_B_ABS, |
| [BPF_LD|BPF_W|BPF_LEN] = BPF_S_LD_W_LEN, |
| [BPF_LD|BPF_W|BPF_IND] = BPF_S_LD_W_IND, |
| [BPF_LD|BPF_H|BPF_IND] = BPF_S_LD_H_IND, |
| [BPF_LD|BPF_B|BPF_IND] = BPF_S_LD_B_IND, |
| [BPF_LD|BPF_IMM] = BPF_S_LD_IMM, |
| [BPF_LDX|BPF_W|BPF_LEN] = BPF_S_LDX_W_LEN, |
| [BPF_LDX|BPF_B|BPF_MSH] = BPF_S_LDX_B_MSH, |
| [BPF_LDX|BPF_IMM] = BPF_S_LDX_IMM, |
| [BPF_MISC|BPF_TAX] = BPF_S_MISC_TAX, |
| [BPF_MISC|BPF_TXA] = BPF_S_MISC_TXA, |
| [BPF_RET|BPF_K] = BPF_S_RET_K, |
| [BPF_RET|BPF_A] = BPF_S_RET_A, |
| [BPF_ALU|BPF_DIV|BPF_K] = BPF_S_ALU_DIV_K, |
| [BPF_LD|BPF_MEM] = BPF_S_LD_MEM, |
| [BPF_LDX|BPF_MEM] = BPF_S_LDX_MEM, |
| [BPF_ST] = BPF_S_ST, |
| [BPF_STX] = BPF_S_STX, |
| [BPF_JMP|BPF_JA] = BPF_S_JMP_JA, |
| [BPF_JMP|BPF_JEQ|BPF_K] = BPF_S_JMP_JEQ_K, |
| [BPF_JMP|BPF_JEQ|BPF_X] = BPF_S_JMP_JEQ_X, |
| [BPF_JMP|BPF_JGE|BPF_K] = BPF_S_JMP_JGE_K, |
| [BPF_JMP|BPF_JGE|BPF_X] = BPF_S_JMP_JGE_X, |
| [BPF_JMP|BPF_JGT|BPF_K] = BPF_S_JMP_JGT_K, |
| [BPF_JMP|BPF_JGT|BPF_X] = BPF_S_JMP_JGT_X, |
| [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K, |
| [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X, |
| }; |
| int pc; |
| bool anc_found; |
| |
| if (flen == 0 || flen > BPF_MAXINSNS) |
| return -EINVAL; |
| |
| /* check the filter code now */ |
| for (pc = 0; pc < flen; pc++) { |
| struct sock_filter *ftest = &filter[pc]; |
| u16 code = ftest->code; |
| |
| if (code >= ARRAY_SIZE(codes)) |
| return -EINVAL; |
| code = codes[code]; |
| if (!code) |
| return -EINVAL; |
| /* Some instructions need special checks */ |
| switch (code) { |
| case BPF_S_ALU_DIV_K: |
| /* check for division by zero */ |
| if (ftest->k == 0) |
| return -EINVAL; |
| ftest->k = reciprocal_value(ftest->k); |
| break; |
| case BPF_S_ALU_MOD_K: |
| /* check for division by zero */ |
| if (ftest->k == 0) |
| return -EINVAL; |
| break; |
| case BPF_S_LD_MEM: |
| case BPF_S_LDX_MEM: |
| case BPF_S_ST: |
| case BPF_S_STX: |
| /* check for invalid memory addresses */ |
| if (ftest->k >= BPF_MEMWORDS) |
| return -EINVAL; |
| break; |
| case BPF_S_JMP_JA: |
| /* |
| * Note, the large ftest->k might cause loops. |
| * Compare this with conditional jumps below, |
| * where offsets are limited. --ANK (981016) |
| */ |
| if (ftest->k >= (unsigned int)(flen-pc-1)) |
| return -EINVAL; |
| break; |
| case BPF_S_JMP_JEQ_K: |
| case BPF_S_JMP_JEQ_X: |
| case BPF_S_JMP_JGE_K: |
| case BPF_S_JMP_JGE_X: |
| case BPF_S_JMP_JGT_K: |
| case BPF_S_JMP_JGT_X: |
| case BPF_S_JMP_JSET_X: |
| case BPF_S_JMP_JSET_K: |
| /* for conditionals both must be safe */ |
| if (pc + ftest->jt + 1 >= flen || |
| pc + ftest->jf + 1 >= flen) |
| return -EINVAL; |
| break; |
| case BPF_S_LD_W_ABS: |
| case BPF_S_LD_H_ABS: |
| case BPF_S_LD_B_ABS: |
| anc_found = false; |
| #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ |
| code = BPF_S_ANC_##CODE; \ |
| anc_found = true; \ |
| break |
| switch (ftest->k) { |
| ANCILLARY(PROTOCOL); |
| ANCILLARY(PKTTYPE); |
| ANCILLARY(IFINDEX); |
| ANCILLARY(NLATTR); |
| ANCILLARY(NLATTR_NEST); |
| ANCILLARY(MARK); |
| ANCILLARY(QUEUE); |
| ANCILLARY(HATYPE); |
| ANCILLARY(RXHASH); |
| ANCILLARY(CPU); |
| ANCILLARY(ALU_XOR_X); |
| ANCILLARY(VLAN_TAG); |
| ANCILLARY(VLAN_TAG_PRESENT); |
| ANCILLARY(PAY_OFFSET); |
| } |
| |
| /* ancillary operation unknown or unsupported */ |
| if (anc_found == false && ftest->k >= SKF_AD_OFF) |
| return -EINVAL; |
| } |
| ftest->code = code; |
| } |
| |
| /* last instruction must be a RET code */ |
| switch (filter[flen - 1].code) { |
| case BPF_S_RET_K: |
| case BPF_S_RET_A: |
| return check_load_and_stores(filter, flen); |
| } |
| return -EINVAL; |
| } |
| EXPORT_SYMBOL(sk_chk_filter); |
| |
| /** |
| * sk_filter_release_rcu - Release a socket filter by rcu_head |
| * @rcu: rcu_head that contains the sk_filter to free |
| */ |
| void sk_filter_release_rcu(struct rcu_head *rcu) |
| { |
| struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); |
| |
| bpf_jit_free(fp); |
| kfree(fp); |
| } |
| EXPORT_SYMBOL(sk_filter_release_rcu); |
| |
| static int __sk_prepare_filter(struct sk_filter *fp) |
| { |
| int err; |
| |
| fp->bpf_func = sk_run_filter; |
| |
| err = sk_chk_filter(fp->insns, fp->len); |
| if (err) |
| return err; |
| |
| bpf_jit_compile(fp); |
| return 0; |
| } |
| |
| /** |
| * sk_unattached_filter_create - create an unattached filter |
| * @fprog: the filter program |
| * @pfp: the unattached filter that is created |
| * |
| * Create a filter independent of any socket. We first run some |
| * sanity checks on it to make sure it does not explode on us later. |
| * If an error occurs or there is insufficient memory for the filter |
| * a negative errno code is returned. On success the return is zero. |
| */ |
| int sk_unattached_filter_create(struct sk_filter **pfp, |
| struct sock_fprog *fprog) |
| { |
| struct sk_filter *fp; |
| unsigned int fsize = sizeof(struct sock_filter) * fprog->len; |
| int err; |
| |
| /* Make sure new filter is there and in the right amounts. */ |
| if (fprog->filter == NULL) |
| return -EINVAL; |
| |
| fp = kmalloc(fsize + sizeof(*fp), GFP_KERNEL); |
| if (!fp) |
| return -ENOMEM; |
| memcpy(fp->insns, fprog->filter, fsize); |
| |
| atomic_set(&fp->refcnt, 1); |
| fp->len = fprog->len; |
| |
| err = __sk_prepare_filter(fp); |
| if (err) |
| goto free_mem; |
| |
| *pfp = fp; |
| return 0; |
| free_mem: |
| kfree(fp); |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(sk_unattached_filter_create); |
| |
| void sk_unattached_filter_destroy(struct sk_filter *fp) |
| { |
| sk_filter_release(fp); |
| } |
| EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy); |
| |
| /** |
| * sk_attach_filter - attach a socket filter |
| * @fprog: the filter program |
| * @sk: the socket to use |
| * |
| * Attach the user's filter code. We first run some sanity checks on |
| * it to make sure it does not explode on us later. If an error |
| * occurs or there is insufficient memory for the filter a negative |
| * errno code is returned. On success the return is zero. |
| */ |
| int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk) |
| { |
| struct sk_filter *fp, *old_fp; |
| unsigned int fsize = sizeof(struct sock_filter) * fprog->len; |
| int err; |
| |
| if (sock_flag(sk, SOCK_FILTER_LOCKED)) |
| return -EPERM; |
| |
| /* Make sure new filter is there and in the right amounts. */ |
| if (fprog->filter == NULL) |
| return -EINVAL; |
| |
| fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL); |
| if (!fp) |
| return -ENOMEM; |
| if (copy_from_user(fp->insns, fprog->filter, fsize)) { |
| sock_kfree_s(sk, fp, fsize+sizeof(*fp)); |
| return -EFAULT; |
| } |
| |
| atomic_set(&fp->refcnt, 1); |
| fp->len = fprog->len; |
| |
| err = __sk_prepare_filter(fp); |
| if (err) { |
| sk_filter_uncharge(sk, fp); |
| return err; |
| } |
| |
| old_fp = rcu_dereference_protected(sk->sk_filter, |
| sock_owned_by_user(sk)); |
| rcu_assign_pointer(sk->sk_filter, fp); |
| |
| if (old_fp) |
| sk_filter_uncharge(sk, old_fp); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(sk_attach_filter); |
| |
| int sk_detach_filter(struct sock *sk) |
| { |
| int ret = -ENOENT; |
| struct sk_filter *filter; |
| |
| if (sock_flag(sk, SOCK_FILTER_LOCKED)) |
| return -EPERM; |
| |
| filter = rcu_dereference_protected(sk->sk_filter, |
| sock_owned_by_user(sk)); |
| if (filter) { |
| RCU_INIT_POINTER(sk->sk_filter, NULL); |
| sk_filter_uncharge(sk, filter); |
| ret = 0; |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(sk_detach_filter); |
| |
| void sk_decode_filter(struct sock_filter *filt, struct sock_filter *to) |
| { |
| static const u16 decodes[] = { |
| [BPF_S_ALU_ADD_K] = BPF_ALU|BPF_ADD|BPF_K, |
| [BPF_S_ALU_ADD_X] = BPF_ALU|BPF_ADD|BPF_X, |
| [BPF_S_ALU_SUB_K] = BPF_ALU|BPF_SUB|BPF_K, |
| [BPF_S_ALU_SUB_X] = BPF_ALU|BPF_SUB|BPF_X, |
| [BPF_S_ALU_MUL_K] = BPF_ALU|BPF_MUL|BPF_K, |
| [BPF_S_ALU_MUL_X] = BPF_ALU|BPF_MUL|BPF_X, |
| [BPF_S_ALU_DIV_X] = BPF_ALU|BPF_DIV|BPF_X, |
| [BPF_S_ALU_MOD_K] = BPF_ALU|BPF_MOD|BPF_K, |
| [BPF_S_ALU_MOD_X] = BPF_ALU|BPF_MOD|BPF_X, |
| [BPF_S_ALU_AND_K] = BPF_ALU|BPF_AND|BPF_K, |
| [BPF_S_ALU_AND_X] = BPF_ALU|BPF_AND|BPF_X, |
| [BPF_S_ALU_OR_K] = BPF_ALU|BPF_OR|BPF_K, |
| [BPF_S_ALU_OR_X] = BPF_ALU|BPF_OR|BPF_X, |
| [BPF_S_ALU_XOR_K] = BPF_ALU|BPF_XOR|BPF_K, |
| [BPF_S_ALU_XOR_X] = BPF_ALU|BPF_XOR|BPF_X, |
| [BPF_S_ALU_LSH_K] = BPF_ALU|BPF_LSH|BPF_K, |
| [BPF_S_ALU_LSH_X] = BPF_ALU|BPF_LSH|BPF_X, |
| [BPF_S_ALU_RSH_K] = BPF_ALU|BPF_RSH|BPF_K, |
| [BPF_S_ALU_RSH_X] = BPF_ALU|BPF_RSH|BPF_X, |
| [BPF_S_ALU_NEG] = BPF_ALU|BPF_NEG, |
| [BPF_S_LD_W_ABS] = BPF_LD|BPF_W|BPF_ABS, |
| [BPF_S_LD_H_ABS] = BPF_LD|BPF_H|BPF_ABS, |
| [BPF_S_LD_B_ABS] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_PROTOCOL] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_PKTTYPE] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_IFINDEX] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_NLATTR] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_NLATTR_NEST] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_MARK] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_QUEUE] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_HATYPE] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_RXHASH] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_CPU] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_ALU_XOR_X] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_SECCOMP_LD_W] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_VLAN_TAG] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_VLAN_TAG_PRESENT] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_ANC_PAY_OFFSET] = BPF_LD|BPF_B|BPF_ABS, |
| [BPF_S_LD_W_LEN] = BPF_LD|BPF_W|BPF_LEN, |
| [BPF_S_LD_W_IND] = BPF_LD|BPF_W|BPF_IND, |
| [BPF_S_LD_H_IND] = BPF_LD|BPF_H|BPF_IND, |
| [BPF_S_LD_B_IND] = BPF_LD|BPF_B|BPF_IND, |
| [BPF_S_LD_IMM] = BPF_LD|BPF_IMM, |
| [BPF_S_LDX_W_LEN] = BPF_LDX|BPF_W|BPF_LEN, |
| [BPF_S_LDX_B_MSH] = BPF_LDX|BPF_B|BPF_MSH, |
| [BPF_S_LDX_IMM] = BPF_LDX|BPF_IMM, |
| [BPF_S_MISC_TAX] = BPF_MISC|BPF_TAX, |
| [BPF_S_MISC_TXA] = BPF_MISC|BPF_TXA, |
| [BPF_S_RET_K] = BPF_RET|BPF_K, |
| [BPF_S_RET_A] = BPF_RET|BPF_A, |
| [BPF_S_ALU_DIV_K] = BPF_ALU|BPF_DIV|BPF_K, |
| [BPF_S_LD_MEM] = BPF_LD|BPF_MEM, |
| [BPF_S_LDX_MEM] = BPF_LDX|BPF_MEM, |
| [BPF_S_ST] = BPF_ST, |
| [BPF_S_STX] = BPF_STX, |
| [BPF_S_JMP_JA] = BPF_JMP|BPF_JA, |
| [BPF_S_JMP_JEQ_K] = BPF_JMP|BPF_JEQ|BPF_K, |
| [BPF_S_JMP_JEQ_X] = BPF_JMP|BPF_JEQ|BPF_X, |
| [BPF_S_JMP_JGE_K] = BPF_JMP|BPF_JGE|BPF_K, |
| [BPF_S_JMP_JGE_X] = BPF_JMP|BPF_JGE|BPF_X, |
| [BPF_S_JMP_JGT_K] = BPF_JMP|BPF_JGT|BPF_K, |
| [BPF_S_JMP_JGT_X] = BPF_JMP|BPF_JGT|BPF_X, |
| [BPF_S_JMP_JSET_K] = BPF_JMP|BPF_JSET|BPF_K, |
| [BPF_S_JMP_JSET_X] = BPF_JMP|BPF_JSET|BPF_X, |
| }; |
| u16 code; |
| |
| code = filt->code; |
| |
| to->code = decodes[code]; |
| to->jt = filt->jt; |
| to->jf = filt->jf; |
| |
| if (code == BPF_S_ALU_DIV_K) { |
| /* |
| * When loaded this rule user gave us X, which was |
| * translated into R = r(X). Now we calculate the |
| * RR = r(R) and report it back. If next time this |
| * value is loaded and RRR = r(RR) is calculated |
| * then the R == RRR will be true. |
| * |
| * One exception. X == 1 translates into R == 0 and |
| * we can't calculate RR out of it with r(). |
| */ |
| |
| if (filt->k == 0) |
| to->k = 1; |
| else |
| to->k = reciprocal_value(filt->k); |
| |
| BUG_ON(reciprocal_value(to->k) != filt->k); |
| } else |
| to->k = filt->k; |
| } |
| |
| int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf, unsigned int len) |
| { |
| struct sk_filter *filter; |
| int i, ret; |
| |
| lock_sock(sk); |
| filter = rcu_dereference_protected(sk->sk_filter, |
| sock_owned_by_user(sk)); |
| ret = 0; |
| if (!filter) |
| goto out; |
| ret = filter->len; |
| if (!len) |
| goto out; |
| ret = -EINVAL; |
| if (len < filter->len) |
| goto out; |
| |
| ret = -EFAULT; |
| for (i = 0; i < filter->len; i++) { |
| struct sock_filter fb; |
| |
| sk_decode_filter(&filter->insns[i], &fb); |
| if (copy_to_user(&ubuf[i], &fb, sizeof(fb))) |
| goto out; |
| } |
| |
| ret = filter->len; |
| out: |
| release_sock(sk); |
| return ret; |
| } |