blob: c2aff2113138f26bf7928b0080231dd62b913dff [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_hotplug.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/kobject.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu-defs.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/tick.h>
#include <linux/types.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/sched/rt.h>
#include <linux/kthread.h>
#include <linux/input.h> /* <-XXX */
#include <linux/slab.h> /* <-XXX */
#include "mach/mt_cpufreq.h" /* <-XXX */
#include "cpufreq_governor.h"
/* Hot-plug governor macros */
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (100000)
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (15)
#define MIN_FREQUENCY_DOWN_DIFFERENTIAL (5) /* <-XXX */
#define MAX_FREQUENCY_DOWN_DIFFERENTIAL (20) /* <-XXX */
#define MICRO_FREQUENCY_UP_THRESHOLD (85)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (30000)
#define MIN_FREQUENCY_UP_THRESHOLD (21)
#define MAX_FREQUENCY_UP_THRESHOLD (100)
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
/*
* cpu hotplug - macro
*/
#define DEF_CPU_DOWN_DIFFERENTIAL (10)
#define MICRO_CPU_DOWN_DIFFERENTIAL (10)
#define MIN_CPU_DOWN_DIFFERENTIAL (0)
#define MAX_CPU_DOWN_DIFFERENTIAL (30)
#define DEF_CPU_UP_THRESHOLD (90)
#define MICRO_CPU_UP_THRESHOLD (90)
#define MIN_CPU_UP_THRESHOLD (50)
#define MAX_CPU_UP_THRESHOLD (100)
#define DEF_CPU_UP_AVG_TIMES (10)
#define MIN_CPU_UP_AVG_TIMES (1)
#define MAX_CPU_UP_AVG_TIMES (20)
#define DEF_CPU_DOWN_AVG_TIMES (100)
#define MIN_CPU_DOWN_AVG_TIMES (20)
#define MAX_CPU_DOWN_AVG_TIMES (200)
#define DEF_CPU_INPUT_BOOST_ENABLE (1)
#define DEF_CPU_INPUT_BOOST_NUM (2)
#define DEF_CPU_RUSH_BOOST_ENABLE (1)
#define DEF_CPU_RUSH_THRESHOLD (98)
#define MICRO_CPU_RUSH_THRESHOLD (98)
#define MIN_CPU_RUSH_THRESHOLD (80)
#define MAX_CPU_RUSH_THRESHOLD (100)
#define DEF_CPU_RUSH_AVG_TIMES (5)
#define MIN_CPU_RUSH_AVG_TIMES (1)
#define MAX_CPU_RUSH_AVG_TIMES (10)
#define DEF_CPU_RUSH_TLP_TIMES (5)
#define MIN_CPU_RUSH_TLP_TIMES (1)
#define MAX_CPU_RUSH_TLP_TIMES (10)
/* #define DEBUG_LOG */
/*
* cpu hotplug - enum
*/
typedef enum {
CPU_HOTPLUG_WORK_TYPE_NONE = 0,
CPU_HOTPLUG_WORK_TYPE_BASE,
CPU_HOTPLUG_WORK_TYPE_LIMIT,
CPU_HOTPLUG_WORK_TYPE_UP,
CPU_HOTPLUG_WORK_TYPE_DOWN,
CPU_HOTPLUG_WORK_TYPE_RUSH,
} cpu_hotplug_work_type_t;
/*
* cpu hotplug - global variable, function declaration
*/
static DEFINE_MUTEX(hp_mutex);
DEFINE_MUTEX(hp_onoff_mutex);
int g_cpus_sum_load_current = 0; /* set global for information purpose */
#ifdef CONFIG_HOTPLUG_CPU
long g_cpu_up_sum_load;
int g_cpu_up_count;
int g_cpu_up_load_index;
static long g_cpu_up_load_history[MAX_CPU_UP_AVG_TIMES] = { 0 };
long g_cpu_down_sum_load;
int g_cpu_down_count;
int g_cpu_down_load_index;
static long g_cpu_down_load_history[MAX_CPU_DOWN_AVG_TIMES] = { 0 };
cpu_hotplug_work_type_t g_trigger_hp_work;
static unsigned int g_next_hp_action;
static struct delayed_work hp_work;
struct workqueue_struct *hp_wq = NULL;
int g_tlp_avg_current; /* set global for information purpose */
int g_tlp_avg_sum;
int g_tlp_avg_count;
int g_tlp_avg_index;
int g_tlp_avg_average; /* set global for information purpose */
static int g_tlp_avg_history[MAX_CPU_RUSH_TLP_TIMES] = { 0 };
static int g_tlp_iowait_av;
static int g_cpu_rush_count;
static void hp_reset_strategy_nolock(void);
static void hp_reset_strategy(void);
#else /* #ifdef CONFIG_HOTPLUG_CPU */
static void hp_reset_strategy_nolock(void)
{
};
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/* dvfs - function declaration */
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq);
#if defined(CONFIG_THERMAL_LIMIT_TEST)
extern unsigned int mt_cpufreq_thermal_test_limited_load(void);
#endif
static unsigned int dbs_ignore = 1;
static unsigned int dbs_thermal_limited;
static unsigned int dbs_thermal_limited_freq;
/* dvfs thermal limit */
void dbs_freq_thermal_limited(unsigned int limited, unsigned int freq)
{
dbs_thermal_limited = limited;
dbs_thermal_limited_freq = freq;
}
EXPORT_SYMBOL(dbs_freq_thermal_limited);
void (*cpufreq_freq_check) (enum mt_cpu_dvfs_id id) = NULL;
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
static DEFINE_PER_CPU(struct hp_cpu_dbs_info_s, hp_cpu_dbs_info);
static struct hp_ops hp_ops;
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_HOTPLUG
static struct cpufreq_governor cpufreq_gov_hotplug;
#endif
static unsigned int default_powersave_bias;
static void hotplug_powersave_bias_init_cpu(int cpu)
{
struct hp_cpu_dbs_info_s *dbs_info = &per_cpu(hp_cpu_dbs_info, cpu);
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
dbs_info->freq_lo = 0;
}
/*
* Not all CPUs want IO time to be accounted as busy; this depends on how
* efficient idling at a higher frequency/voltage is.
* Pavel Machek says this is not so for various generations of AMD and old
* Intel systems.
* Mike Chan (android.com) claims this is also not true for ARM.
* Because of this, whitelist specific known (series) of CPUs by default, and
* leave all others up to the user.
*/
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
/*
* For Intel, Core 2 (model 15) and later have an efficient idle.
*/
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model >= 15)
return 1;
#endif
return 1; /* io wait time should be subtracted from idle time // <-XXX */
}
/*
* Find right freq to be set now with powersave_bias on.
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
*/
static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
unsigned int freq_next, unsigned int relation)
{
unsigned int freq_req, freq_reduc, freq_avg;
unsigned int freq_hi, freq_lo;
unsigned int index = 0;
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
struct hp_cpu_dbs_info_s *dbs_info = &per_cpu(hp_cpu_dbs_info,
policy->cpu);
struct dbs_data *dbs_data = policy->governor_data;
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
if (!dbs_info->freq_table) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_next;
}
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, relation, &index);
freq_req = dbs_info->freq_table[index].frequency;
freq_reduc = freq_req * hp_tuners->powersave_bias / 1000;
freq_avg = freq_req - freq_reduc;
/* Find freq bounds for freq_avg in freq_table */
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_H, &index);
freq_lo = dbs_info->freq_table[index].frequency;
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_L, &index);
freq_hi = dbs_info->freq_table[index].frequency;
/* Find out how long we have to be in hi and lo freqs */
if (freq_hi == freq_lo) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_lo;
}
jiffies_total = usecs_to_jiffies(hp_tuners->sampling_rate);
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
jiffies_hi += ((freq_hi - freq_lo) / 2);
jiffies_hi /= (freq_hi - freq_lo);
jiffies_lo = jiffies_total - jiffies_hi;
dbs_info->freq_lo = freq_lo;
dbs_info->freq_lo_jiffies = jiffies_lo;
dbs_info->freq_hi_jiffies = jiffies_hi;
return freq_hi;
}
static void hotplug_powersave_bias_init(void)
{
int i;
for_each_online_cpu(i) {
hotplug_powersave_bias_init_cpu(i);
}
}
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
struct dbs_data *dbs_data = p->governor_data;
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
if (hp_tuners->powersave_bias)
freq = hp_ops.powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
else if (p->cur == p->max) {
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
if (dbs_ignore == 0) {
if ((dbs_thermal_limited == 1) && (freq > dbs_thermal_limited_freq)) {
freq = dbs_thermal_limited_freq;
pr_debug("[dbs_freq_increase] thermal limit freq = %d\n", freq);
}
dbs_ignore = 1;
} else
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
return;
}
__cpufreq_driver_target(p, freq, hp_tuners->powersave_bias ?
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
/*
* cpu hotplug - function definition
*/
int hp_get_dynamic_cpu_hotplug_enable(void)
{
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return 0;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return 0;
return !(hp_tuners->is_cpu_hotplug_disable);
}
EXPORT_SYMBOL(hp_get_dynamic_cpu_hotplug_enable);
void hp_set_dynamic_cpu_hotplug_enable(int enable)
{
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
if (enable > 1 || enable < 0)
return;
mutex_lock(&hp_mutex);
if (hp_tuners->is_cpu_hotplug_disable && enable)
hp_reset_strategy_nolock();
hp_tuners->is_cpu_hotplug_disable = !enable;
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(hp_set_dynamic_cpu_hotplug_enable);
void hp_limited_cpu_num(int num)
{
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
if (num > num_possible_cpus() || num < 1)
return;
mutex_lock(&hp_mutex);
hp_tuners->cpu_num_limit = num;
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(hp_limited_cpu_num);
void hp_based_cpu_num(int num)
{
unsigned int online_cpus_count;
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
if (num > num_possible_cpus() || num < 1)
return;
mutex_lock(&hp_mutex);
hp_tuners->cpu_num_base = num;
online_cpus_count = num_online_cpus();
#ifdef CONFIG_HOTPLUG_CPU
if (online_cpus_count < num && online_cpus_count < hp_tuners->cpu_num_limit) {
struct hp_cpu_dbs_info_s *dbs_info;
struct cpufreq_policy *policy;
dbs_info = &per_cpu(hp_cpu_dbs_info, 0); /* TODO: FIXME, cpu = 0 */
policy = dbs_info->cdbs.cur_policy;
dbs_freq_increase(policy, policy->max);
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_BASE;
/* schedule_delayed_work_on(0, &hp_work, 0); */
if (hp_wq == NULL)
pr_emerg("[power/hotplug] %s():%d, impossible\n", __func__, __LINE__);
else
queue_delayed_work_on(0, hp_wq, &hp_work, 0);
}
#endif
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(hp_based_cpu_num);
int hp_get_cpu_rush_boost_enable(void)
{
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return 0;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return 0;
return hp_tuners->cpu_rush_boost_enable;
}
EXPORT_SYMBOL(hp_get_cpu_rush_boost_enable);
void hp_set_cpu_rush_boost_enable(int enable)
{
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
if (enable > 1 || enable < 0)
return;
mutex_lock(&hp_mutex);
hp_tuners->cpu_rush_boost_enable = enable;
mutex_unlock(&hp_mutex);
}
EXPORT_SYMBOL(hp_set_cpu_rush_boost_enable);
#ifdef CONFIG_HOTPLUG_CPU
#ifdef CONFIG_MTK_SCHED_RQAVG_KS
extern void sched_get_nr_running_avg(int *avg, int *iowait_avg);
#else /* #ifdef CONFIG_MTK_SCHED_RQAVG_KS */
static void sched_get_nr_running_avg(int *avg, int *iowait_avg)
{
*avg = num_possible_cpus() * 100;
}
#endif /* #ifdef CONFIG_MTK_SCHED_RQAVG_KS */
static void hp_reset_strategy_nolock(void)
{
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
g_cpu_up_count = 0;
g_cpu_up_sum_load = 0;
g_cpu_up_load_index = 0;
g_cpu_up_load_history[hp_tuners->cpu_up_avg_times - 1] = 0;
/* memset(g_cpu_up_load_history, 0, sizeof(long) * MAX_CPU_UP_AVG_TIMES); */
g_cpu_down_count = 0;
g_cpu_down_sum_load = 0;
g_cpu_down_load_index = 0;
g_cpu_down_load_history[hp_tuners->cpu_down_avg_times - 1] = 0;
/* memset(g_cpu_down_load_history, 0, sizeof(long) * MAX_CPU_DOWN_AVG_TIMES); */
g_tlp_avg_sum = 0;
g_tlp_avg_count = 0;
g_tlp_avg_index = 0;
g_tlp_avg_history[hp_tuners->cpu_rush_tlp_times - 1] = 0;
g_cpu_rush_count = 0;
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_NONE;
}
static void hp_reset_strategy(void)
{
mutex_lock(&hp_mutex);
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
}
static void hp_work_handler(struct work_struct *work)
{
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
if (mutex_trylock(&hp_onoff_mutex)) {
if (!hp_tuners->is_cpu_hotplug_disable) {
unsigned int online_cpus_count = num_online_cpus();
unsigned int i;
pr_debug
("[power/hotplug] hp_work_handler(%d)(%d)(%d)(%d)(%ld)(%ld)(%d)(%d) begin\n",
g_trigger_hp_work, g_tlp_avg_average, g_tlp_avg_current,
g_cpus_sum_load_current, g_cpu_up_sum_load, g_cpu_down_sum_load,
hp_tuners->cpu_num_base, hp_tuners->cpu_num_limit);
switch (g_trigger_hp_work) {
case CPU_HOTPLUG_WORK_TYPE_RUSH:
for (i = online_cpus_count;
i < min(g_next_hp_action, hp_tuners->cpu_num_limit); ++i)
cpu_up(i);
break;
case CPU_HOTPLUG_WORK_TYPE_BASE:
for (i = online_cpus_count;
i < min(hp_tuners->cpu_num_base, hp_tuners->cpu_num_limit);
++i)
cpu_up(i);
break;
case CPU_HOTPLUG_WORK_TYPE_LIMIT:
for (i = online_cpus_count - 1; i >= hp_tuners->cpu_num_limit; --i)
cpu_down(i);
break;
case CPU_HOTPLUG_WORK_TYPE_UP:
for (i = online_cpus_count; i < g_next_hp_action; ++i)
cpu_up(i);
break;
case CPU_HOTPLUG_WORK_TYPE_DOWN:
for (i = online_cpus_count - 1; i >= g_next_hp_action; --i)
cpu_down(i);
break;
default:
for (i = online_cpus_count;
i < min(hp_tuners->cpu_input_boost_num,
hp_tuners->cpu_num_limit); ++i)
cpu_up(i);
/* pr_debug("[power/hotplug] cpu input boost\n"); */
break;
}
hp_reset_strategy();
dbs_ignore = 0; /* force trigger frequency scaling */
pr_debug("[power/hotplug] hp_work_handler end\n");
/*
if (g_next_hp_action) // turn on CPU
{
if (online_cpus_count < num_possible_cpus())
{
pr_debug("hp_work_handler: cpu_up(%d) kick off\n", online_cpus_count);
cpu_up(online_cpus_count);
hp_reset_strategy();
pr_debug("hp_work_handler: cpu_up(%d) completion\n", online_cpus_count);
dbs_ignore = 0; // force trigger frequency scaling
}
}
else // turn off CPU
{
if (online_cpus_count > 1)
{
pr_debug("hp_work_handler: cpu_down(%d) kick off\n", (online_cpus_count - 1));
cpu_down((online_cpus_count - 1));
hp_reset_strategy();
pr_debug("hp_work_handler: cpu_down(%d) completion\n", (online_cpus_count - 1));
dbs_ignore = 0; // force trigger frequency scaling
}
}
*/
}
mutex_unlock(&hp_onoff_mutex);
}
}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
/*
* Every sampling_rate, we check, if current idle time is less than 20%
* (default), then we try to increase frequency. Every sampling_rate, we look
* for the lowest frequency which can sustain the load while keeping idle time
* over 30%. If such a frequency exist, we try to decrease to this frequency.
*
* Any frequency increase takes it to the maximum frequency. Frequency reduction
* happens at minimum steps of 5% (default) of current frequency
*/
static void hp_check_cpu(int cpu, unsigned int load_freq)
{
struct hp_cpu_dbs_info_s *dbs_info = &per_cpu(hp_cpu_dbs_info, cpu);
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
struct dbs_data *dbs_data = policy->governor_data;
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
dbs_info->freq_lo = 0;
/* pr_emerg("***** cpu: %d, load_freq: %u, smp_processor_id: %d *****\n", cpu, load_freq, smp_processor_id()); */
/* Check for frequency increase */
if (load_freq > hp_tuners->up_threshold * policy->cur) {
/* If switching to max speed, apply sampling_down_factor */
if (policy->cur < policy->max)
dbs_info->rate_mult = hp_tuners->sampling_down_factor;
dbs_freq_increase(policy, policy->max);
goto hp_check; /* <-XXX */
}
/* Check for frequency decrease */
/* if we cannot reduce the frequency anymore, break out early */
if (policy->cur == policy->min)
goto hp_check; /* <-XXX */
/*
* The optimal frequency is the frequency that is the lowest that can
* support the current CPU usage without triggering the up policy. To be
* safe, we focus 10 points under the threshold.
*/
if (load_freq < hp_tuners->adj_up_threshold * policy->cur) {
unsigned int freq_next;
freq_next = load_freq / hp_tuners->adj_up_threshold;
/* No longer fully busy, reset rate_mult */
dbs_info->rate_mult = 1;
if (freq_next < policy->min)
freq_next = policy->min;
if (!hp_tuners->powersave_bias) {
__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
} else {
freq_next = hp_ops.powersave_bias_target(policy, freq_next,
CPUFREQ_RELATION_L);
__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
}
}
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
hp_check:{
#ifdef CONFIG_HOTPLUG_CPU
long cpus_sum_load_last_up = 0;
long cpus_sum_load_last_down = 0;
unsigned int online_cpus_count;
int v_tlp_avg_last = 0;
#endif
/* If Hot Plug policy disable, return directly */
if (hp_tuners->is_cpu_hotplug_disable)
return;
#ifdef CONFIG_HOTPLUG_CPU
if (g_trigger_hp_work != CPU_HOTPLUG_WORK_TYPE_NONE)
return;
mutex_lock(&hp_mutex);
online_cpus_count = num_online_cpus();
sched_get_nr_running_avg(&g_tlp_avg_current, &g_tlp_iowait_av);
v_tlp_avg_last = g_tlp_avg_history[g_tlp_avg_index];
g_tlp_avg_history[g_tlp_avg_index] = g_tlp_avg_current;
g_tlp_avg_sum += g_tlp_avg_current;
g_tlp_avg_index =
(g_tlp_avg_index + 1 ==
hp_tuners->cpu_rush_tlp_times) ? 0 : g_tlp_avg_index + 1;
g_tlp_avg_count++;
if (g_tlp_avg_count >= hp_tuners->cpu_rush_tlp_times) {
if (g_tlp_avg_sum > v_tlp_avg_last)
g_tlp_avg_sum -= v_tlp_avg_last;
else
g_tlp_avg_sum = 0;
}
g_tlp_avg_average = g_tlp_avg_sum / hp_tuners->cpu_rush_tlp_times;
if (hp_tuners->cpu_rush_boost_enable) {
/* pr_debug("@@@@@@@@@@@@@@@@@@@@@@@@@@@ tlp: %d @@@@@@@@@@@@@@@@@@@@@@@@@@@\n", g_tlp_avg_average); */
if (g_cpus_sum_load_current >
hp_tuners->cpu_rush_threshold * online_cpus_count)
++g_cpu_rush_count;
else
g_cpu_rush_count = 0;
if ((g_cpu_rush_count >= hp_tuners->cpu_rush_avg_times) &&
(online_cpus_count * 100 < g_tlp_avg_average) &&
(online_cpus_count < hp_tuners->cpu_num_limit) &&
(online_cpus_count < num_possible_cpus())) {
dbs_freq_increase(policy, policy->max);
pr_debug("dbs_check_cpu: turn on CPU\n");
g_next_hp_action =
g_tlp_avg_average / 100 + (g_tlp_avg_average % 100 ? 1 : 0);
if (g_next_hp_action > num_possible_cpus())
g_next_hp_action = num_possible_cpus();
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_RUSH;
/* schedule_delayed_work_on(0, &hp_work, 0); */
if (hp_wq == NULL)
pr_emerg("[power/hotplug] %s():%d, impossible\n", __func__, __LINE__);
else
queue_delayed_work_on(0, hp_wq, &hp_work, 0);
goto hp_check_end;
}
}
if (online_cpus_count < hp_tuners->cpu_num_base
&& online_cpus_count < hp_tuners->cpu_num_limit) {
dbs_freq_increase(policy, policy->max);
pr_debug("dbs_check_cpu: turn on CPU\n");
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_BASE;
/* schedule_delayed_work_on(0, &hp_work, 0); */
if (hp_wq == NULL)
pr_emerg("[power/hotplug] %s():%d, impossible\n", __func__, __LINE__);
else
queue_delayed_work_on(0, hp_wq, &hp_work, 0);
goto hp_check_end;
}
if (online_cpus_count > hp_tuners->cpu_num_limit) {
dbs_freq_increase(policy, policy->max);
pr_debug("dbs_check_cpu: turn off CPU\n");
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_LIMIT;
/* schedule_delayed_work_on(0, &hp_work, 0); */
if (hp_wq == NULL)
pr_emerg("[power/hotplug] %s():%d, impossible\n", __func__, __LINE__);
else
queue_delayed_work_on(0, hp_wq, &hp_work, 0);
goto hp_check_end;
}
/* Check CPU loading to power up slave CPU */
if (online_cpus_count < num_possible_cpus()) {
cpus_sum_load_last_up = g_cpu_up_load_history[g_cpu_up_load_index];
g_cpu_up_load_history[g_cpu_up_load_index] = g_cpus_sum_load_current;
g_cpu_up_sum_load += g_cpus_sum_load_current;
g_cpu_up_count++;
g_cpu_up_load_index =
(g_cpu_up_load_index + 1 ==
hp_tuners->cpu_up_avg_times) ? 0 : g_cpu_up_load_index + 1;
if (g_cpu_up_count >= hp_tuners->cpu_up_avg_times) {
if (g_cpu_up_sum_load > cpus_sum_load_last_up)
g_cpu_up_sum_load -= cpus_sum_load_last_up;
else
g_cpu_up_sum_load = 0;
/* g_cpu_up_sum_load /= hp_tuners->cpu_up_avg_times; */
if (g_cpu_up_sum_load >
(hp_tuners->cpu_up_threshold * online_cpus_count *
hp_tuners->cpu_up_avg_times)) {
if (online_cpus_count < hp_tuners->cpu_num_limit) {
#ifdef DEBUG_LOG
pr_debug("dbs_check_cpu: g_cpu_up_sum_load = %d\n",
g_cpu_up_sum_load);
#endif
dbs_freq_increase(policy, policy->max);
pr_debug("dbs_check_cpu: turn on CPU\n");
g_next_hp_action = online_cpus_count + 1;
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_UP;
/* schedule_delayed_work_on(0, &hp_work, 0); */
if (hp_wq == NULL)
pr_emerg("[power/hotplug] %s():%d, impossible\n", __func__, __LINE__);
else
queue_delayed_work_on(0, hp_wq, &hp_work, 0);
goto hp_check_end;
}
}
}
#ifdef DEBUG_LOG
pr_debug("dbs_check_cpu: g_cpu_up_count = %d, g_cpu_up_sum_load = %d\n",
g_cpu_up_count, g_cpu_up_sum_load);
pr_debug("dbs_check_cpu: cpu_up_threshold = %d\n",
(hp_tuners->cpu_up_threshold * online_cpus_count));
#endif
}
/* Check CPU loading to power down slave CPU */
if (online_cpus_count > 1) {
cpus_sum_load_last_down = g_cpu_down_load_history[g_cpu_down_load_index];
g_cpu_down_load_history[g_cpu_down_load_index] = g_cpus_sum_load_current;
g_cpu_down_sum_load += g_cpus_sum_load_current;
g_cpu_down_count++;
g_cpu_down_load_index =
(g_cpu_down_load_index + 1 ==
hp_tuners->cpu_down_avg_times) ? 0 : g_cpu_down_load_index + 1;
if (g_cpu_down_count >= hp_tuners->cpu_down_avg_times) {
long cpu_down_threshold;
if (g_cpu_down_sum_load > cpus_sum_load_last_down)
g_cpu_down_sum_load -= cpus_sum_load_last_down;
else
g_cpu_down_sum_load = 0;
g_next_hp_action = online_cpus_count;
cpu_down_threshold =
((hp_tuners->cpu_up_threshold -
hp_tuners->cpu_down_differential) *
hp_tuners->cpu_down_avg_times);
while ((g_cpu_down_sum_load <
cpu_down_threshold * (g_next_hp_action - 1)) &&
/* (g_next_hp_action > tlp_cpu_num) && */
(g_next_hp_action > hp_tuners->cpu_num_base))
--g_next_hp_action;
/* pr_debug("### g_next_hp_action: %d, tlp_cpu_num: %d, g_cpu_down_sum_load / hp_tuners->cpu_down_avg_times: %d ###\n", g_next_hp_action, tlp_cpu_num, g_cpu_down_sum_load / hp_tuners->cpu_down_avg_times); */
if (g_next_hp_action < online_cpus_count) {
#ifdef DEBUG_LOG
pr_debug("dbs_check_cpu: g_cpu_down_sum_load = %d\n",
g_cpu_down_sum_load);
#endif
dbs_freq_increase(policy, policy->max);
pr_debug("dbs_check_cpu: turn off CPU\n");
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_DOWN;
/* schedule_delayed_work_on(0, &hp_work, 0); */
if (hp_wq == NULL)
pr_emerg("[power/hotplug] %s():%d, impossible\n", __func__, __LINE__);
else
queue_delayed_work_on(0, hp_wq, &hp_work, 0);
}
}
#ifdef DEBUG_LOG
pr_debug("dbs_check_cpu: g_cpu_down_count = %d, g_cpu_down_sum_load = %d\n",
g_cpu_down_count, g_cpu_down_sum_load);
pr_debug("dbs_check_cpu: cpu_down_threshold = %d\n",
((hp_tuners->cpu_up_threshold -
hp_tuners->cpu_down_differential) * (online_cpus_count - 1)));
#endif
}
hp_check_end:
mutex_unlock(&hp_mutex);
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
}
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
}
static void hp_dbs_timer(struct work_struct *work)
{
struct hp_cpu_dbs_info_s *dbs_info =
container_of(work, struct hp_cpu_dbs_info_s, cdbs.work.work);
unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
struct hp_cpu_dbs_info_s *core_dbs_info = &per_cpu(hp_cpu_dbs_info,
cpu);
struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
struct hp_dbs_tuners *hp_tuners;
int delay = 0, sample_type = core_dbs_info->sample_type;
bool modify_all = true;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
mutex_lock(&core_dbs_info->cdbs.timer_mutex);
if (!need_load_eval(&core_dbs_info->cdbs, hp_tuners->sampling_rate)) {
modify_all = false;
goto max_delay;
}
/* Common NORMAL_SAMPLE setup */
core_dbs_info->sample_type = HP_NORMAL_SAMPLE;
if (sample_type == HP_SUB_SAMPLE) {
delay = core_dbs_info->freq_lo_jiffies;
__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
} else {
dbs_check_cpu(dbs_data, cpu);
if (core_dbs_info->freq_lo) {
/* Setup timer for SUB_SAMPLE */
core_dbs_info->sample_type = HP_SUB_SAMPLE;
delay = core_dbs_info->freq_hi_jiffies;
}
}
max_delay:
if (!delay)
delay = delay_for_sampling_rate(hp_tuners->sampling_rate
* core_dbs_info->rate_mult);
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
/* for downgrade */ /* TODO: FIXME */
if (cpufreq_freq_check)
cpufreq_freq_check(0); /* TODO: FIXME, fix cpuid = 0 */
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
}
/************************** sysfs interface ************************/
static struct common_dbs_data hp_dbs_cdata;
/**
* update_sampling_rate - update sampling rate effective immediately if needed.
* @new_rate: new sampling rate
*
* If new rate is smaller than the old, simply updating
* dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
* original sampling_rate was 1 second and the requested new sampling rate is 10
* ms because the user needs immediate reaction from hotplug governor, but not
* sure if higher frequency will be required or not, then, the governor may
* change the sampling rate too late; up to 1 second later. Thus, if we are
* reducing the sampling rate, we need to make the new value effective
* immediately.
*/
static void update_sampling_rate(struct dbs_data *dbs_data, unsigned int new_rate)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
hp_tuners->sampling_rate = new_rate = max(new_rate, dbs_data->min_sampling_rate);
{
struct cpufreq_policy *policy;
struct hp_cpu_dbs_info_s *dbs_info;
unsigned long next_sampling, appointed_at;
policy = cpufreq_cpu_get(0);
if (!policy)
return;
if (policy->governor != &cpufreq_gov_hotplug) {
cpufreq_cpu_put(policy);
return;
}
dbs_info = &per_cpu(hp_cpu_dbs_info, 0);
cpufreq_cpu_put(policy);
mutex_lock(&dbs_info->cdbs.timer_mutex);
if (!delayed_work_pending(&dbs_info->cdbs.work)) {
mutex_unlock(&dbs_info->cdbs.timer_mutex);
return;
}
next_sampling = jiffies + usecs_to_jiffies(new_rate);
appointed_at = dbs_info->cdbs.work.timer.expires;
if (time_before(next_sampling, appointed_at)) {
mutex_unlock(&dbs_info->cdbs.timer_mutex);
cancel_delayed_work_sync(&dbs_info->cdbs.work);
mutex_lock(&dbs_info->cdbs.timer_mutex);
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
usecs_to_jiffies(new_rate), true);
}
mutex_unlock(&dbs_info->cdbs.timer_mutex);
}
}
void hp_enable_timer(int enable)
{
#if 1
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
static unsigned int sampling_rate_backup = 0;
if (!dbs_data || dbs_data->cdata->governor != GOV_HOTPLUG || (enable && !sampling_rate_backup))
return;
if (enable)
update_sampling_rate(dbs_data, sampling_rate_backup);
else {
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
sampling_rate_backup = hp_tuners->sampling_rate;
update_sampling_rate(dbs_data, 30000 * 100);
}
#else
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
int cpu = 0;
struct cpufreq_policy *policy;
struct hp_dbs_tuners *hp_tuners;
struct hp_cpu_dbs_info_s *dbs_info;
policy = cpufreq_cpu_get(cpu);
if (!policy)
continue;
if (policy->governor != &cpufreq_gov_hotplug) {
cpufreq_cpu_put(policy);
continue;
}
dbs_info = &per_cpu(hp_cpu_dbs_info, cpu);
cpufreq_cpu_put(policy);
if (enable) {
hp_tuners = dbs_data->tuners;
mutex_lock(&dbs_info->cdbs.timer_mutex);
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, usecs_to_jiffies(hp_tuners->sampling_rate), true);
mutex_unlock(&dbs_info->cdbs.timer_mutex);
} else
cancel_delayed_work_sync(&dbs_info->cdbs.work);
}
#endif
}
EXPORT_SYMBOL(hp_enable_timer);
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
update_sampling_rate(dbs_data, input);
return count;
}
static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
hp_tuners->io_is_busy = !!input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct hp_cpu_dbs_info_s *dbs_info = &per_cpu(hp_cpu_dbs_info,
j);
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->cdbs.prev_cpu_wall,
hp_tuners->io_is_busy);
}
return count;
}
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || input < MIN_FREQUENCY_UP_THRESHOLD)
return -EINVAL;
/* Calculate the new adj_up_threshold */
hp_tuners->adj_up_threshold += input;
hp_tuners->adj_up_threshold -= hp_tuners->up_threshold;
hp_tuners->up_threshold = input;
return count;
}
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
hp_tuners->sampling_down_factor = input;
/* Reset down sampling multiplier in case it was active */
for_each_online_cpu(j) {
struct hp_cpu_dbs_info_s *dbs_info = &per_cpu(hp_cpu_dbs_info,
j);
dbs_info->rate_mult = 1;
}
return count;
}
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == hp_tuners->ignore_nice_load) /* nothing to do */
return count;
hp_tuners->ignore_nice_load = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct hp_cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(hp_cpu_dbs_info, j);
dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->cdbs.prev_cpu_wall,
hp_tuners->io_is_busy);
if (hp_tuners->ignore_nice_load)
dbs_info->cdbs.prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1000)
input = 1000;
hp_tuners->powersave_bias = input;
hotplug_powersave_bias_init();
return count;
}
show_store_one(hp, sampling_rate);
show_store_one(hp, io_is_busy);
show_store_one(hp, up_threshold);
show_store_one(hp, sampling_down_factor);
show_store_one(hp, ignore_nice_load);
show_store_one(hp, powersave_bias);
declare_show_sampling_rate_min(hp);
gov_sys_pol_attr_rw(sampling_rate);
gov_sys_pol_attr_rw(io_is_busy);
gov_sys_pol_attr_rw(up_threshold);
gov_sys_pol_attr_rw(sampling_down_factor);
gov_sys_pol_attr_rw(ignore_nice_load);
gov_sys_pol_attr_rw(powersave_bias);
gov_sys_pol_attr_ro(sampling_rate_min);
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
static ssize_t store_down_differential(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1
|| input > MAX_FREQUENCY_DOWN_DIFFERENTIAL || input < MIN_FREQUENCY_DOWN_DIFFERENTIAL)
return -EINVAL;
hp_tuners->down_differential = input;
return count;
}
/*
* cpu hotplug - function definition of sysfs
*/
static ssize_t store_cpu_up_threshold(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_UP_THRESHOLD || input < MIN_CPU_UP_THRESHOLD)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_up_threshold = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_down_differential(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_DOWN_DIFFERENTIAL || input < MIN_CPU_DOWN_DIFFERENTIAL)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_down_differential = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_up_avg_times(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_UP_AVG_TIMES || input < MIN_CPU_UP_AVG_TIMES)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_up_avg_times = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_down_avg_times(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_DOWN_AVG_TIMES || input < MIN_CPU_DOWN_AVG_TIMES)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_down_avg_times = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_num_limit(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > num_possible_cpus()
|| input < 1)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_num_limit = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_num_base(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
unsigned int online_cpus_count;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > num_possible_cpus()
|| input < 1)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_num_base = input;
online_cpus_count = num_online_cpus();
#ifdef CONFIG_HOTPLUG_CPU
if (online_cpus_count < input && online_cpus_count < hp_tuners->cpu_num_limit) {
struct cpufreq_policy *policy = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy; /* TODO: FIXME, cpu = 0 */
dbs_freq_increase(policy, policy->max);
g_trigger_hp_work = CPU_HOTPLUG_WORK_TYPE_BASE;
/* schedule_delayed_work_on(0, &hp_work, 0); */
if (hp_wq == NULL)
pr_emerg("[power/hotplug] %s():%d, impossible\n", __func__, __LINE__);
else
queue_delayed_work_on(0, hp_wq, &hp_work, 0);
}
#endif
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_is_cpu_hotplug_disable(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 1 || input < 0)
return -EINVAL;
mutex_lock(&hp_mutex);
if (hp_tuners->is_cpu_hotplug_disable && !input)
hp_reset_strategy_nolock();
hp_tuners->is_cpu_hotplug_disable = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_input_boost_enable(struct dbs_data *dbs_data, const char *buf,
size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 1 || input < 0)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_input_boost_enable = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_input_boost_num(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > num_possible_cpus()
|| input < 2)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_input_boost_num = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_boost_enable(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 1 || input < 0)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_rush_boost_enable = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_boost_num(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > num_possible_cpus()
|| input < 2)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_rush_boost_num = input;
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_threshold(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_RUSH_THRESHOLD || input < MIN_CPU_RUSH_THRESHOLD)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_rush_threshold = input;
/* hp_reset_strategy_nolock(); //no need */
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_tlp_times(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_RUSH_TLP_TIMES || input < MIN_CPU_RUSH_TLP_TIMES)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_rush_tlp_times = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
static ssize_t store_cpu_rush_avg_times(struct dbs_data *dbs_data, const char *buf, size_t count)
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_CPU_RUSH_AVG_TIMES || input < MIN_CPU_RUSH_AVG_TIMES)
return -EINVAL;
mutex_lock(&hp_mutex);
hp_tuners->cpu_rush_avg_times = input;
hp_reset_strategy_nolock();
mutex_unlock(&hp_mutex);
return count;
}
show_store_one(hp, down_differential);
show_store_one(hp, cpu_up_threshold);
show_store_one(hp, cpu_down_differential);
show_store_one(hp, cpu_up_avg_times);
show_store_one(hp, cpu_down_avg_times);
show_store_one(hp, cpu_num_limit);
show_store_one(hp, cpu_num_base);
show_store_one(hp, is_cpu_hotplug_disable);
show_store_one(hp, cpu_input_boost_enable);
show_store_one(hp, cpu_input_boost_num);
show_store_one(hp, cpu_rush_boost_enable);
show_store_one(hp, cpu_rush_boost_num);
show_store_one(hp, cpu_rush_threshold);
show_store_one(hp, cpu_rush_tlp_times);
show_store_one(hp, cpu_rush_avg_times);
gov_sys_pol_attr_rw(down_differential);
gov_sys_pol_attr_rw(cpu_up_threshold);
gov_sys_pol_attr_rw(cpu_down_differential);
gov_sys_pol_attr_rw(cpu_up_avg_times);
gov_sys_pol_attr_rw(cpu_down_avg_times);
gov_sys_pol_attr_rw(cpu_num_limit);
gov_sys_pol_attr_rw(cpu_num_base);
gov_sys_pol_attr_rw(is_cpu_hotplug_disable);
gov_sys_pol_attr_rw(cpu_input_boost_enable);
gov_sys_pol_attr_rw(cpu_input_boost_num);
gov_sys_pol_attr_rw(cpu_rush_boost_enable);
gov_sys_pol_attr_rw(cpu_rush_boost_num);
gov_sys_pol_attr_rw(cpu_rush_threshold);
gov_sys_pol_attr_rw(cpu_rush_tlp_times);
gov_sys_pol_attr_rw(cpu_rush_avg_times);
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
static struct attribute *dbs_attributes_gov_sys[] = {
&sampling_rate_min_gov_sys.attr,
&sampling_rate_gov_sys.attr,
&up_threshold_gov_sys.attr,
&sampling_down_factor_gov_sys.attr,
&ignore_nice_load_gov_sys.attr,
&powersave_bias_gov_sys.attr,
&io_is_busy_gov_sys.attr,
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
&down_differential_gov_sys.attr,
&cpu_up_threshold_gov_sys.attr,
&cpu_down_differential_gov_sys.attr,
&cpu_up_avg_times_gov_sys.attr,
&cpu_down_avg_times_gov_sys.attr,
&cpu_num_limit_gov_sys.attr,
&cpu_num_base_gov_sys.attr,
&is_cpu_hotplug_disable_gov_sys.attr,
&cpu_input_boost_enable_gov_sys.attr,
&cpu_input_boost_num_gov_sys.attr,
&cpu_rush_boost_enable_gov_sys.attr,
&cpu_rush_boost_num_gov_sys.attr,
&cpu_rush_threshold_gov_sys.attr,
&cpu_rush_tlp_times_gov_sys.attr,
&cpu_rush_avg_times_gov_sys.attr,
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
NULL
};
static struct attribute_group hp_attr_group_gov_sys = {
.attrs = dbs_attributes_gov_sys,
.name = "hotplug",
};
static struct attribute *dbs_attributes_gov_pol[] = {
&sampling_rate_min_gov_pol.attr,
&sampling_rate_gov_pol.attr,
&up_threshold_gov_pol.attr,
&sampling_down_factor_gov_pol.attr,
&ignore_nice_load_gov_pol.attr,
&powersave_bias_gov_pol.attr,
&io_is_busy_gov_pol.attr,
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
&down_differential_gov_pol.attr,
&cpu_up_threshold_gov_pol.attr,
&cpu_down_differential_gov_pol.attr,
&cpu_up_avg_times_gov_pol.attr,
&cpu_down_avg_times_gov_pol.attr,
&cpu_num_limit_gov_pol.attr,
&cpu_num_base_gov_pol.attr,
&is_cpu_hotplug_disable_gov_pol.attr,
&cpu_input_boost_enable_gov_pol.attr,
&cpu_input_boost_num_gov_pol.attr,
&cpu_rush_boost_enable_gov_pol.attr,
&cpu_rush_boost_num_gov_pol.attr,
&cpu_rush_threshold_gov_pol.attr,
&cpu_rush_tlp_times_gov_pol.attr,
&cpu_rush_avg_times_gov_pol.attr,
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
NULL
};
static struct attribute_group hp_attr_group_gov_pol = {
.attrs = dbs_attributes_gov_pol,
.name = "hotplug",
};
/************************** sysfs end ************************/
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
#ifdef CONFIG_HOTPLUG_CPU
static struct task_struct *freq_up_task;
static int touch_freq_up_task(void *data)
{
struct cpufreq_policy *policy;
while (1) {
policy = cpufreq_cpu_get(0);
dbs_freq_increase(policy, policy->max);
cpufreq_cpu_put(policy);
/* mt_cpufreq_set_ramp_down_count_const(0, 100); */
pr_debug("@%s():%d\n", __func__, __LINE__);
set_current_state(TASK_INTERRUPTIBLE);
schedule();
if (kthread_should_stop())
break;
}
return 0;
}
static void dbs_input_event(struct input_handle *handle, unsigned int type,
unsigned int code, int value)
{
/* int i; */
/* if ((dbs_tuners_ins.powersave_bias == POWERSAVE_BIAS_MAXLEVEL) || */
/* (dbs_tuners_ins.powersave_bias == POWERSAVE_BIAS_MINLEVEL)) { */
/* nothing to do */
/* return; */
/* } */
/* for_each_online_cpu(i) { */
/* queue_work_on(i, input_wq, &per_cpu(dbs_refresh_work, i)); */
/* } */
/* pr_debug("$$$ in_interrupt(): %d, in_irq(): %d, type: %d, code: %d, value: %d $$$\n", in_interrupt(), in_irq(), type, code, value); */
struct dbs_data *dbs_data = per_cpu(hp_cpu_dbs_info, 0).cdbs.cur_policy->governor_data; /* TODO: FIXME, cpu = 0 */
struct hp_dbs_tuners *hp_tuners;
if (!dbs_data)
return;
hp_tuners = dbs_data->tuners;
if (!hp_tuners)
return;
if ((type == EV_KEY) && (code == BTN_TOUCH) && (value == 1)
&& (dbs_data->cdata->governor == GOV_HOTPLUG && hp_tuners->cpu_input_boost_enable)) {
/* if (!in_interrupt()) */
/* { */
unsigned int online_cpus_count = num_online_cpus();
pr_debug("@%s():%d, online_cpus_count = %d, cpu_input_boost_num = %d\n", __func__, __LINE__, online_cpus_count, hp_tuners->cpu_input_boost_num);
if (online_cpus_count < hp_tuners->cpu_input_boost_num && online_cpus_count < hp_tuners->cpu_num_limit) {
/* schedule_delayed_work_on(0, &hp_work, 0); */
if (hp_wq == NULL)
pr_emerg("[power/hotplug] %s():%d, impossible\n", __func__, __LINE__);
else
queue_delayed_work_on(0, hp_wq, &hp_work, 0);
}
if (online_cpus_count <= hp_tuners->cpu_input_boost_num && online_cpus_count <= hp_tuners->cpu_num_limit)
wake_up_process(freq_up_task);
/* } */
}
}
static int dbs_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
struct input_handle *handle;
int error;
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = "cpufreq";
error = input_register_handle(handle);
if (error)
goto err2;
error = input_open_device(handle);
if (error)
goto err1;
return 0;
err1:
input_unregister_handle(handle);
err2:
kfree(handle);
return error;
}
static void dbs_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id dbs_ids[] = {
{.driver_info = 1},
{},
};
static struct input_handler dbs_input_handler = {
.event = dbs_input_event,
.connect = dbs_input_connect,
.disconnect = dbs_input_disconnect,
.name = "cpufreq_ond",
.id_table = dbs_ids,
};
#endif /* #ifdef CONFIG_HOTPLUG_CPU */
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
static int hp_init(struct dbs_data *dbs_data)
{
struct hp_dbs_tuners *tuners;
u64 idle_time;
int cpu;
tuners = kzalloc(sizeof(struct hp_dbs_tuners), GFP_KERNEL);
if (!tuners) {
pr_err("%s: kzalloc failed\n", __func__);
return -ENOMEM;
}
cpu = get_cpu();
idle_time = get_cpu_idle_time_us(cpu, NULL);
put_cpu();
if (idle_time != -1ULL) {
/* Idle micro accounting is supported. Use finer thresholds */
tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
tuners->down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL; /* <-XXX */
tuners->cpu_up_threshold = MICRO_CPU_UP_THRESHOLD; /* <-XXX */
tuners->cpu_down_differential = MICRO_CPU_DOWN_DIFFERENTIAL; /* <-XXX */
/*
* In nohz/micro accounting case we set the minimum frequency
* not depending on HZ, but fixed (very low). The deferred
* timer might skip some samples if idle/sleeping as needed.
*/
dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
/* cpu rush boost */
tuners->cpu_rush_threshold = MICRO_CPU_RUSH_THRESHOLD; /* <-XXX */
} else {
tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
DEF_FREQUENCY_DOWN_DIFFERENTIAL;
tuners->down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL; /* <-XXX */
tuners->cpu_up_threshold = DEF_CPU_UP_THRESHOLD; /* <-XXX */
tuners->cpu_down_differential = DEF_CPU_DOWN_DIFFERENTIAL; /* <-XXX */
/* For correct statistics, we need 10 ticks for each measure */
dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
/* cpu rush boost */
tuners->cpu_rush_threshold = DEF_CPU_RUSH_THRESHOLD; /* <-XXX */
}
tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
tuners->ignore_nice_load = 0;
tuners->powersave_bias = default_powersave_bias;
tuners->io_is_busy = should_io_be_busy();
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
tuners->cpu_up_avg_times = DEF_CPU_UP_AVG_TIMES;
tuners->cpu_down_avg_times = DEF_CPU_DOWN_AVG_TIMES;
tuners->cpu_num_limit = num_possible_cpus();
tuners->cpu_num_base = 1;
tuners->is_cpu_hotplug_disable = (tuners->cpu_num_limit > 1) ? 0 : 1;
tuners->cpu_input_boost_enable = DEF_CPU_INPUT_BOOST_ENABLE;
tuners->cpu_input_boost_num = DEF_CPU_INPUT_BOOST_NUM;
tuners->cpu_rush_boost_enable = DEF_CPU_RUSH_BOOST_ENABLE;
tuners->cpu_rush_boost_num = num_possible_cpus();
tuners->cpu_rush_tlp_times = DEF_CPU_RUSH_TLP_TIMES;
tuners->cpu_rush_avg_times = DEF_CPU_RUSH_AVG_TIMES;
#ifdef CONFIG_HOTPLUG_CPU
INIT_DEFERRABLE_WORK(&hp_work, hp_work_handler);
hp_wq = alloc_workqueue("hp_work_handler", WQ_HIGHPRI, 0);
g_next_hp_action = num_online_cpus();
#endif
#ifdef DEBUG_LOG
pr_debug("cpufreq_gov_dbs_init: min_sampling_rate = %d\n", dbs_data->min_sampling_rate);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.up_threshold = %d\n", tuners->up_threshold);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.down_differential = %d\n",
tuners->down_differential);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_up_threshold = %d\n",
tuners->cpu_up_threshold);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_down_differential = %d\n",
tuners->cpu_down_differential);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_up_avg_times = %d\n",
tuners->cpu_up_avg_times);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_down_avg_times = %d\n",
tuners->cpu_down_avg_times);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_num_limit = %d\n",
tuners->cpu_num_limit);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_num_base = %d\n", tuners->cpu_num_base);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.is_cpu_hotplug_disable = %d\n",
tuners->is_cpu_hotplug_disable);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_input_boost_enable = %d\n",
tuners->cpu_input_boost_enable);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_input_boost_num = %d\n",
tuners->cpu_input_boost_num);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_boost_enable = %d\n",
tuners->cpu_rush_boost_enable);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_boost_num = %d\n",
tuners->cpu_rush_boost_num);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_threshold = %d\n",
tuners->cpu_rush_threshold);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_tlp_times = %d\n",
tuners->cpu_rush_tlp_times);
pr_debug("cpufreq_gov_dbs_init: dbs_tuners_ins.cpu_rush_avg_times = %d\n",
tuners->cpu_rush_avg_times);
#endif
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
dbs_data->tuners = tuners;
mutex_init(&dbs_data->mutex);
return 0;
}
static void hp_exit(struct dbs_data *dbs_data)
{
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
#ifdef CONFIG_HOTPLUG_CPU
cancel_delayed_work_sync(&hp_work);
if (hp_wq)
destroy_workqueue(hp_wq);
#endif
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
kfree(dbs_data->tuners);
}
define_get_cpu_dbs_routines(hp_cpu_dbs_info);
static struct hp_ops hp_ops = {
.powersave_bias_init_cpu = hotplug_powersave_bias_init_cpu,
.powersave_bias_target = generic_powersave_bias_target,
.freq_increase = dbs_freq_increase,
.input_handler = &dbs_input_handler,
};
static struct common_dbs_data hp_dbs_cdata = {
.governor = GOV_HOTPLUG,
.attr_group_gov_sys = &hp_attr_group_gov_sys,
.attr_group_gov_pol = &hp_attr_group_gov_pol,
.get_cpu_cdbs = get_cpu_cdbs,
.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
.gov_dbs_timer = hp_dbs_timer,
.gov_check_cpu = hp_check_cpu,
.gov_ops = &hp_ops,
.init = hp_init,
.exit = hp_exit,
};
static void hp_set_powersave_bias(unsigned int powersave_bias)
{
struct cpufreq_policy *policy;
struct dbs_data *dbs_data;
struct hp_dbs_tuners *hp_tuners;
unsigned int cpu;
cpumask_t done;
default_powersave_bias = powersave_bias;
cpumask_clear(&done);
get_online_cpus();
for_each_online_cpu(cpu) {
if (cpumask_test_cpu(cpu, &done))
continue;
policy = per_cpu(hp_cpu_dbs_info, cpu).cdbs.cur_policy;
if (!policy)
continue;
cpumask_or(&done, &done, policy->cpus);
if (policy->governor != &cpufreq_gov_hotplug)
continue;
dbs_data = policy->governor_data;
hp_tuners = dbs_data->tuners;
hp_tuners->powersave_bias = default_powersave_bias;
}
put_online_cpus();
}
void hp_register_powersave_bias_handler(unsigned int (*f)
(struct cpufreq_policy *, unsigned int, unsigned int),
unsigned int powersave_bias)
{
hp_ops.powersave_bias_target = f;
hp_set_powersave_bias(powersave_bias);
}
EXPORT_SYMBOL_GPL(hp_register_powersave_bias_handler);
void hp_unregister_powersave_bias_handler(void)
{
hp_ops.powersave_bias_target = generic_powersave_bias_target;
hp_set_powersave_bias(0);
}
EXPORT_SYMBOL_GPL(hp_unregister_powersave_bias_handler);
static int hp_cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
{
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
struct dbs_data *dbs_data;
int rc = 0;
if (have_governor_per_policy())
dbs_data = policy->governor_data;
else
dbs_data = hp_dbs_cdata.gdbs_data;
/* pr_emerg("***** policy->cpu: %d, event: %u, smp_processor_id: %d, have_governor_per_policy: %d *****\n", policy->cpu, event, smp_processor_id(), have_governor_per_policy()); */
switch (event) {
case CPUFREQ_GOV_START:
#ifdef DEBUG_LOG
{
struct hp_dbs_tuners *hp_tuners = dbs_data->tuners;
BUG_ON(NULL == dbs_data);
BUG_ON(NULL == dbs_data->tuners);
pr_debug("cpufreq_governor_dbs: min_sampling_rate = %d\n",
dbs_data->min_sampling_rate);
pr_debug("cpufreq_governor_dbs: dbs_tuners_ins.sampling_rate = %d\n",
hp_tuners->sampling_rate);
pr_debug("cpufreq_governor_dbs: dbs_tuners_ins.io_is_busy = %d\n",
hp_tuners->io_is_busy);
}
#endif
#ifdef CONFIG_HOTPLUG_CPU
if (0) /* (!policy->cpu) // <-XXX */
rc = input_register_handler(&dbs_input_handler);
#endif
break;
case CPUFREQ_GOV_STOP:
#ifdef CONFIG_HOTPLUG_CPU
if (0) /* (!policy->cpu) // <-XXX */
input_unregister_handler(&dbs_input_handler);
#endif
break;
}
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
return cpufreq_governor_dbs(policy, &hp_dbs_cdata, event);
}
/* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< */
#if 0
int cpufreq_gov_dbs_get_sum_load(void)
{
return g_cpus_sum_load_current;
}
#endif
/* >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> */
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_HOTPLUG
static
#endif
struct cpufreq_governor cpufreq_gov_hotplug = {
.name = "hotplug",
.governor = hp_cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
static int __init cpufreq_gov_dbs_init(void)
{
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
freq_up_task = kthread_create(touch_freq_up_task, NULL, "touch_freq_up_task");
if (IS_ERR(freq_up_task))
return PTR_ERR(freq_up_task);
sched_setscheduler_nocheck(freq_up_task, SCHED_FIFO, &param);
get_task_struct(freq_up_task);
return cpufreq_register_governor(&cpufreq_gov_hotplug);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_hotplug);
kthread_stop(freq_up_task);
put_task_struct(freq_up_task);
}
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_hotplug' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_HOTPLUG
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);