blob: 00e18c2ee393cf07fe25238bef2783020e019ca3 [file] [log] [blame]
/*
* Copyright (c) 2008-2015 Travis Geiselbrecht
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files
* (the "Software"), to deal in the Software without restriction,
* including without limitation the rights to use, copy, modify, merge,
* publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* @file
* @brief Kernel threading
*
* This file is the core kernel threading interface.
*
* @defgroup thread Threads
* @{
*/
#include <debug.h>
#include <assert.h>
#include <list.h>
#include <malloc.h>
#include <string.h>
#include <printf.h>
#include <err.h>
#include <lib/dpc.h>
#include <kernel/thread.h>
#include <kernel/timer.h>
#include <kernel/debug.h>
#include <kernel/mp.h>
#include <platform.h>
#include <target.h>
#include <lib/heap.h>
#if WITH_KERNEL_VM
#include <kernel/vm.h>
#endif
#if THREAD_STATS
struct thread_stats thread_stats[SMP_MAX_CPUS];
#endif
#define STACK_DEBUG_BYTE (0x99)
#define STACK_DEBUG_WORD (0x99999999)
#define DEBUG_THREAD_CONTEXT_SWITCH 0
/* global thread list */
static struct list_node thread_list;
/* master thread spinlock */
spin_lock_t thread_lock = SPIN_LOCK_INITIAL_VALUE;
/* the run queue */
static struct list_node run_queue[NUM_PRIORITIES];
static uint32_t run_queue_bitmap;
/* make sure the bitmap is large enough to cover our number of priorities */
STATIC_ASSERT(NUM_PRIORITIES <= sizeof(run_queue_bitmap) * 8);
/* Priority of current thread running on cpu, or last signalled */
static int cpu_priority[SMP_MAX_CPUS];
/* the idle thread(s) (statically allocated) */
#if WITH_SMP
static thread_t _idle_threads[SMP_MAX_CPUS];
#define idle_thread(cpu) (&_idle_threads[cpu])
#else
static thread_t _idle_thread;
#define idle_thread(cpu) (&_idle_thread)
#endif
/* local routines */
static void thread_resched(void);
static void idle_thread_routine(void) __NO_RETURN;
#if PLATFORM_HAS_DYNAMIC_TIMER
/* preemption timer */
static timer_t preempt_timer[SMP_MAX_CPUS];
#endif
#define US2NS(us) ((us) * 1000ULL)
#define MS2NS(ms) (US2NS(ms) * 1000ULL)
/* run queue manipulation */
static void insert_in_run_queue_head(thread_t *t)
{
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
DEBUG_ASSERT(t->state == THREAD_READY);
DEBUG_ASSERT(!list_in_list(&t->queue_node));
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
list_add_head(&run_queue[t->priority], &t->queue_node);
run_queue_bitmap |= (1U<<t->priority);
}
static void insert_in_run_queue_tail(thread_t *t)
{
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
DEBUG_ASSERT(t->state == THREAD_READY);
DEBUG_ASSERT(!list_in_list(&t->queue_node));
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
list_add_tail(&run_queue[t->priority], &t->queue_node);
run_queue_bitmap |= (1<<t->priority);
}
static void init_thread_struct(thread_t *t, const char *name)
{
memset(t, 0, sizeof(thread_t));
t->magic = THREAD_MAGIC;
thread_set_pinned_cpu(t, -1);
strlcpy(t->name, name, sizeof(t->name));
}
/**
* @brief Create a new thread
*
* This function creates a new thread. The thread is initially suspended, so you
* need to call thread_resume() to execute it.
*
* @param name Name of thread
* @param entry Entry point of thread
* @param arg Arbitrary argument passed to entry()
* @param priority Execution priority for the thread.
* @param stack_size Stack size for the thread.
*
* Thread priority is an integer from 0 (lowest) to 31 (highest). Some standard
* prioritys are defined in <kernel/thread.h>:
*
* HIGHEST_PRIORITY
* DPC_PRIORITY
* HIGH_PRIORITY
* DEFAULT_PRIORITY
* LOW_PRIORITY
* IDLE_PRIORITY
* LOWEST_PRIORITY
*
* Stack size is typically set to DEFAULT_STACK_SIZE
*
* @return Pointer to thread object, or NULL on failure.
*/
thread_t *thread_create_etc(thread_t *t, const char *name, thread_start_routine entry, void *arg, int priority, void *stack, size_t stack_size)
{
unsigned int flags = 0;
if (!t) {
t = malloc(sizeof(thread_t));
if (!t)
return NULL;
flags |= THREAD_FLAG_FREE_STRUCT;
}
init_thread_struct(t, name);
t->entry = entry;
t->arg = arg;
t->priority = priority;
t->state = THREAD_SUSPENDED;
t->blocking_wait_queue = NULL;
t->wait_queue_block_ret = NO_ERROR;
thread_set_curr_cpu(t, -1);
t->retcode = 0;
wait_queue_init(&t->retcode_wait_queue);
#if WITH_KERNEL_VM
t->aspace = NULL;
#endif
/* create the stack */
if (!stack) {
#if THREAD_STACK_BOUNDS_CHECK
stack_size += THREAD_STACK_PADDING_SIZE;
flags |= THREAD_FLAG_DEBUG_STACK_BOUNDS_CHECK;
#endif
t->stack = malloc(stack_size);
if (!t->stack) {
if (flags & THREAD_FLAG_FREE_STRUCT)
free(t);
return NULL;
}
flags |= THREAD_FLAG_FREE_STACK;
#if THREAD_STACK_BOUNDS_CHECK
memset(t->stack, STACK_DEBUG_BYTE, THREAD_STACK_PADDING_SIZE);
#endif
} else {
t->stack = stack;
}
#if THREAD_STACK_HIGHWATER
if (flags & THREAD_FLAG_DEBUG_STACK_BOUNDS_CHECK) {
memset(t->stack + THREAD_STACK_PADDING_SIZE, STACK_DEBUG_BYTE,
stack_size - THREAD_STACK_PADDING_SIZE);
} else {
memset(t->stack, STACK_DEBUG_BYTE, stack_size);
}
#endif
t->stack_size = stack_size;
/* save whether or not we need to free the thread struct and/or stack */
t->flags = flags;
/* inheirit thread local storage from the parent */
thread_t *current_thread = get_current_thread();
int i;
for (i=0; i < MAX_TLS_ENTRY; i++)
t->tls[i] = current_thread->tls[i];
/* set up the initial stack frame */
arch_thread_initialize(t);
/* add it to the global thread list */
THREAD_LOCK(state);
list_add_head(&thread_list, &t->thread_list_node);
THREAD_UNLOCK(state);
return t;
}
thread_t *thread_create(const char *name, thread_start_routine entry, void *arg, int priority, size_t stack_size)
{
return thread_create_etc(NULL, name, entry, arg, priority, NULL, stack_size);
}
/**
* @brief Flag a thread as real time
*
* @param t Thread to flag
*
* @return NO_ERROR on success
*/
status_t thread_set_real_time(thread_t *t)
{
if (!t)
return ERR_INVALID_ARGS;
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
THREAD_LOCK(state);
#if PLATFORM_HAS_DYNAMIC_TIMER
if (t == get_current_thread()) {
/* if we're currently running, cancel the preemption timer. */
timer_cancel(&preempt_timer[arch_curr_cpu_num()]);
}
#endif
t->flags |= THREAD_FLAG_REAL_TIME;
THREAD_UNLOCK(state);
return NO_ERROR;
}
static bool thread_is_realtime(thread_t *t)
{
return (t->flags & THREAD_FLAG_REAL_TIME) && t->priority > DEFAULT_PRIORITY;
}
static bool thread_is_idle(thread_t *t)
{
return !!(t->flags & THREAD_FLAG_IDLE);
}
static bool thread_is_real_time_or_idle(thread_t *t)
{
return !!(t->flags & (THREAD_FLAG_REAL_TIME | THREAD_FLAG_IDLE));
}
static mp_cpu_mask_t thread_get_mp_reschedule_target(thread_t *current_thread, thread_t *t)
{
#if WITH_SMP
uint cpu = arch_curr_cpu_num();
uint target_cpu;
if (t->pinned_cpu != -1 && current_thread->pinned_cpu == t->pinned_cpu)
return 0;
if (t->pinned_cpu == -1 || (uint)t->pinned_cpu == cpu)
return 0;
target_cpu = (uint)t->pinned_cpu;
if (t->priority < cpu_priority[target_cpu]) {
/*
* The thread is pinned to a cpu that is already running, or has already
* been signalled to run, a higher priority thread. No ipi is needed.
*/
#ifdef DEBUG_THREAD_CPU_WAKE
dprintf(ALWAYS, "%s: cpu %d, don't wake cpu %d, priority %d for priority %d thread (current priority %d)\n",
__func__, cpu, target_cpu, cpu_priority[target_cpu], t->priority, current_thread->priority);
#endif
return 0;
}
#ifdef DEBUG_THREAD_CPU_WAKE
dprintf(ALWAYS, "%s: cpu %d, wake cpu %d, priority %d for priority %d thread (current priority %d)\n",
__func__, cpu, target_cpu, cpu_priority[target_cpu], t->priority, current_thread->priority);
#endif
/*
* Pretend the target CPU is already running the thread so we don't send it
* another ipi for a lower priority thread. This is most important if that
* thread can run on another CPU instead.
*/
cpu_priority[target_cpu] = t->priority;
return 1UL << target_cpu;
#else
return 0;
#endif
}
static void thread_mp_reschedule(thread_t *current_thread, thread_t *t)
{
mp_reschedule(thread_get_mp_reschedule_target(current_thread, t), 0);
}
/**
* @brief Make a suspended thread executable.
*
* This function is typically called to start a thread which has just been
* created with thread_create()
*
* @param t Thread to resume
*
* @return NO_ERROR on success, ERR_NOT_SUSPENDED if thread was not suspended.
*/
status_t thread_resume(thread_t *t)
{
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
DEBUG_ASSERT(t->state != THREAD_DEATH);
bool resched = false;
bool ints_disabled = arch_ints_disabled();
THREAD_LOCK(state);
if (t->state == THREAD_SUSPENDED) {
t->state = THREAD_READY;
insert_in_run_queue_head(t);
if (!ints_disabled) /* HACK, don't resced into bootstrap thread before idle thread is set up */
resched = true;
}
thread_mp_reschedule(get_current_thread(), t);
THREAD_UNLOCK(state);
if (resched)
thread_yield();
return NO_ERROR;
}
status_t thread_detach_and_resume(thread_t *t)
{
status_t err;
err = thread_detach(t);
if (err < 0)
return err;
return thread_resume(t);
}
status_t thread_join(thread_t *t, int *retcode, lk_time_t timeout)
{
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
THREAD_LOCK(state);
if (t->flags & THREAD_FLAG_DETACHED) {
/* the thread is detached, go ahead and exit */
THREAD_UNLOCK(state);
return ERR_THREAD_DETACHED;
}
/* wait for the thread to die */
if (t->state != THREAD_DEATH) {
status_t err = wait_queue_block(&t->retcode_wait_queue, timeout);
if (err < 0) {
THREAD_UNLOCK(state);
return err;
}
}
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
DEBUG_ASSERT(t->state == THREAD_DEATH);
DEBUG_ASSERT(t->blocking_wait_queue == NULL);
DEBUG_ASSERT(!list_in_list(&t->queue_node));
/* save the return code */
if (retcode)
*retcode = t->retcode;
/* remove it from the master thread list */
list_delete(&t->thread_list_node);
/* clear the structure's magic */
t->magic = 0;
THREAD_UNLOCK(state);
/* free its stack and the thread structure itself */
if (t->flags & THREAD_FLAG_FREE_STACK && t->stack)
free(t->stack);
if (t->flags & THREAD_FLAG_FREE_STRUCT)
free(t);
return NO_ERROR;
}
status_t thread_detach(thread_t *t)
{
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
THREAD_LOCK(state);
/* if another thread is blocked inside thread_join() on this thread,
* wake them up with a specific return code */
wait_queue_wake_all(&t->retcode_wait_queue, false, ERR_THREAD_DETACHED);
/* if it's already dead, then just do what join would have and exit */
if (t->state == THREAD_DEATH) {
t->flags &= ~THREAD_FLAG_DETACHED; /* makes sure thread_join continues */
THREAD_UNLOCK(state);
return thread_join(t, NULL, 0);
} else {
t->flags |= THREAD_FLAG_DETACHED;
THREAD_UNLOCK(state);
return NO_ERROR;
}
}
/**
* @brief Terminate the current thread
*
* Current thread exits with the specified return code.
*
* This function does not return.
*/
void thread_exit(int retcode)
{
thread_t *current_thread = get_current_thread();
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
DEBUG_ASSERT(!thread_is_idle(current_thread));
// dprintf("thread_exit: current %p\n", current_thread);
THREAD_LOCK(state);
/* enter the dead state */
current_thread->state = THREAD_DEATH;
current_thread->retcode = retcode;
/* if we're detached, then do our teardown here */
if (current_thread->flags & THREAD_FLAG_DETACHED) {
/* remove it from the master thread list */
list_delete(&current_thread->thread_list_node);
/* clear the structure's magic */
current_thread->magic = 0;
/* free its stack and the thread structure itself */
if (current_thread->flags & THREAD_FLAG_FREE_STACK && current_thread->stack) {
heap_delayed_free(current_thread->stack);
/* make sure its not going to get a bounds check performed on the half-freed stack */
current_thread->flags &= ~THREAD_FLAG_DEBUG_STACK_BOUNDS_CHECK;
}
if (current_thread->flags & THREAD_FLAG_FREE_STRUCT)
heap_delayed_free(current_thread);
} else {
/* signal if anyone is waiting */
wait_queue_wake_all(&current_thread->retcode_wait_queue, false, 0);
}
/* reschedule */
thread_resched();
panic("somehow fell through thread_exit()\n");
}
__WEAK void platform_idle(void)
{
arch_idle();
}
static void idle_thread_routine(void)
{
for (;;)
platform_idle();
}
static thread_t *get_top_thread(int cpu, bool unlink)
{
thread_t *newthread;
uint32_t local_run_queue_bitmap = run_queue_bitmap;
while (local_run_queue_bitmap) {
/* find the first (remaining) queue with a thread in it */
uint next_queue = sizeof(run_queue_bitmap) * 8 - 1 - __builtin_clz(local_run_queue_bitmap);
list_for_every_entry(&run_queue[next_queue], newthread, thread_t, queue_node) {
#if WITH_SMP
if (newthread->pinned_cpu < 0 || newthread->pinned_cpu == cpu)
#endif
{
if (unlink) {
list_delete(&newthread->queue_node);
if (list_is_empty(&run_queue[next_queue]))
run_queue_bitmap &= ~(1U<<next_queue);
}
return newthread;
}
}
local_run_queue_bitmap &= ~(1U<<next_queue);
}
/* No threads to run */
if (cpu < 0) {
/* no CPU has been selected, so we don't have an idle thread */
return NULL;
} else {
/* select the idle thread for this cpu */
return idle_thread(cpu);
}
}
static void thread_cond_mp_reschedule(thread_t *current_thread, const char *caller)
{
#if WITH_SMP
int i;
uint best_cpu = ~0U;
int best_cpu_priority = INT_MAX;
thread_t *t = get_top_thread(-1, false);
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
for (i = 0; i < SMP_MAX_CPUS; i++) {
if (!mp_is_cpu_active(i))
continue;
if (cpu_priority[i] < best_cpu_priority) {
best_cpu = i;
best_cpu_priority = cpu_priority[i];
}
}
if (!t || (t->priority <= best_cpu_priority))
return;
#ifdef DEBUG_THREAD_CPU_WAKE
dprintf(ALWAYS, "%s from %s: cpu %d, wake cpu %d, priority %d for priority %d thread (%s), current %d (%s)\n",
__func__, caller, arch_curr_cpu_num(), best_cpu, best_cpu_priority,
t->priority, t->name,
current_thread->priority, current_thread->name);
#endif
cpu_priority[best_cpu] = t->priority;
mp_reschedule(1UL << best_cpu, 0);
#endif
}
/**
* @brief Cause another thread to be executed.
*
* Internal reschedule routine. The current thread needs to already be in whatever
* state and queues it needs to be in. This routine simply picks the next thread and
* switches to it.
*
* This is probably not the function you're looking for. See
* thread_yield() instead.
*/
void thread_resched(void)
{
thread_t *oldthread;
thread_t *newthread;
thread_t *current_thread = get_current_thread();
uint cpu = arch_curr_cpu_num();
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
DEBUG_ASSERT(current_thread->state != THREAD_RUNNING);
THREAD_STATS_INC(reschedules);
newthread = get_top_thread(cpu, true);
DEBUG_ASSERT(newthread);
newthread->state = THREAD_RUNNING;
oldthread = current_thread;
if (newthread == oldthread) {
if (cpu_priority[cpu] != oldthread->priority) {
/*
* When we try to wake up a CPU to run a specific thread, we record
* the priority of that thread so we don't request the same CPU
* again for a lower priority thread. If another CPU picks up that
* thread before the CPU we sent the wake-up IPI gets to the
* scheduler it will may to the early return path here. Reset this
* priority value before returning.
*/
#ifdef DEBUG_THREAD_CPU_WAKE
dprintf(ALWAYS, "%s: cpu %d, reset cpu priority %d -> %d\n",
__func__, cpu, cpu_priority[cpu], newthread->priority);
#endif
cpu_priority[cpu] = newthread->priority;
}
return;
}
/* set up quantum for the new thread if it was consumed */
if (newthread->remaining_quantum <= 0) {
newthread->remaining_quantum = 5; // XXX make this smarter
}
/* mark the cpu ownership of the threads */
thread_set_curr_cpu(oldthread, -1);
thread_set_curr_cpu(newthread, cpu);
#if WITH_SMP
if (thread_is_idle(newthread)) {
mp_set_cpu_idle(cpu);
} else {
mp_set_cpu_busy(cpu);
}
if (thread_is_realtime(newthread)) {
mp_set_cpu_realtime(cpu);
} else {
mp_set_cpu_non_realtime(cpu);
}
#endif
#if THREAD_STATS
THREAD_STATS_INC(context_switches);
if (thread_is_idle(oldthread)) {
lk_time_ns_t now = current_time_ns();
thread_stats[cpu].idle_time += now - thread_stats[cpu].last_idle_timestamp;
}
if (thread_is_idle(newthread)) {
thread_stats[cpu].last_idle_timestamp = current_time_ns();
}
#endif
KEVLOG_THREAD_SWITCH(oldthread, newthread);
#if PLATFORM_HAS_DYNAMIC_TIMER
if (thread_is_real_time_or_idle(newthread)) {
thread_cond_mp_reschedule(newthread, __func__);
if (!thread_is_real_time_or_idle(oldthread)) {
/* if we're switching from a non real time to a real time, cancel
* the preemption timer. */
#if DEBUG_THREAD_CONTEXT_SWITCH
dprintf(ALWAYS, "arch_context_switch: stop preempt, cpu %d, old %p (%s), new %p (%s)\n",
cpu, oldthread, oldthread->name, newthread, newthread->name);
#endif
timer_cancel(&preempt_timer[cpu]);
}
} else if (thread_is_real_time_or_idle(oldthread)) {
/* if we're switching from a real time (or idle thread) to a regular one,
* set up a periodic timer to run our preemption tick. */
#if DEBUG_THREAD_CONTEXT_SWITCH
dprintf(ALWAYS, "arch_context_switch: start preempt, cpu %d, old %p (%s), new %p (%s)\n",
cpu, oldthread, oldthread->name, newthread, newthread->name);
#endif
timer_set_periodic_ns(&preempt_timer[cpu], MS2NS(10),
(timer_callback)thread_timer_tick, NULL);
}
#endif
/* set some optional target debug leds */
target_set_debug_led(0, !thread_is_idle(newthread));
/* do the switch */
cpu_priority[cpu] = newthread->priority;
set_current_thread(newthread);
#if DEBUG_THREAD_CONTEXT_SWITCH
dprintf(ALWAYS, "arch_context_switch: cpu %d, old %p (%s, pri %d, flags 0x%x), new %p (%s, pri %d, flags 0x%x)\n",
cpu, oldthread, oldthread->name, oldthread->priority,
oldthread->flags, newthread, newthread->name,
newthread->priority, newthread->flags);
#endif
#if THREAD_STACK_BOUNDS_CHECK
/* check that the old thread has not blown its stack just before pushing its context */
if (oldthread->flags & THREAD_FLAG_DEBUG_STACK_BOUNDS_CHECK) {
STATIC_ASSERT((THREAD_STACK_PADDING_SIZE % sizeof(uint32_t)) == 0);
uint32_t *s = (uint32_t *)oldthread->stack;
for (size_t i = 0; i < THREAD_STACK_PADDING_SIZE / sizeof(uint32_t); i++) {
if (unlikely(s[i] != STACK_DEBUG_WORD)) {
/* NOTE: will probably blow the stack harder here, but hopefully enough
* state exists to at least get some sort of debugging done.
*/
panic("stack overrun at %p: thread %p (%s), stack %p\n", &s[i],
oldthread, oldthread->name, oldthread->stack);
}
}
}
#endif
#if WITH_KERNEL_VM
/* see if we need to swap mmu context */
if (newthread->aspace != oldthread->aspace) {
vmm_context_switch(oldthread->aspace, newthread->aspace);
}
#endif
/* do the low level context switch */
arch_context_switch(oldthread, newthread);
}
/**
* @brief Yield the cpu to another thread
*
* This function places the current thread at the end of the run queue
* and yields the cpu to another waiting thread (if any.)
*
* This function will return at some later time. Possibly immediately if
* no other threads are waiting to execute.
*/
void thread_yield(void)
{
thread_t *current_thread = get_current_thread();
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
THREAD_LOCK(state);
THREAD_STATS_INC(yields);
/* we are yielding the cpu, so stick ourselves into the tail of the run queue and reschedule */
current_thread->state = THREAD_READY;
current_thread->remaining_quantum = 0;
if (likely(!thread_is_idle(current_thread))) { /* idle thread doesn't go in the run queue */
insert_in_run_queue_tail(current_thread);
}
thread_resched();
THREAD_UNLOCK(state);
}
/**
* @brief Briefly yield cpu to another thread
*
* This function is similar to thread_yield(), except that it will
* restart more quickly.
*
* This function places the current thread at the head of the run
* queue and then yields the cpu to another thread.
*
* Exception: If the time slice for this thread has expired, then
* the thread goes to the end of the run queue.
*
* This function will return at some later time. Possibly immediately if
* no other threads are waiting to execute.
*/
void thread_preempt(void)
{
thread_t *current_thread = get_current_thread();
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
#if THREAD_STATS
if (!thread_is_idle(current_thread))
THREAD_STATS_INC(preempts); /* only track when a meaningful preempt happens */
#endif
KEVLOG_THREAD_PREEMPT(current_thread);
THREAD_LOCK(state);
/* we are being preempted, so we get to go back into the front of the run queue if we have quantum left */
current_thread->state = THREAD_READY;
if (likely(!thread_is_idle(current_thread))) { /* idle thread doesn't go in the run queue */
if (current_thread->remaining_quantum > 0)
insert_in_run_queue_head(current_thread);
else
insert_in_run_queue_tail(current_thread); /* if we're out of quantum, go to the tail of the queue */
}
thread_resched();
THREAD_UNLOCK(state);
}
/**
* @brief Suspend thread until woken.
*
* This function schedules another thread to execute. This function does not
* return until the thread is made runable again by some other module.
*
* You probably don't want to call this function directly; it's meant to be called
* from other modules, such as mutex, which will presumably set the thread's
* state to blocked and add it to some queue or another.
*/
void thread_block(void)
{
__UNUSED thread_t *current_thread = get_current_thread();
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
DEBUG_ASSERT(current_thread->state == THREAD_BLOCKED);
DEBUG_ASSERT(spin_lock_held(&thread_lock));
DEBUG_ASSERT(!thread_is_idle(current_thread));
/* we are blocking on something. the blocking code should have already stuck us on a queue */
thread_resched();
}
void thread_unblock(thread_t *t, bool resched)
{
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
DEBUG_ASSERT(t->state == THREAD_BLOCKED);
DEBUG_ASSERT(spin_lock_held(&thread_lock));
DEBUG_ASSERT(!thread_is_idle(t));
t->state = THREAD_READY;
insert_in_run_queue_head(t);
thread_mp_reschedule(get_current_thread(), t);
if (resched)
thread_resched();
}
enum handler_return thread_timer_tick(void)
{
thread_t *current_thread = get_current_thread();
if (thread_is_idle(current_thread))
return INT_NO_RESCHEDULE;
THREAD_LOCK(state);
thread_cond_mp_reschedule(current_thread, __func__);
THREAD_UNLOCK(state);
if (thread_is_real_time_or_idle(current_thread))
return INT_NO_RESCHEDULE;
current_thread->remaining_quantum--;
if (current_thread->remaining_quantum <= 0) {
return INT_RESCHEDULE;
} else {
return INT_NO_RESCHEDULE;
}
}
/* timer callback to wake up a sleeping thread */
static enum handler_return thread_sleep_handler(timer_t *timer,
lk_time_ns_t now, void *arg)
{
thread_t *t = (thread_t *)arg;
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
DEBUG_ASSERT(t->state == THREAD_SLEEPING);
THREAD_LOCK(state);
t->state = THREAD_READY;
insert_in_run_queue_head(t);
THREAD_UNLOCK(state);
return INT_RESCHEDULE;
}
/**
* @brief Put thread to sleep; delay specified in ms
*
* This function puts the current thread to sleep until the specified
* delay in ns has expired.
*
* Note that this function could sleep for longer than the specified delay if
* other threads are running. When the timer expires, this thread will
* be placed at the head of the run queue.
*/
void thread_sleep_ns(lk_time_ns_t delay_ns)
{
timer_t timer;
thread_t *current_thread = get_current_thread();
DEBUG_ASSERT(current_thread->magic == THREAD_MAGIC);
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
DEBUG_ASSERT(!thread_is_idle(current_thread));
timer_initialize(&timer);
THREAD_LOCK(state);
timer_set_oneshot_ns(&timer, delay_ns, thread_sleep_handler,
(void *)current_thread);
current_thread->state = THREAD_SLEEPING;
thread_resched();
THREAD_UNLOCK(state);
/*
* Make sure callback is not still running before timer goes out of scope as
* it would corrupt the stack.
*/
timer_cancel_sync(&timer);
}
/**
* @brief Initialize threading system
*
* This function is called once, from kmain()
*/
void thread_init_early(void)
{
int i;
DEBUG_ASSERT(arch_curr_cpu_num() == 0);
/* initialize the run queues */
for (i=0; i < NUM_PRIORITIES; i++)
list_initialize(&run_queue[i]);
/* initialize the thread list */
list_initialize(&thread_list);
/* create a thread to cover the current running state */
thread_t *t = idle_thread(0);
init_thread_struct(t, "bootstrap");
/* half construct this thread, since we're already running */
t->priority = HIGHEST_PRIORITY;
t->state = THREAD_RUNNING;
t->flags = THREAD_FLAG_DETACHED;
thread_set_curr_cpu(t, 0);
thread_set_pinned_cpu(t, 0);
wait_queue_init(&t->retcode_wait_queue);
list_add_head(&thread_list, &t->thread_list_node);
cpu_priority[0] = t->priority;
set_current_thread(t);
}
/**
* @brief Complete thread initialization
*
* This function is called once at boot time
*/
void thread_init(void)
{
#if PLATFORM_HAS_DYNAMIC_TIMER
for (uint i = 0; i < SMP_MAX_CPUS; i++) {
timer_initialize(&preempt_timer[i]);
}
#endif
}
/**
* @brief Change name of current thread
*/
void thread_set_name(const char *name)
{
thread_t *current_thread = get_current_thread();
strlcpy(current_thread->name, name, sizeof(current_thread->name));
}
/**
* @brief Change priority of current thread
*
* See thread_create() for a discussion of priority values.
*/
void thread_set_priority(int priority)
{
thread_t *current_thread = get_current_thread();
THREAD_LOCK(state);
if (priority <= IDLE_PRIORITY)
priority = IDLE_PRIORITY + 1;
if (priority > HIGHEST_PRIORITY)
priority = HIGHEST_PRIORITY;
current_thread->priority = priority;
current_thread->state = THREAD_READY;
insert_in_run_queue_head(current_thread);
thread_resched();
THREAD_UNLOCK(state);
}
/**
* @brief Become an idle thread
*
* This function marks the current thread as the idle thread -- the one which
* executes when there is nothing else to do. This function does not return.
* This function is called once at boot time.
*/
void thread_become_idle(void)
{
DEBUG_ASSERT(arch_ints_disabled());
thread_t *t = get_current_thread();
#if WITH_SMP
char name[16];
snprintf(name, sizeof(name), "idle %d", arch_curr_cpu_num());
thread_set_name(name);
#else
thread_set_name("idle");
#endif
/* mark ourself as idle */
t->priority = IDLE_PRIORITY;
t->flags |= THREAD_FLAG_IDLE;
thread_set_pinned_cpu(t, arch_curr_cpu_num());
mp_set_curr_cpu_active(true);
mp_set_cpu_idle(arch_curr_cpu_num());
/* enable interrupts and start the scheduler */
arch_enable_ints();
thread_yield();
idle_thread_routine();
}
/* create an idle thread for the cpu we're on, and start scheduling */
void thread_secondary_cpu_init_early(void)
{
DEBUG_ASSERT(arch_ints_disabled());
/* construct an idle thread to cover our cpu */
uint cpu = arch_curr_cpu_num();
thread_t *t = idle_thread(cpu);
char name[16];
snprintf(name, sizeof(name), "idle %u", cpu);
init_thread_struct(t, name);
thread_set_pinned_cpu(t, cpu);
/* half construct this thread, since we're already running */
t->priority = HIGHEST_PRIORITY;
t->state = THREAD_RUNNING;
t->flags = THREAD_FLAG_DETACHED | THREAD_FLAG_IDLE;
thread_set_curr_cpu(t, cpu);
thread_set_pinned_cpu(t, cpu);
wait_queue_init(&t->retcode_wait_queue);
THREAD_LOCK(state);
list_add_head(&thread_list, &t->thread_list_node);
cpu_priority[cpu] = t->priority;
set_current_thread(t);
THREAD_UNLOCK(state);
}
void thread_secondary_cpu_entry(void)
{
uint cpu = arch_curr_cpu_num();
thread_t *t = get_current_thread();
t->priority = IDLE_PRIORITY;
mp_set_curr_cpu_active(true);
mp_set_cpu_idle(cpu);
/* enable interrupts and start the scheduler on this cpu */
arch_enable_ints();
thread_yield();
idle_thread_routine();
}
static const char *thread_state_to_str(enum thread_state state)
{
switch (state) {
case THREAD_SUSPENDED:
return "susp";
case THREAD_READY:
return "rdy";
case THREAD_RUNNING:
return "run";
case THREAD_BLOCKED:
return "blok";
case THREAD_SLEEPING:
return "slep";
case THREAD_DEATH:
return "deth";
default:
return "unkn";
}
}
static size_t thread_stack_used(thread_t *t) {
#ifdef THREAD_STACK_HIGHWATER
uint8_t *stack_base;
size_t stack_size;
size_t i;
stack_base = t->stack;
stack_size = t->stack_size;
for (i = 0; i < stack_size; i++) {
if (stack_base[i] != STACK_DEBUG_BYTE)
break;
}
return stack_size - i;
#else
return 0;
#endif
}
/**
* @brief Dump debugging info about the specified thread.
*/
void dump_thread(thread_t *t)
{
dprintf(INFO, "dump_thread: t %p (%s)\n", t, t->name);
#if WITH_SMP
dprintf(INFO, "\tstate %s, curr_cpu %d, pinned_cpu %d, priority %d, remaining quantum %d\n",
thread_state_to_str(t->state), t->curr_cpu, t->pinned_cpu, t->priority, t->remaining_quantum);
#else
dprintf(INFO, "\tstate %s, priority %d, remaining quantum %d\n",
thread_state_to_str(t->state), t->priority, t->remaining_quantum);
#endif
#ifdef THREAD_STACK_HIGHWATER
dprintf(INFO, "\tstack %p, stack_size %zd, stack_used %zd\n",
t->stack, t->stack_size, thread_stack_used(t));
#else
dprintf(INFO, "\tstack %p, stack_size %zd\n", t->stack, t->stack_size);
#endif
dprintf(INFO, "\tentry %p, arg %p, flags 0x%x\n", t->entry, t->arg, t->flags);
dprintf(INFO, "\twait queue %p, wait queue ret %d\n", t->blocking_wait_queue, t->wait_queue_block_ret);
#if WITH_KERNEL_VM
dprintf(INFO, "\taspace %p\n", t->aspace);
#endif
#if (MAX_TLS_ENTRY > 0)
dprintf(INFO, "\ttls:");
int i;
for (i=0; i < MAX_TLS_ENTRY; i++) {
dprintf(INFO, " 0x%lx", t->tls[i]);
}
dprintf(INFO, "\n");
#endif
arch_dump_thread(t);
}
/**
* @brief Dump debugging info about all threads
*/
void dump_all_threads(void)
{
thread_t *t;
THREAD_LOCK(state);
list_for_every_entry(&thread_list, t, thread_t, thread_list_node) {
if (t->magic != THREAD_MAGIC) {
dprintf(INFO, "bad magic on thread struct %p, aborting.\n", t);
hexdump(t, sizeof(thread_t));
break;
}
dump_thread(t);
}
THREAD_UNLOCK(state);
}
/** @} */
/**
* @defgroup wait Wait Queue
* @{
*/
void wait_queue_init(wait_queue_t *wait)
{
*wait = (wait_queue_t)WAIT_QUEUE_INITIAL_VALUE(*wait);
}
static enum handler_return wait_queue_timeout_handler(timer_t *timer,
lk_time_ns_t now,
void *arg)
{
thread_t *thread = (thread_t *)arg;
DEBUG_ASSERT(thread->magic == THREAD_MAGIC);
spin_lock(&thread_lock);
enum handler_return ret = INT_NO_RESCHEDULE;
if (thread_unblock_from_wait_queue(thread, ERR_TIMED_OUT) >= NO_ERROR) {
ret = INT_RESCHEDULE;
}
spin_unlock(&thread_lock);
return ret;
}
/**
* @brief Block until a wait queue is notified.
*
* This function puts the current thread at the end of a wait
* queue and then blocks until some other thread wakes the queue
* up again.
*
* @param wait The wait queue to enter
* @param timeout The maximum time, in ms, to wait
*
* If the timeout is zero, this function returns immediately with
* ERR_TIMED_OUT. If the timeout is INFINITE_TIME, this function
* waits indefinitely. Otherwise, this function returns with
* ERR_TIMED_OUT at the end of the timeout period.
*
* @return ERR_TIMED_OUT on timeout, else returns the return
* value specified when the queue was woken by wait_queue_wake_one().
*/
status_t wait_queue_block(wait_queue_t *wait, lk_time_t timeout)
{
timer_t timer;
thread_t *current_thread = get_current_thread();
DEBUG_ASSERT(wait->magic == WAIT_QUEUE_MAGIC);
DEBUG_ASSERT(current_thread->state == THREAD_RUNNING);
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
if (timeout == 0)
return ERR_TIMED_OUT;
list_add_tail(&wait->list, &current_thread->queue_node);
wait->count++;
current_thread->state = THREAD_BLOCKED;
current_thread->blocking_wait_queue = wait;
current_thread->wait_queue_block_ret = NO_ERROR;
/* if the timeout is nonzero or noninfinite, set a callback to yank us out of the queue */
if (timeout != INFINITE_TIME) {
timer_initialize(&timer);
timer_set_oneshot_ns(&timer, MS2NS(timeout),
wait_queue_timeout_handler,
(void *)current_thread);
}
thread_resched();
/* we don't really know if the timer fired or not, so it's better safe to try to cancel it */
if (timeout != INFINITE_TIME) {
/*
* The timer could be running on another CPU. Drop the thread-lock then
* cancel and wait for the stack allocated timer.
*/
spin_unlock(&thread_lock);
arch_enable_ints();
timer_cancel_sync(&timer);
arch_disable_ints();
spin_lock(&thread_lock);
}
return current_thread->wait_queue_block_ret;
}
/**
* @brief Wake up one thread sleeping on a wait queue
*
* This function removes one thread (if any) from the head of the wait queue and
* makes it executable. The new thread will be placed at the head of the
* run queue.
*
* @param wait The wait queue to wake
* @param reschedule If true, the newly-woken thread will run immediately.
* @param wait_queue_error The return value which the new thread will receive
* from wait_queue_block().
*
* @return The number of threads woken (zero or one)
*/
int wait_queue_wake_one(wait_queue_t *wait, bool reschedule, status_t wait_queue_error)
{
thread_t *t;
int ret = 0;
thread_t *current_thread = get_current_thread();
DEBUG_ASSERT(wait->magic == WAIT_QUEUE_MAGIC);
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
t = list_remove_head_type(&wait->list, thread_t, queue_node);
if (t) {
wait->count--;
DEBUG_ASSERT(t->state == THREAD_BLOCKED);
t->state = THREAD_READY;
t->wait_queue_block_ret = wait_queue_error;
t->blocking_wait_queue = NULL;
/* if we're instructed to reschedule, stick the current thread on the head
* of the run queue first, so that the newly awakened thread gets a chance to run
* before the current one, but the current one doesn't get unnecessarilly punished.
*/
if (reschedule) {
current_thread->state = THREAD_READY;
insert_in_run_queue_head(current_thread);
}
insert_in_run_queue_head(t);
thread_mp_reschedule(current_thread, t);
if (reschedule) {
thread_resched();
}
ret = 1;
}
return ret;
}
/**
* @brief Wake all threads sleeping on a wait queue
*
* This function removes all threads (if any) from the wait queue and
* makes them executable. The new threads will be placed at the head of the
* run queue.
*
* @param wait The wait queue to wake
* @param reschedule If true, the newly-woken threads will run immediately.
* @param wait_queue_error The return value which the new thread will receive
* from wait_queue_block().
*
* @return The number of threads woken (zero or one)
*/
int wait_queue_wake_all(wait_queue_t *wait, bool reschedule, status_t wait_queue_error)
{
thread_t *t;
int ret = 0;
mp_cpu_mask_t mp_reschedule_target = 0;
thread_t *current_thread = get_current_thread();
DEBUG_ASSERT(wait->magic == WAIT_QUEUE_MAGIC);
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
if (reschedule && wait->count > 0) {
/* if we're instructed to reschedule, stick the current thread on the head
* of the run queue first, so that the newly awakened threads get a chance to run
* before the current one, but the current one doesn't get unnecessarilly punished.
*/
current_thread->state = THREAD_READY;
insert_in_run_queue_head(current_thread);
}
/* pop all the threads off the wait queue into the run queue */
while ((t = list_remove_head_type(&wait->list, thread_t, queue_node))) {
wait->count--;
DEBUG_ASSERT(t->state == THREAD_BLOCKED);
t->state = THREAD_READY;
t->wait_queue_block_ret = wait_queue_error;
t->blocking_wait_queue = NULL;
insert_in_run_queue_head(t);
mp_reschedule_target |= thread_get_mp_reschedule_target(current_thread, t);
ret++;
}
DEBUG_ASSERT(wait->count == 0);
if (ret > 0) {
mp_reschedule(mp_reschedule_target, 0);
if (reschedule) {
thread_resched();
}
}
return ret;
}
/**
* @brief Free all resources allocated in wait_queue_init()
*
* If any threads were waiting on this queue, they are all woken.
*/
void wait_queue_destroy(wait_queue_t *wait, bool reschedule)
{
DEBUG_ASSERT(wait->magic == WAIT_QUEUE_MAGIC);
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
wait_queue_wake_all(wait, reschedule, ERR_OBJECT_DESTROYED);
wait->magic = 0;
}
/**
* @brief Wake a specific thread in a wait queue
*
* This function extracts a specific thread from a wait queue, wakes it, and
* puts it at the head of the run queue.
*
* @param t The thread to wake
* @param wait_queue_error The return value which the new thread will receive
* from wait_queue_block().
*
* @return ERR_NOT_BLOCKED if thread was not in any wait queue.
*/
status_t thread_unblock_from_wait_queue(thread_t *t, status_t wait_queue_error)
{
DEBUG_ASSERT(t->magic == THREAD_MAGIC);
DEBUG_ASSERT(arch_ints_disabled());
DEBUG_ASSERT(spin_lock_held(&thread_lock));
if (t->state != THREAD_BLOCKED)
return ERR_NOT_BLOCKED;
DEBUG_ASSERT(t->blocking_wait_queue != NULL);
DEBUG_ASSERT(t->blocking_wait_queue->magic == WAIT_QUEUE_MAGIC);
DEBUG_ASSERT(list_in_list(&t->queue_node));
list_delete(&t->queue_node);
t->blocking_wait_queue->count--;
t->blocking_wait_queue = NULL;
t->state = THREAD_READY;
t->wait_queue_block_ret = wait_queue_error;
insert_in_run_queue_head(t);
thread_mp_reschedule(get_current_thread(), t);
return NO_ERROR;
}
#if defined(WITH_DEBUGGER_INFO)
// This is, by necessity, arch-specific, and arm-m specific right now,
// but lives here due to thread_list being static.
//
// It contains sufficient information for a remote debugger to walk
// the thread list without needing the symbols and debug sections in
// the elf binary for lk or the ability to parse them.
const struct __debugger_info__ {
u32 version; // flags:16 major:8 minor:8
void *thread_list_ptr;
void *current_thread_ptr;
u8 off_list_node;
u8 off_state;
u8 off_saved_sp;
u8 off_was_preempted;
u8 off_name;
u8 off_waitq;
} _debugger_info = {
.version = 0x0100,
.thread_list_ptr = &thread_list,
.current_thread_ptr = &_current_thread,
.off_list_node = __builtin_offsetof(thread_t, thread_list_node),
.off_state = __builtin_offsetof(thread_t, state),
.off_saved_sp = __builtin_offsetof(thread_t, arch.sp),
.off_was_preempted = __builtin_offsetof(thread_t, arch.was_preempted),
.off_name = __builtin_offsetof(thread_t, name),
.off_waitq = __builtin_offsetof(thread_t, blocking_wait_queue),
};
#endif