blob: 157392a46e252d044b174a2578e4d7bd00eec794 [file] [log] [blame]
//! Parser for implementing virtual terminal emulators
//!
//! [`Parser`] is implemented according to [Paul Williams' ANSI parser
//! state machine]. The state machine doesn't assign meaning to the parsed data
//! and is thus not itself sufficient for writing a terminal emulator. Instead,
//! it is expected that an implementation of [`Perform`] is provided which does
//! something useful with the parsed data. The [`Parser`] handles the book
//! keeping, and the [`Perform`] gets to simply handle actions.
//!
//! # Examples
//!
//! For an example of using the [`Parser`] please see the examples folder. The example included
//! there simply logs all the actions [`Perform`] does. One quick thing to see it in action is to
//! pipe `vim` into it
//!
//! ```sh
//! cargo build --release --example parselog
//! vim | target/release/examples/parselog
//! ```
//!
//! Just type `:q` to exit.
//!
//! # Differences from original state machine description
//!
//! * UTF-8 Support for Input
//! * OSC Strings can be terminated by 0x07
//! * Only supports 7-bit codes. Some 8-bit codes are still supported, but they no longer work in
//! all states.
//!
//! [`Parser`]: struct.Parser.html
//! [`Perform`]: trait.Perform.html
//! [Paul Williams' ANSI parser state machine]: https://vt100.net/emu/dec_ansi_parser
#![deny(clippy::all, clippy::if_not_else, clippy::enum_glob_use, clippy::wrong_pub_self_convention)]
#![cfg_attr(all(feature = "nightly", test), feature(test))]
#![cfg_attr(feature = "no_std", no_std)]
use core::mem::MaybeUninit;
#[cfg(feature = "no_std")]
use arrayvec::ArrayVec;
use utf8parse as utf8;
mod definitions;
mod params;
mod table;
pub use params::{Params, ParamsIter};
use definitions::{unpack, Action, State};
const MAX_INTERMEDIATES: usize = 2;
const MAX_OSC_PARAMS: usize = 16;
#[cfg(any(feature = "no_std", test))]
const MAX_OSC_RAW: usize = 1024;
struct VtUtf8Receiver<'a, P: Perform>(&'a mut P, &'a mut State);
impl<'a, P: Perform> utf8::Receiver for VtUtf8Receiver<'a, P> {
fn codepoint(&mut self, c: char) {
self.0.print(c);
*self.1 = State::Ground;
}
fn invalid_sequence(&mut self) {
self.0.print('�');
*self.1 = State::Ground;
}
}
/// Parser for raw _VTE_ protocol which delegates actions to a [`Perform`]
///
/// [`Perform`]: trait.Perform.html
#[derive(Default)]
pub struct Parser {
state: State,
intermediates: [u8; MAX_INTERMEDIATES],
intermediate_idx: usize,
params: Params,
param: u16,
#[cfg(feature = "no_std")]
osc_raw: ArrayVec<[u8; MAX_OSC_RAW]>,
#[cfg(not(feature = "no_std"))]
osc_raw: Vec<u8>,
osc_params: [(usize, usize); MAX_OSC_PARAMS],
osc_num_params: usize,
ignoring: bool,
utf8_parser: utf8::Parser,
}
impl Parser {
/// Create a new Parser
pub fn new() -> Parser {
Parser::default()
}
#[inline]
fn params(&self) -> &Params {
&self.params
}
#[inline]
fn intermediates(&self) -> &[u8] {
&self.intermediates[..self.intermediate_idx]
}
/// Advance the parser state
///
/// Requires a [`Perform`] in case `byte` triggers an action
///
/// [`Perform`]: trait.Perform.html
#[inline]
pub fn advance<P: Perform>(&mut self, performer: &mut P, byte: u8) {
// Utf8 characters are handled out-of-band.
if let State::Utf8 = self.state {
self.process_utf8(performer, byte);
return;
}
// Handle state changes in the anywhere state before evaluating changes
// for current state.
let mut change = table::STATE_CHANGES[State::Anywhere as usize][byte as usize];
if change == 0 {
change = table::STATE_CHANGES[self.state as usize][byte as usize];
}
// Unpack into a state and action
let (state, action) = unpack(change);
self.perform_state_change(performer, state, action, byte);
}
#[inline]
fn process_utf8<P>(&mut self, performer: &mut P, byte: u8)
where
P: Perform,
{
let mut receiver = VtUtf8Receiver(performer, &mut self.state);
let utf8_parser = &mut self.utf8_parser;
utf8_parser.advance(&mut receiver, byte);
}
#[inline]
fn perform_state_change<P>(&mut self, performer: &mut P, state: State, action: Action, byte: u8)
where
P: Perform,
{
macro_rules! maybe_action {
($action:expr, $arg:expr) => {
match $action {
Action::None => (),
action => {
self.perform_action(performer, action, $arg);
},
}
};
}
match state {
State::Anywhere => {
// Just run the action
self.perform_action(performer, action, byte);
},
state => {
match self.state {
State::DcsPassthrough => {
self.perform_action(performer, Action::Unhook, byte);
},
State::OscString => {
self.perform_action(performer, Action::OscEnd, byte);
},
_ => (),
}
maybe_action!(action, byte);
match state {
State::CsiEntry | State::DcsEntry | State::Escape => {
self.perform_action(performer, Action::Clear, byte);
},
State::DcsPassthrough => {
self.perform_action(performer, Action::Hook, byte);
},
State::OscString => {
self.perform_action(performer, Action::OscStart, byte);
},
_ => (),
}
// Assume the new state
self.state = state;
},
}
}
/// Separate method for osc_dispatch that borrows self as read-only
///
/// The aliasing is needed here for multiple slices into self.osc_raw
#[inline]
fn osc_dispatch<P: Perform>(&self, performer: &mut P, byte: u8) {
let mut slices: [MaybeUninit<&[u8]>; MAX_OSC_PARAMS] =
unsafe { MaybeUninit::uninit().assume_init() };
for (i, slice) in slices.iter_mut().enumerate().take(self.osc_num_params) {
let indices = self.osc_params[i];
*slice = MaybeUninit::new(&self.osc_raw[indices.0..indices.1]);
}
unsafe {
let num_params = self.osc_num_params;
let params = &slices[..num_params] as *const [MaybeUninit<&[u8]>] as *const [&[u8]];
performer.osc_dispatch(&*params, byte == 0x07);
}
}
#[inline]
fn perform_action<P: Perform>(&mut self, performer: &mut P, action: Action, byte: u8) {
match action {
Action::Print => performer.print(byte as char),
Action::Execute => performer.execute(byte),
Action::Hook => {
if self.params.is_full() {
self.ignoring = true;
} else {
self.params.push(self.param);
}
performer.hook(self.params(), self.intermediates(), self.ignoring, byte as char);
},
Action::Put => performer.put(byte),
Action::OscStart => {
self.osc_raw.clear();
self.osc_num_params = 0;
},
Action::OscPut => {
#[cfg(feature = "no_std")]
{
if self.osc_raw.is_full() {
return;
}
}
let idx = self.osc_raw.len();
// Param separator
if byte == b';' {
let param_idx = self.osc_num_params;
match param_idx {
// Only process up to MAX_OSC_PARAMS
MAX_OSC_PARAMS => return,
// First param is special - 0 to current byte index
0 => {
self.osc_params[param_idx] = (0, idx);
},
// All other params depend on previous indexing
_ => {
let prev = self.osc_params[param_idx - 1];
let begin = prev.1;
self.osc_params[param_idx] = (begin, idx);
},
}
self.osc_num_params += 1;
} else {
self.osc_raw.push(byte);
}
},
Action::OscEnd => {
let param_idx = self.osc_num_params;
let idx = self.osc_raw.len();
match param_idx {
// Finish last parameter if not already maxed
MAX_OSC_PARAMS => (),
// First param is special - 0 to current byte index
0 => {
self.osc_params[param_idx] = (0, idx);
self.osc_num_params += 1;
},
// All other params depend on previous indexing
_ => {
let prev = self.osc_params[param_idx - 1];
let begin = prev.1;
self.osc_params[param_idx] = (begin, idx);
self.osc_num_params += 1;
},
}
self.osc_dispatch(performer, byte);
},
Action::Unhook => performer.unhook(),
Action::CsiDispatch => {
if self.params.is_full() {
self.ignoring = true;
} else {
self.params.push(self.param);
}
performer.csi_dispatch(
self.params(),
self.intermediates(),
self.ignoring,
byte as char,
);
},
Action::EscDispatch => {
performer.esc_dispatch(self.intermediates(), self.ignoring, byte)
},
Action::Collect => {
if self.intermediate_idx == MAX_INTERMEDIATES {
self.ignoring = true;
} else {
self.intermediates[self.intermediate_idx] = byte;
self.intermediate_idx += 1;
}
},
Action::Param => {
if self.params.is_full() {
self.ignoring = true;
return;
}
if byte == b';' {
self.params.push(self.param);
self.param = 0;
} else if byte == b':' {
self.params.extend(self.param);
self.param = 0;
} else {
// Continue collecting bytes into param
self.param = self.param.saturating_mul(10);
self.param = self.param.saturating_add((byte - b'0') as u16);
}
},
Action::Clear => {
// Reset everything on ESC/CSI/DCS entry
self.intermediate_idx = 0;
self.ignoring = false;
self.param = 0;
self.params.clear();
},
Action::BeginUtf8 => self.process_utf8(performer, byte),
Action::Ignore => (),
Action::None => (),
}
}
}
/// Performs actions requested by the Parser
///
/// Actions in this case mean, for example, handling a CSI escape sequence describing cursor
/// movement, or simply printing characters to the screen.
///
/// The methods on this type correspond to actions described in
/// http://vt100.net/emu/dec_ansi_parser. I've done my best to describe them in
/// a useful way in my own words for completeness, but the site should be
/// referenced if something isn't clear. If the site disappears at some point in
/// the future, consider checking archive.org.
pub trait Perform {
/// Draw a character to the screen and update states.
fn print(&mut self, _c: char) {}
/// Execute a C0 or C1 control function.
fn execute(&mut self, _byte: u8) {}
/// Invoked when a final character arrives in first part of device control string.
///
/// The control function should be determined from the private marker, final character, and
/// execute with a parameter list. A handler should be selected for remaining characters in the
/// string; the handler function should subsequently be called by `put` for every character in
/// the control string.
///
/// The `ignore` flag indicates that more than two intermediates arrived and
/// subsequent characters were ignored.
fn hook(&mut self, _params: &Params, _intermediates: &[u8], _ignore: bool, _action: char) {}
/// Pass bytes as part of a device control string to the handle chosen in `hook`. C0 controls
/// will also be passed to the handler.
fn put(&mut self, _byte: u8) {}
/// Called when a device control string is terminated.
///
/// The previously selected handler should be notified that the DCS has
/// terminated.
fn unhook(&mut self) {}
/// Dispatch an operating system command.
fn osc_dispatch(&mut self, _params: &[&[u8]], _bell_terminated: bool) {}
/// A final character has arrived for a CSI sequence
///
/// The `ignore` flag indicates that either more than two intermediates arrived
/// or the number of parameters exceeded the maximum supported length,
/// and subsequent characters were ignored.
fn csi_dispatch(
&mut self,
_params: &Params,
_intermediates: &[u8],
_ignore: bool,
_action: char,
) {
}
/// The final character of an escape sequence has arrived.
///
/// The `ignore` flag indicates that more than two intermediates arrived and
/// subsequent characters were ignored.
fn esc_dispatch(&mut self, _intermediates: &[u8], _ignore: bool, _byte: u8) {}
}
#[cfg(all(test, feature = "no_std"))]
#[macro_use]
extern crate std;
#[cfg(test)]
mod tests {
use super::*;
use std::string::String;
use std::vec::Vec;
static OSC_BYTES: &[u8] = &[
0x1b, 0x5d, // Begin OSC
b'2', b';', b'j', b'w', b'i', b'l', b'm', b'@', b'j', b'w', b'i', b'l', b'm', b'-', b'd',
b'e', b's', b'k', b':', b' ', b'~', b'/', b'c', b'o', b'd', b'e', b'/', b'a', b'l', b'a',
b'c', b'r', b'i', b't', b't', b'y', 0x07, // End OSC
];
#[derive(Default)]
struct Dispatcher {
dispatched: Vec<Sequence>,
}
#[derive(Debug, PartialEq, Eq)]
enum Sequence {
Osc(Vec<Vec<u8>>, bool),
Csi(Vec<Vec<u16>>, Vec<u8>, bool, char),
Esc(Vec<u8>, bool, u8),
DcsHook(Vec<Vec<u16>>, Vec<u8>, bool, char),
DcsPut(u8),
DcsUnhook,
}
impl Perform for Dispatcher {
fn osc_dispatch(&mut self, params: &[&[u8]], bell_terminated: bool) {
let params = params.iter().map(|p| p.to_vec()).collect();
self.dispatched.push(Sequence::Osc(params, bell_terminated));
}
fn csi_dispatch(&mut self, params: &Params, intermediates: &[u8], ignore: bool, c: char) {
let params = params.iter().map(|subparam| subparam.to_vec()).collect();
let intermediates = intermediates.to_vec();
self.dispatched.push(Sequence::Csi(params, intermediates, ignore, c));
}
fn esc_dispatch(&mut self, intermediates: &[u8], ignore: bool, byte: u8) {
let intermediates = intermediates.to_vec();
self.dispatched.push(Sequence::Esc(intermediates, ignore, byte));
}
fn hook(&mut self, params: &Params, intermediates: &[u8], ignore: bool, c: char) {
let params = params.iter().map(|subparam| subparam.to_vec()).collect();
let intermediates = intermediates.to_vec();
self.dispatched.push(Sequence::DcsHook(params, intermediates, ignore, c));
}
fn put(&mut self, byte: u8) {
self.dispatched.push(Sequence::DcsPut(byte));
}
fn unhook(&mut self) {
self.dispatched.push(Sequence::DcsUnhook);
}
}
#[test]
fn parse_osc() {
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in OSC_BYTES {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Osc(params, _) => {
assert_eq!(params.len(), 2);
assert_eq!(params[0], &OSC_BYTES[2..3]);
assert_eq!(params[1], &OSC_BYTES[4..(OSC_BYTES.len() - 1)]);
},
_ => panic!("expected osc sequence"),
}
}
#[test]
fn parse_empty_osc() {
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in &[0x1b, 0x5d, 0x07] {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Osc(..) => (),
_ => panic!("expected osc sequence"),
}
}
#[test]
fn parse_osc_max_params() {
let params = std::iter::repeat(";").take(params::MAX_PARAMS + 1).collect::<String>();
let input = format!("\x1b]{}\x1b", &params[..]).into_bytes();
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in input {
parser.advance(&mut dispatcher, byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Osc(params, _) => {
assert_eq!(params.len(), MAX_OSC_PARAMS);
assert!(params.iter().all(Vec::is_empty));
},
_ => panic!("expected osc sequence"),
}
}
#[test]
fn osc_bell_terminated() {
static INPUT: &[u8] = b"\x1b]11;ff/00/ff\x07";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Osc(_, true) => (),
_ => panic!("expected osc with bell terminator"),
}
}
#[test]
fn osc_c0_st_terminated() {
static INPUT: &[u8] = b"\x1b]11;ff/00/ff\x1b\\";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 2);
match &dispatcher.dispatched[0] {
Sequence::Osc(_, false) => (),
_ => panic!("expected osc with ST terminator"),
}
}
#[test]
fn parse_osc_with_utf8_arguments() {
static INPUT: &[u8] = &[
0x0d, 0x1b, 0x5d, 0x32, 0x3b, 0x65, 0x63, 0x68, 0x6f, 0x20, 0x27, 0xc2, 0xaf, 0x5c,
0x5f, 0x28, 0xe3, 0x83, 0x84, 0x29, 0x5f, 0x2f, 0xc2, 0xaf, 0x27, 0x20, 0x26, 0x26,
0x20, 0x73, 0x6c, 0x65, 0x65, 0x70, 0x20, 0x31, 0x07,
];
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Osc(params, _) => {
assert_eq!(params[0], &[b'2']);
assert_eq!(params[1], &INPUT[5..(INPUT.len() - 1)]);
},
_ => panic!("expected osc sequence"),
}
}
#[test]
fn osc_containing_string_terminator() {
static INPUT: &[u8] = b"\x1b]2;\xe6\x9c\xab\x1b\\";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 2);
match &dispatcher.dispatched[0] {
Sequence::Osc(params, _) => {
assert_eq!(params[1], &INPUT[4..(INPUT.len() - 2)]);
},
_ => panic!("expected osc sequence"),
}
}
#[test]
fn exceed_max_buffer_size() {
static NUM_BYTES: usize = MAX_OSC_RAW + 100;
static INPUT_START: &[u8] = &[0x1b, b']', b'5', b'2', b';', b's'];
static INPUT_END: &[u8] = &[b'\x07'];
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
// Create valid OSC escape
for byte in INPUT_START {
parser.advance(&mut dispatcher, *byte);
}
// Exceed max buffer size
for _ in 0..NUM_BYTES {
parser.advance(&mut dispatcher, b'a');
}
// Terminate escape for dispatch
for byte in INPUT_END {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Osc(params, _) => {
assert_eq!(params.len(), 2);
assert_eq!(params[0], b"52");
#[cfg(not(feature = "no_std"))]
assert_eq!(params[1].len(), NUM_BYTES + INPUT_END.len());
#[cfg(feature = "no_std")]
assert_eq!(params[1].len(), MAX_OSC_RAW - params[0].len());
},
_ => panic!("expected osc sequence"),
}
}
#[test]
fn parse_csi_max_params() {
// This will build a list of repeating '1;'s
// The length is MAX_PARAMS - 1 because the last semicolon is interpreted
// as an implicit zero, making the total number of parameters MAX_PARAMS
let params = std::iter::repeat("1;").take(params::MAX_PARAMS - 1).collect::<String>();
let input = format!("\x1b[{}p", &params[..]).into_bytes();
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in input {
parser.advance(&mut dispatcher, byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Csi(params, _, ignore, _) => {
assert_eq!(params.len(), params::MAX_PARAMS);
assert!(!ignore);
},
_ => panic!("expected csi sequence"),
}
}
#[test]
fn parse_csi_params_ignore_long_params() {
// This will build a list of repeating '1;'s
// The length is MAX_PARAMS because the last semicolon is interpreted
// as an implicit zero, making the total number of parameters MAX_PARAMS + 1
let params = std::iter::repeat("1;").take(params::MAX_PARAMS).collect::<String>();
let input = format!("\x1b[{}p", &params[..]).into_bytes();
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in input {
parser.advance(&mut dispatcher, byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Csi(params, _, ignore, _) => {
assert_eq!(params.len(), params::MAX_PARAMS);
assert!(ignore);
},
_ => panic!("expected csi sequence"),
}
}
#[test]
fn parse_csi_params_trailing_semicolon() {
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in b"\x1b[4;m" {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Csi(params, ..) => assert_eq!(params, &[[4], [0]]),
_ => panic!("expected csi sequence"),
}
}
#[test]
fn parse_csi_params_leading_semicolon() {
// Create dispatcher and check state
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in b"\x1b[;4m" {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Csi(params, ..) => assert_eq!(params, &[[0], [4]]),
_ => panic!("expected csi sequence"),
}
}
#[test]
fn parse_long_csi_param() {
// The important part is the parameter, which is (i64::MAX + 1)
static INPUT: &[u8] = b"\x1b[9223372036854775808m";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Csi(params, ..) => assert_eq!(params, &[[std::u16::MAX as u16]]),
_ => panic!("expected csi sequence"),
}
}
#[test]
fn csi_reset() {
static INPUT: &[u8] = b"\x1b[3;1\x1b[?1049h";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Csi(params, intermediates, ignore, _) => {
assert_eq!(intermediates, &[b'?']);
assert_eq!(params, &[[1049]]);
assert!(!ignore);
},
_ => panic!("expected csi sequence"),
}
}
#[test]
fn csi_subparameters() {
static INPUT: &[u8] = b"\x1b[38:2:255:0:255;1m";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Csi(params, intermediates, ignore, _) => {
assert_eq!(params, &[vec![38, 2, 255, 0, 255], vec![1]]);
assert_eq!(intermediates, &[]);
assert!(!ignore);
},
_ => panic!("expected csi sequence"),
}
}
#[test]
fn parse_dcs_max_params() {
let params = std::iter::repeat("1;").take(params::MAX_PARAMS + 1).collect::<String>();
let input = format!("\x1bP{}p", &params[..]).into_bytes();
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in input {
parser.advance(&mut dispatcher, byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::DcsHook(params, _, ignore, _) => {
assert_eq!(params.len(), params::MAX_PARAMS);
assert!(params.iter().all(|param| param == &[1]));
assert!(ignore);
},
_ => panic!("expected dcs sequence"),
}
}
#[test]
fn dcs_reset() {
static INPUT: &[u8] = b"\x1b[3;1\x1bP1$tx\x9c";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 3);
match &dispatcher.dispatched[0] {
Sequence::DcsHook(params, intermediates, ignore, _) => {
assert_eq!(intermediates, &[b'$']);
assert_eq!(params, &[[1]]);
assert!(!ignore);
},
_ => panic!("expected dcs sequence"),
}
assert_eq!(dispatcher.dispatched[1], Sequence::DcsPut(b'x'));
assert_eq!(dispatcher.dispatched[2], Sequence::DcsUnhook);
}
#[test]
fn parse_dcs() {
static INPUT: &[u8] = b"\x1bP0;1|17/ab\x9c";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 7);
match &dispatcher.dispatched[0] {
Sequence::DcsHook(params, _, _, c) => {
assert_eq!(params, &[[0], [1]]);
assert_eq!(c, &'|');
},
_ => panic!("expected dcs sequence"),
}
for (i, byte) in b"17/ab".iter().enumerate() {
assert_eq!(dispatcher.dispatched[1 + i], Sequence::DcsPut(*byte));
}
assert_eq!(dispatcher.dispatched[6], Sequence::DcsUnhook);
}
#[test]
fn intermediate_reset_on_dcs_exit() {
static INPUT: &[u8] = b"\x1bP=1sZZZ\x1b+\x5c";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 6);
match &dispatcher.dispatched[5] {
Sequence::Esc(intermediates, ..) => assert_eq!(intermediates, &[b'+']),
_ => panic!("expected esc sequence"),
}
}
#[test]
fn esc_reset() {
static INPUT: &[u8] = b"\x1b[3;1\x1b(A";
let mut dispatcher = Dispatcher::default();
let mut parser = Parser::new();
for byte in INPUT {
parser.advance(&mut dispatcher, *byte);
}
assert_eq!(dispatcher.dispatched.len(), 1);
match &dispatcher.dispatched[0] {
Sequence::Esc(intermediates, ignore, byte) => {
assert_eq!(intermediates, &[b'(']);
assert_eq!(*byte, b'A');
assert!(!ignore);
},
_ => panic!("expected esc sequence"),
}
}
}
#[cfg(all(feature = "nightly", test))]
mod bench {
extern crate std;
extern crate test;
use super::*;
use test::{black_box, Bencher};
static VTE_DEMO: &[u8] = include_bytes!("../tests/demo.vte");
struct BenchDispatcher;
impl Perform for BenchDispatcher {
fn print(&mut self, c: char) {
black_box(c);
}
fn execute(&mut self, byte: u8) {
black_box(byte);
}
fn hook(&mut self, params: &Params, intermediates: &[u8], ignore: bool, c: char) {
black_box((params, intermediates, ignore, c));
}
fn put(&mut self, byte: u8) {
black_box(byte);
}
fn osc_dispatch(&mut self, params: &[&[u8]], bell_terminated: bool) {
black_box((params, bell_terminated));
}
fn csi_dispatch(&mut self, params: &Params, intermediates: &[u8], ignore: bool, c: char) {
black_box((params, intermediates, ignore, c));
}
fn esc_dispatch(&mut self, intermediates: &[u8], ignore: bool, byte: u8) {
black_box((intermediates, ignore, byte));
}
}
#[bench]
fn testfile(b: &mut Bencher) {
b.iter(|| {
let mut dispatcher = BenchDispatcher;
let mut parser = Parser::new();
for byte in VTE_DEMO {
parser.advance(&mut dispatcher, *byte);
}
});
}
#[bench]
fn state_changes(b: &mut Bencher) {
let input = b"\x1b]2;X\x1b\\ \x1b[0m \x1bP0@\x1b\\";
b.iter(|| {
let mut dispatcher = BenchDispatcher;
let mut parser = Parser::new();
for _ in 0..1_000 {
for byte in input {
parser.advance(&mut dispatcher, *byte);
}
}
});
}
}