blob: 1b8ef605e15aad5f8c9e1026afab2ad25867d504 [file] [log] [blame]
use std::alloc::Layout;
use std::fmt;
use std::future::Future;
use std::marker::PhantomData;
use std::mem::{self, ManuallyDrop};
use std::pin::Pin;
use std::ptr;
use std::task::{Context, Poll};
/// A reusable `Pin<Box<dyn Future<Output = T> + Send + 'a>>`.
///
/// This type lets you replace the future stored in the box without
/// reallocating when the size and alignment permits this.
pub struct ReusableBoxFuture<'a, T> {
boxed: Pin<Box<dyn Future<Output = T> + Send + 'a>>,
}
impl<'a, T> ReusableBoxFuture<'a, T> {
/// Create a new `ReusableBoxFuture<T>` containing the provided future.
pub fn new<F>(future: F) -> Self
where
F: Future<Output = T> + Send + 'a,
{
Self {
boxed: Box::pin(future),
}
}
/// Replace the future currently stored in this box.
///
/// This reallocates if and only if the layout of the provided future is
/// different from the layout of the currently stored future.
pub fn set<F>(&mut self, future: F)
where
F: Future<Output = T> + Send + 'a,
{
if let Err(future) = self.try_set(future) {
*self = Self::new(future);
}
}
/// Replace the future currently stored in this box.
///
/// This function never reallocates, but returns an error if the provided
/// future has a different size or alignment from the currently stored
/// future.
pub fn try_set<F>(&mut self, future: F) -> Result<(), F>
where
F: Future<Output = T> + Send + 'a,
{
// If we try to inline the contents of this function, the type checker complains because
// the bound `T: 'a` is not satisfied in the call to `pending()`. But by putting it in an
// inner function that doesn't have `T` as a generic parameter, we implicitly get the bound
// `F::Output: 'a` transitively through `F: 'a`, allowing us to call `pending()`.
#[inline(always)]
fn real_try_set<'a, F>(
this: &mut ReusableBoxFuture<'a, F::Output>,
future: F,
) -> Result<(), F>
where
F: Future + Send + 'a,
{
// future::Pending<T> is a ZST so this never allocates.
let boxed = mem::replace(&mut this.boxed, Box::pin(Pending(PhantomData)));
reuse_pin_box(boxed, future, |boxed| this.boxed = Pin::from(boxed))
}
real_try_set(self, future)
}
/// Get a pinned reference to the underlying future.
pub fn get_pin(&mut self) -> Pin<&mut (dyn Future<Output = T> + Send)> {
self.boxed.as_mut()
}
/// Poll the future stored inside this box.
pub fn poll(&mut self, cx: &mut Context<'_>) -> Poll<T> {
self.get_pin().poll(cx)
}
}
impl<T> Future for ReusableBoxFuture<'_, T> {
type Output = T;
/// Poll the future stored inside this box.
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
Pin::into_inner(self).get_pin().poll(cx)
}
}
// The only method called on self.boxed is poll, which takes &mut self, so this
// struct being Sync does not permit any invalid access to the Future, even if
// the future is not Sync.
unsafe impl<T> Sync for ReusableBoxFuture<'_, T> {}
impl<T> fmt::Debug for ReusableBoxFuture<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ReusableBoxFuture").finish()
}
}
fn reuse_pin_box<T: ?Sized, U, O, F>(boxed: Pin<Box<T>>, new_value: U, callback: F) -> Result<O, U>
where
F: FnOnce(Box<U>) -> O,
{
let layout = Layout::for_value::<T>(&*boxed);
if layout != Layout::new::<U>() {
return Err(new_value);
}
// SAFETY: We don't ever construct a non-pinned reference to the old `T` from now on, and we
// always drop the `T`.
let raw: *mut T = Box::into_raw(unsafe { Pin::into_inner_unchecked(boxed) });
// When dropping the old value panics, we still want to call `callback` — so move the rest of
// the code into a guard type.
let guard = CallOnDrop::new(|| {
let raw: *mut U = raw.cast::<U>();
unsafe { raw.write(new_value) };
// SAFETY:
// - `T` and `U` have the same layout.
// - `raw` comes from a `Box` that uses the same allocator as this one.
// - `raw` points to a valid instance of `U` (we just wrote it in).
let boxed = unsafe { Box::from_raw(raw) };
callback(boxed)
});
// Drop the old value.
unsafe { ptr::drop_in_place(raw) };
// Run the rest of the code.
Ok(guard.call())
}
struct CallOnDrop<O, F: FnOnce() -> O> {
f: ManuallyDrop<F>,
}
impl<O, F: FnOnce() -> O> CallOnDrop<O, F> {
fn new(f: F) -> Self {
let f = ManuallyDrop::new(f);
Self { f }
}
fn call(self) -> O {
let mut this = ManuallyDrop::new(self);
let f = unsafe { ManuallyDrop::take(&mut this.f) };
f()
}
}
impl<O, F: FnOnce() -> O> Drop for CallOnDrop<O, F> {
fn drop(&mut self) {
let f = unsafe { ManuallyDrop::take(&mut self.f) };
f();
}
}
/// The same as `std::future::Pending<T>`; we can't use that type directly because on rustc
/// versions <1.60 it didn't unconditionally implement `Send`.
// FIXME: use `std::future::Pending<T>` once the MSRV is >=1.60
struct Pending<T>(PhantomData<fn() -> T>);
impl<T> Future for Pending<T> {
type Output = T;
fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
Poll::Pending
}
}