blob: 8b269b714ddb5b888e097147d71c7ae1dcc7ee57 [file] [log] [blame]
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A typesafe bitmask flag generator useful for sets of C-style flags.
//! It can be used for creating ergonomic wrappers around C APIs.
//!
//! The `bitflags!` macro generates `struct`s that manage a set of flags. The
//! type of those flags must be some primitive integer.
//!
//! # Examples
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits();
//! }
//! }
//!
//! fn main() {
//! let e1 = Flags::A | Flags::C;
//! let e2 = Flags::B | Flags::C;
//! assert_eq!((e1 | e2), Flags::ABC); // union
//! assert_eq!((e1 & e2), Flags::C); // intersection
//! assert_eq!((e1 - e2), Flags::A); // set difference
//! assert_eq!(!e2, Flags::A); // set complement
//! }
//! ```
//!
//! See [`example_generated::Flags`](./example_generated/struct.Flags.html) for documentation of code
//! generated by the above `bitflags!` expansion.
//!
//! # Visibility
//!
//! The `bitflags!` macro supports visibility, just like you'd expect when writing a normal
//! Rust `struct`:
//!
//! ```
//! mod example {
//! use bitflags::bitflags;
//!
//! bitflags! {
//! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! pub struct Flags1: u32 {
//! const A = 0b00000001;
//! }
//!
//! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! # pub
//! struct Flags2: u32 {
//! const B = 0b00000010;
//! }
//! }
//! }
//!
//! fn main() {
//! let flag1 = example::Flags1::A;
//! let flag2 = example::Flags2::B; // error: const `B` is private
//! }
//! ```
//!
//! # Attributes
//!
//! Attributes can be attached to the generated flags types and their constants as normal.
//!
//! # Representation
//!
//! It's valid to add a `#[repr(C)]` or `#[repr(transparent)]` attribute to a generated flags type.
//! The generated flags type is always guaranteed to be a newtype where its only field has the same
//! ABI as the underlying integer type.
//!
//! In this example, `Flags` has the same ABI as `u32`:
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! #[repr(transparent)]
//! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! }
//! }
//! ```
//!
//! # Extending
//!
//! Generated flags types belong to you, so you can add trait implementations to them outside
//! of what the `bitflags!` macro gives:
//!
//! ```
//! use std::fmt;
//!
//! use bitflags::bitflags;
//!
//! bitflags! {
//! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! }
//! }
//!
//! impl Flags {
//! pub fn clear(&mut self) {
//! *self.0.bits_mut() = 0;
//! }
//! }
//!
//! fn main() {
//! let mut flags = Flags::A | Flags::B;
//!
//! flags.clear();
//! assert!(flags.is_empty());
//!
//! assert_eq!(format!("{:?}", Flags::A | Flags::B), "Flags(A | B)");
//! assert_eq!(format!("{:?}", Flags::B), "Flags(B)");
//! }
//! ```
//!
//! # What's implemented by `bitflags!`
//!
//! The `bitflags!` macro adds some trait implementations and inherent methods
//! to generated flags types, but leaves room for you to choose the semantics
//! of others.
//!
//! ## Iterators
//!
//! The following iterator traits are implemented for generated flags types:
//!
//! - `Extend`: adds the union of the instances iterated over.
//! - `FromIterator`: calculates the union.
//! - `IntoIterator`: iterates over set flag values.
//!
//! ## Formatting
//!
//! The following formatting traits are implemented for generated flags types:
//!
//! - `Binary`.
//! - `LowerHex` and `UpperHex`.
//! - `Octal`.
//!
//! Also see the _Debug and Display_ section for details about standard text
//! representations for flags types.
//!
//! ## Operators
//!
//! The following operator traits are implemented for the generated `struct`s:
//!
//! - `BitOr` and `BitOrAssign`: union
//! - `BitAnd` and `BitAndAssign`: intersection
//! - `BitXor` and `BitXorAssign`: toggle
//! - `Sub` and `SubAssign`: set difference
//! - `Not`: set complement
//!
//! ## Methods
//!
//! The following methods are defined for the generated `struct`s:
//!
//! - `empty`: an empty set of flags
//! - `all`: the set of all defined flags
//! - `bits`: the raw value of the flags currently stored
//! - `from_bits`: convert from underlying bit representation, unless that
//! representation contains bits that do not correspond to a
//! defined flag
//! - `from_bits_truncate`: convert from underlying bit representation, dropping
//! any bits that do not correspond to defined flags
//! - `from_bits_retain`: convert from underlying bit representation, keeping
//! all bits (even those not corresponding to defined
//! flags)
//! - `is_empty`: `true` if no flags are currently stored
//! - `is_all`: `true` if currently set flags exactly equal all defined flags
//! - `intersects`: `true` if there are flags common to both `self` and `other`
//! - `contains`: `true` if all of the flags in `other` are contained within `self`
//! - `insert`: inserts the specified flags in-place
//! - `remove`: removes the specified flags in-place
//! - `toggle`: the specified flags will be inserted if not present, and removed
//! if they are.
//! - `set`: inserts or removes the specified flags depending on the passed value
//! - `intersection`: returns a new set of flags, containing only the flags present
//! in both `self` and `other` (the argument to the function).
//! - `union`: returns a new set of flags, containing any flags present in
//! either `self` or `other` (the argument to the function).
//! - `difference`: returns a new set of flags, containing all flags present in
//! `self` without any of the flags present in `other` (the
//! argument to the function).
//! - `symmetric_difference`: returns a new set of flags, containing all flags
//! present in either `self` or `other` (the argument
//! to the function), but not both.
//! - `complement`: returns a new set of flags, containing all flags which are
//! not set in `self`, but which are allowed for this type.
//!
//! # What's not implemented by `bitflags!`
//!
//! Some functionality is not automatically implemented for generated flags types
//! by the `bitflags!` macro, even when it reasonably could be. This is so callers
//! have more freedom to decide on the semantics of their flags types.
//!
//! ## `Clone` and `Copy`
//!
//! Generated flags types are not automatically copyable, even though they can always
//! derive both `Clone` and `Copy`.
//!
//! ## `Default`
//!
//! The `Default` trait is not automatically implemented for the generated structs.
//!
//! If your default value is equal to `0` (which is the same value as calling `empty()`
//! on the generated struct), you can simply derive `Default`:
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! // Results in default value with bits: 0
//! #[derive(Default, Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! }
//! }
//!
//! fn main() {
//! let derived_default: Flags = Default::default();
//! assert_eq!(derived_default.bits(), 0);
//! }
//! ```
//!
//! If your default value is not equal to `0` you need to implement `Default` yourself:
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! }
//! }
//!
//! // explicit `Default` implementation
//! impl Default for Flags {
//! fn default() -> Flags {
//! Flags::A | Flags::C
//! }
//! }
//!
//! fn main() {
//! let implemented_default: Flags = Default::default();
//! assert_eq!(implemented_default, (Flags::A | Flags::C));
//! }
//! ```
//!
//! ## `Debug` and `Display`
//!
//! The `Debug` trait can be derived for a reasonable implementation. This library defines a standard
//! text-based representation for flags that generated flags types can use. For details on the exact
//! grammar, see the [`parser`] module.
//!
//! ## `PartialEq` and `PartialOrd`
//!
//! Equality and ordering can be derived for a reasonable implementation, or implemented manually
//! for different semantics.
//!
//! # Edge cases
//!
//! ## Zero Flags
//!
//! Flags with a value equal to zero will have some strange behavior that one should be aware of.
//!
//! ```
//! use bitflags::bitflags;
//!
//! bitflags! {
//! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! struct Flags: u32 {
//! const NONE = 0b00000000;
//! const SOME = 0b00000001;
//! }
//! }
//!
//! fn main() {
//! let empty = Flags::empty();
//! let none = Flags::NONE;
//! let some = Flags::SOME;
//!
//! // Zero flags are treated as always present
//! assert!(empty.contains(Flags::NONE));
//! assert!(none.contains(Flags::NONE));
//! assert!(some.contains(Flags::NONE));
//!
//! // Zero flags will be ignored when testing for emptiness
//! assert!(none.is_empty());
//! }
//! ```
//!
//! Users should generally avoid defining a flag with a value of zero.
//!
//! # The `BitFlags` trait
//!
//! This library defines a `BitFlags` trait that's implemented by all generated flags types.
//! The trait makes it possible to work with flags types generically:
//!
//! ```
//! fn count_unset_flags<F: bitflags::BitFlags>(flags: &F) -> usize {
//! // Find out how many flags there are in total
//! let total = F::all().iter().count();
//!
//! // Find out how many flags are set
//! let set = flags.iter().count();
//!
//! total - set
//! }
//!
//! use bitflags::bitflags;
//!
//! bitflags! {
//! #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
//! struct Flags: u32 {
//! const A = 0b00000001;
//! const B = 0b00000010;
//! const C = 0b00000100;
//! }
//! }
//!
//! assert_eq!(2, count_unset_flags(&Flags::B));
//! ```
#![cfg_attr(not(any(feature = "std", test)), no_std)]
#![doc(html_root_url = "https://docs.rs/bitflags/2.0.2")]
#![forbid(unsafe_code)]
#[doc(inline)]
pub use traits::BitFlags;
pub mod parser;
mod traits;
#[doc(hidden)]
pub mod __private {
pub use crate::{external::*, traits::*};
pub use core;
#[cfg(feature = "serde")]
pub use serde;
}
/*
How does the bitflags crate work?
This library generates a `struct` in the end-user's crate with a bunch of constants on it that represent flags.
The difference between `bitflags` and a lot of other libraries is that we don't actually control the generated `struct` in the end.
It's part of the end-user's crate, so it belongs to them. That makes it difficult to extend `bitflags` with new functionality
because we could end up breaking valid code that was already written.
Our solution is to split the type we generate into two: the public struct owned by the end-user, and an internal struct owned by `bitflags` (us).
To give you an example, let's say we had a crate that called `bitflags!`:
```rust
bitflags! {
pub struct MyFlags: u32 {
const A = 1;
const B = 2;
}
}
```
What they'd end up with looks something like this:
```rust
pub struct MyFlags(<MyFlags as PublicFlags>::InternalBitFlags);
const _: () = {
#[repr(transparent)]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct MyInternalBitFlags {
bits: u32,
}
impl PublicFlags for MyFlags {
type Internal = InternalBitFlags;
}
};
```
If we want to expose something like a new trait impl for generated flags types, we add it to our generated `MyInternalBitFlags`,
and let `#[derive]` on `MyFlags` pick up that implementation, if an end-user chooses to add one.
The public API is generated in the `__impl_public_flags!` macro, and the internal API is generated in
the `__impl_internal_flags!` macro.
The macros are split into 3 modules:
- `public`: where the user-facing flags types are generated.
- `internal`: where the `bitflags`-facing flags types are generated.
- `external`: where external library traits are implemented conditionally.
*/
/// The macro used to generate the flag structure.
///
/// See the [crate level docs](../bitflags/index.html) for complete documentation.
///
/// # Example
///
/// ```
/// use bitflags::bitflags;
///
/// bitflags! {
/// #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
/// struct Flags: u32 {
/// const A = 0b00000001;
/// const B = 0b00000010;
/// const C = 0b00000100;
/// const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits();
/// }
/// }
///
/// let e1 = Flags::A | Flags::C;
/// let e2 = Flags::B | Flags::C;
/// assert_eq!((e1 | e2), Flags::ABC); // union
/// assert_eq!((e1 & e2), Flags::C); // intersection
/// assert_eq!((e1 - e2), Flags::A); // set difference
/// assert_eq!(!e2, Flags::A); // set complement
/// ```
///
/// The generated `struct`s can also be extended with type and trait
/// implementations:
///
/// ```
/// use std::fmt;
///
/// use bitflags::bitflags;
///
/// bitflags! {
/// #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
/// struct Flags: u32 {
/// const A = 0b00000001;
/// const B = 0b00000010;
/// }
/// }
///
/// impl Flags {
/// pub fn clear(&mut self) {
/// *self.0.bits_mut() = 0;
/// }
/// }
///
/// let mut flags = Flags::A | Flags::B;
///
/// flags.clear();
/// assert!(flags.is_empty());
///
/// assert_eq!(format!("{:?}", Flags::A | Flags::B), "Flags(A | B)");
/// assert_eq!(format!("{:?}", Flags::B), "Flags(B)");
/// ```
#[macro_export(local_inner_macros)]
macro_rules! bitflags {
(
$(#[$outer:meta])*
$vis:vis struct $BitFlags:ident: $T:ty {
$(
$(#[$inner:ident $($args:tt)*])*
const $Flag:ident = $value:expr;
)*
}
$($t:tt)*
) => {
// Declared in the scope of the `bitflags!` call
// This type appears in the end-user's API
__declare_public_bitflags! {
$(#[$outer])*
$vis struct $BitFlags;
}
#[allow(
dead_code,
deprecated,
unused_doc_comments,
unused_attributes,
unused_mut,
unused_imports,
non_upper_case_globals
)]
const _: () = {
// Declared in a "hidden" scope that can't be reached directly
// These types don't appear in the end-user's API
__declare_internal_bitflags! {
$vis struct InternalBitFlags: $T;
$vis struct Iter;
$vis struct IterRaw;
}
__impl_internal_bitflags! {
InternalBitFlags: $T, $BitFlags, Iter, IterRaw {
$(
$(#[$inner $($args)*])*
$Flag;
)*
}
}
// This is where new library trait implementations can be added
__impl_external_bitflags! {
InternalBitFlags: $T {
$(
$(#[$inner $($args)*])*
$Flag;
)*
}
}
__impl_public_bitflags! {
$BitFlags: $T, InternalBitFlags, Iter, IterRaw {
$(
$(#[$inner $($args)*])*
$Flag = $value;
)*
}
}
};
bitflags! {
$($t)*
}
};
() => {};
}
#[macro_use]
mod public;
#[macro_use]
mod internal;
#[macro_use]
mod external;
#[cfg(feature = "example_generated")]
pub mod example_generated;
#[cfg(test)]
mod tests {
use std::{
collections::hash_map::DefaultHasher,
fmt,
hash::{Hash, Hasher},
str,
};
bitflags! {
#[doc = "> The first principle is that you must not fool yourself — and"]
#[doc = "> you are the easiest person to fool."]
#[doc = "> "]
#[doc = "> - Richard Feynman"]
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct Flags: u32 {
const A = 0b00000001;
#[doc = "<pcwalton> macros are way better at generating code than trans is"]
const B = 0b00000010;
const C = 0b00000100;
#[doc = "* cmr bed"]
#[doc = "* strcat table"]
#[doc = "<strcat> wait what?"]
const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits();
}
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct _CfgFlags: u32 {
#[cfg(unix)]
const _CFG_A = 0b01;
#[cfg(windows)]
const _CFG_B = 0b01;
#[cfg(unix)]
const _CFG_C = Self::_CFG_A.bits() | 0b10;
}
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct AnotherSetOfFlags: i8 {
const ANOTHER_FLAG = -1_i8;
}
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct LongFlags: u32 {
const LONG_A = 0b1111111111111111;
}
}
bitflags! {
#[derive(Debug, PartialEq, Eq)]
struct FmtFlags: u16 {
const 고양이 = 0b0000_0001;
const = 0b0000_0010;
const 물고기 = 0b0000_0100;
const 물고기_고양이 = Self::고양이.bits() | Self::물고기.bits();
}
}
impl str::FromStr for FmtFlags {
type Err = crate::parser::ParseError;
fn from_str(flags: &str) -> Result<Self, Self::Err> {
Ok(Self(flags.parse()?))
}
}
impl fmt::Display for FmtFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.0, f)
}
}
bitflags! {
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct EmptyFlags: u32 {
}
}
#[test]
fn test_bits() {
assert_eq!(Flags::empty().bits(), 0b00000000);
assert_eq!(Flags::A.bits(), 0b00000001);
assert_eq!(Flags::ABC.bits(), 0b00000111);
assert_eq!(AnotherSetOfFlags::empty().bits(), 0b00);
assert_eq!(AnotherSetOfFlags::ANOTHER_FLAG.bits(), !0_i8);
assert_eq!(EmptyFlags::empty().bits(), 0b00000000);
}
#[test]
fn test_from_bits() {
assert_eq!(Flags::from_bits(0), Some(Flags::empty()));
assert_eq!(Flags::from_bits(0b1), Some(Flags::A));
assert_eq!(Flags::from_bits(0b10), Some(Flags::B));
assert_eq!(Flags::from_bits(0b11), Some(Flags::A | Flags::B));
assert_eq!(Flags::from_bits(0b1000), None);
assert_eq!(
AnotherSetOfFlags::from_bits(!0_i8),
Some(AnotherSetOfFlags::ANOTHER_FLAG)
);
assert_eq!(EmptyFlags::from_bits(0), Some(EmptyFlags::empty()));
assert_eq!(EmptyFlags::from_bits(0b1), None);
}
#[test]
fn test_from_bits_truncate() {
assert_eq!(Flags::from_bits_truncate(0), Flags::empty());
assert_eq!(Flags::from_bits_truncate(0b1), Flags::A);
assert_eq!(Flags::from_bits_truncate(0b10), Flags::B);
assert_eq!(Flags::from_bits_truncate(0b11), (Flags::A | Flags::B));
assert_eq!(Flags::from_bits_truncate(0b1000), Flags::empty());
assert_eq!(Flags::from_bits_truncate(0b1001), Flags::A);
assert_eq!(
AnotherSetOfFlags::from_bits_truncate(0_i8),
AnotherSetOfFlags::empty()
);
assert_eq!(EmptyFlags::from_bits_truncate(0), EmptyFlags::empty());
assert_eq!(EmptyFlags::from_bits_truncate(0b1), EmptyFlags::empty());
}
#[test]
fn test_from_bits_retain() {
let extra = Flags::from_bits_retain(0b1000);
assert_eq!(Flags::from_bits_retain(0), Flags::empty());
assert_eq!(Flags::from_bits_retain(0b1), Flags::A);
assert_eq!(Flags::from_bits_retain(0b10), Flags::B);
assert_eq!(Flags::from_bits_retain(0b11), (Flags::A | Flags::B));
assert_eq!(Flags::from_bits_retain(0b1000), (extra | Flags::empty()));
assert_eq!(Flags::from_bits_retain(0b1001), (extra | Flags::A));
let extra = EmptyFlags::from_bits_retain(0b1000);
assert_eq!(
EmptyFlags::from_bits_retain(0b1000),
(extra | EmptyFlags::empty())
);
}
#[test]
fn test_is_empty() {
assert!(Flags::empty().is_empty());
assert!(!Flags::A.is_empty());
assert!(!Flags::ABC.is_empty());
assert!(!AnotherSetOfFlags::ANOTHER_FLAG.is_empty());
assert!(EmptyFlags::empty().is_empty());
assert!(EmptyFlags::all().is_empty());
}
#[test]
fn test_is_all() {
assert!(Flags::all().is_all());
assert!(!Flags::A.is_all());
assert!(Flags::ABC.is_all());
let extra = Flags::from_bits_retain(0b1000);
assert!(!extra.is_all());
assert!(!(Flags::A | extra).is_all());
assert!((Flags::ABC | extra).is_all());
assert!(AnotherSetOfFlags::ANOTHER_FLAG.is_all());
assert!(EmptyFlags::all().is_all());
assert!(EmptyFlags::empty().is_all());
}
#[test]
fn test_two_empties_do_not_intersect() {
let e1 = Flags::empty();
let e2 = Flags::empty();
assert!(!e1.intersects(e2));
assert!(AnotherSetOfFlags::ANOTHER_FLAG.intersects(AnotherSetOfFlags::ANOTHER_FLAG));
}
#[test]
fn test_empty_does_not_intersect_with_full() {
let e1 = Flags::empty();
let e2 = Flags::ABC;
assert!(!e1.intersects(e2));
}
#[test]
fn test_disjoint_intersects() {
let e1 = Flags::A;
let e2 = Flags::B;
assert!(!e1.intersects(e2));
}
#[test]
fn test_overlapping_intersects() {
let e1 = Flags::A;
let e2 = Flags::A | Flags::B;
assert!(e1.intersects(e2));
}
#[test]
fn test_contains() {
let e1 = Flags::A;
let e2 = Flags::A | Flags::B;
assert!(!e1.contains(e2));
assert!(e2.contains(e1));
assert!(Flags::ABC.contains(e2));
assert!(AnotherSetOfFlags::ANOTHER_FLAG.contains(AnotherSetOfFlags::ANOTHER_FLAG));
assert!(EmptyFlags::empty().contains(EmptyFlags::empty()));
}
#[test]
fn test_insert() {
let mut e1 = Flags::A;
let e2 = Flags::A | Flags::B;
e1.insert(e2);
assert_eq!(e1, e2);
let mut e3 = AnotherSetOfFlags::empty();
e3.insert(AnotherSetOfFlags::ANOTHER_FLAG);
assert_eq!(e3, AnotherSetOfFlags::ANOTHER_FLAG);
}
#[test]
fn test_remove() {
let mut e1 = Flags::A | Flags::B;
let e2 = Flags::A | Flags::C;
e1.remove(e2);
assert_eq!(e1, Flags::B);
let mut e3 = AnotherSetOfFlags::ANOTHER_FLAG;
e3.remove(AnotherSetOfFlags::ANOTHER_FLAG);
assert_eq!(e3, AnotherSetOfFlags::empty());
}
#[test]
fn test_operators() {
let e1 = Flags::A | Flags::C;
let e2 = Flags::B | Flags::C;
assert_eq!((e1 | e2), Flags::ABC); // union
assert_eq!((e1 & e2), Flags::C); // intersection
assert_eq!((e1 - e2), Flags::A); // set difference
assert_eq!(!e2, Flags::A); // set complement
assert_eq!(e1 ^ e2, Flags::A | Flags::B); // toggle
let mut e3 = e1;
e3.toggle(e2);
assert_eq!(e3, Flags::A | Flags::B);
let mut m4 = AnotherSetOfFlags::empty();
m4.toggle(AnotherSetOfFlags::empty());
assert_eq!(m4, AnotherSetOfFlags::empty());
}
#[test]
fn test_operators_unchecked() {
let extra = Flags::from_bits_retain(0b1000);
let e1 = Flags::A | Flags::C | extra;
let e2 = Flags::B | Flags::C;
assert_eq!((e1 | e2), (Flags::ABC | extra)); // union
assert_eq!((e1 & e2), Flags::C); // intersection
assert_eq!((e1 - e2), (Flags::A | extra)); // set difference
assert_eq!(!e2, Flags::A); // set complement
assert_eq!(!e1, Flags::B); // set complement
assert_eq!(e1 ^ e2, Flags::A | Flags::B | extra); // toggle
let mut e3 = e1;
e3.toggle(e2);
assert_eq!(e3, Flags::A | Flags::B | extra);
}
#[test]
fn test_set_ops_basic() {
let ab = Flags::A.union(Flags::B);
let ac = Flags::A.union(Flags::C);
let bc = Flags::B.union(Flags::C);
assert_eq!(ab.bits(), 0b011);
assert_eq!(bc.bits(), 0b110);
assert_eq!(ac.bits(), 0b101);
assert_eq!(ab, Flags::B.union(Flags::A));
assert_eq!(ac, Flags::C.union(Flags::A));
assert_eq!(bc, Flags::C.union(Flags::B));
assert_eq!(ac, Flags::A | Flags::C);
assert_eq!(bc, Flags::B | Flags::C);
assert_eq!(ab.union(bc), Flags::ABC);
assert_eq!(ac, Flags::A | Flags::C);
assert_eq!(bc, Flags::B | Flags::C);
assert_eq!(ac.union(bc), ac | bc);
assert_eq!(ac.union(bc), Flags::ABC);
assert_eq!(bc.union(ac), Flags::ABC);
assert_eq!(ac.intersection(bc), ac & bc);
assert_eq!(ac.intersection(bc), Flags::C);
assert_eq!(bc.intersection(ac), Flags::C);
assert_eq!(ac.difference(bc), ac - bc);
assert_eq!(bc.difference(ac), bc - ac);
assert_eq!(ac.difference(bc), Flags::A);
assert_eq!(bc.difference(ac), Flags::B);
assert_eq!(bc.complement(), !bc);
assert_eq!(bc.complement(), Flags::A);
assert_eq!(ac.symmetric_difference(bc), Flags::A.union(Flags::B));
assert_eq!(bc.symmetric_difference(ac), Flags::A.union(Flags::B));
}
#[test]
fn test_set_ops_const() {
// These just test that these compile and don't cause use-site panics
// (would be possible if we had some sort of UB)
const INTERSECT: Flags = Flags::all().intersection(Flags::C);
const UNION: Flags = Flags::A.union(Flags::C);
const DIFFERENCE: Flags = Flags::all().difference(Flags::A);
const COMPLEMENT: Flags = Flags::C.complement();
const SYM_DIFFERENCE: Flags = UNION.symmetric_difference(DIFFERENCE);
assert_eq!(INTERSECT, Flags::C);
assert_eq!(UNION, Flags::A | Flags::C);
assert_eq!(DIFFERENCE, Flags::all() - Flags::A);
assert_eq!(COMPLEMENT, !Flags::C);
assert_eq!(
SYM_DIFFERENCE,
(Flags::A | Flags::C) ^ (Flags::all() - Flags::A)
);
}
#[test]
fn test_set_ops_unchecked() {
let extra = Flags::from_bits_retain(0b1000);
let e1 = Flags::A.union(Flags::C).union(extra);
let e2 = Flags::B.union(Flags::C);
assert_eq!(e1.bits(), 0b1101);
assert_eq!(e1.union(e2), (Flags::ABC | extra));
assert_eq!(e1.intersection(e2), Flags::C);
assert_eq!(e1.difference(e2), Flags::A | extra);
assert_eq!(e2.difference(e1), Flags::B);
assert_eq!(e2.complement(), Flags::A);
assert_eq!(e1.complement(), Flags::B);
assert_eq!(e1.symmetric_difference(e2), Flags::A | Flags::B | extra); // toggle
}
#[test]
fn test_set_ops_exhaustive() {
// Define a flag that contains gaps to help exercise edge-cases,
// especially around "unknown" flags (e.g. ones outside of `all()`
// `from_bits_retain`).
// - when lhs and rhs both have different sets of unknown flags.
// - unknown flags at both ends, and in the middle
// - cases with "gaps".
bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Test: u16 {
// Intentionally no `A`
const B = 0b000000010;
// Intentionally no `C`
const D = 0b000001000;
const E = 0b000010000;
const F = 0b000100000;
const G = 0b001000000;
// Intentionally no `H`
const I = 0b100000000;
}
}
let iter_test_flags = || (0..=0b111_1111_1111).map(|bits| Test::from_bits_retain(bits));
for a in iter_test_flags() {
assert_eq!(
a.complement(),
Test::from_bits_truncate(!a.bits()),
"wrong result: !({:?})",
a,
);
assert_eq!(a.complement(), !a, "named != op: !({:?})", a);
for b in iter_test_flags() {
// Check that the named operations produce the expected bitwise
// values.
assert_eq!(
a.union(b).bits(),
a.bits() | b.bits(),
"wrong result: `{:?}` | `{:?}`",
a,
b,
);
assert_eq!(
a.intersection(b).bits(),
a.bits() & b.bits(),
"wrong result: `{:?}` & `{:?}`",
a,
b,
);
assert_eq!(
a.symmetric_difference(b).bits(),
a.bits() ^ b.bits(),
"wrong result: `{:?}` ^ `{:?}`",
a,
b,
);
assert_eq!(
a.difference(b).bits(),
a.bits() & !b.bits(),
"wrong result: `{:?}` - `{:?}`",
a,
b,
);
// Note: Difference is checked as both `a - b` and `b - a`
assert_eq!(
b.difference(a).bits(),
b.bits() & !a.bits(),
"wrong result: `{:?}` - `{:?}`",
b,
a,
);
// Check that the named set operations are equivalent to the
// bitwise equivalents
assert_eq!(a.union(b), a | b, "named != op: `{:?}` | `{:?}`", a, b,);
assert_eq!(
a.intersection(b),
a & b,
"named != op: `{:?}` & `{:?}`",
a,
b,
);
assert_eq!(
a.symmetric_difference(b),
a ^ b,
"named != op: `{:?}` ^ `{:?}`",
a,
b,
);
assert_eq!(a.difference(b), a - b, "named != op: `{:?}` - `{:?}`", a, b,);
// Note: Difference is checked as both `a - b` and `b - a`
assert_eq!(b.difference(a), b - a, "named != op: `{:?}` - `{:?}`", b, a,);
// Verify that the operations which should be symmetric are
// actually symmetric.
assert_eq!(a.union(b), b.union(a), "asymmetry: `{:?}` | `{:?}`", a, b,);
assert_eq!(
a.intersection(b),
b.intersection(a),
"asymmetry: `{:?}` & `{:?}`",
a,
b,
);
assert_eq!(
a.symmetric_difference(b),
b.symmetric_difference(a),
"asymmetry: `{:?}` ^ `{:?}`",
a,
b,
);
}
}
}
#[test]
fn test_set() {
let mut e1 = Flags::A | Flags::C;
e1.set(Flags::B, true);
e1.set(Flags::C, false);
assert_eq!(e1, Flags::A | Flags::B);
}
#[test]
fn test_assignment_operators() {
let mut m1 = Flags::empty();
let e1 = Flags::A | Flags::C;
// union
m1 |= Flags::A;
assert_eq!(m1, Flags::A);
// intersection
m1 &= e1;
assert_eq!(m1, Flags::A);
// set difference
m1 -= m1;
assert_eq!(m1, Flags::empty());
// toggle
m1 ^= e1;
assert_eq!(m1, e1);
}
#[test]
fn test_const_fn() {
const _M1: Flags = Flags::empty();
const M2: Flags = Flags::A;
assert_eq!(M2, Flags::A);
const M3: Flags = Flags::C;
assert_eq!(M3, Flags::C);
}
#[test]
fn test_extend() {
let mut flags;
flags = Flags::empty();
flags.extend([].iter().cloned());
assert_eq!(flags, Flags::empty());
flags = Flags::empty();
flags.extend([Flags::A, Flags::B].iter().cloned());
assert_eq!(flags, Flags::A | Flags::B);
flags = Flags::A;
flags.extend([Flags::A, Flags::B].iter().cloned());
assert_eq!(flags, Flags::A | Flags::B);
flags = Flags::B;
flags.extend([Flags::A, Flags::ABC].iter().cloned());
assert_eq!(flags, Flags::ABC);
}
#[test]
fn test_from_iterator() {
assert_eq!([].iter().cloned().collect::<Flags>(), Flags::empty());
assert_eq!(
[Flags::A, Flags::B].iter().cloned().collect::<Flags>(),
Flags::A | Flags::B
);
assert_eq!(
[Flags::A, Flags::ABC].iter().cloned().collect::<Flags>(),
Flags::ABC
);
}
#[test]
fn test_lt() {
let mut a = Flags::empty();
let mut b = Flags::empty();
assert!(!(a < b) && !(b < a));
b = Flags::B;
assert!(a < b);
a = Flags::C;
assert!(!(a < b) && b < a);
b = Flags::C | Flags::B;
assert!(a < b);
}
#[test]
fn test_ord() {
let mut a = Flags::empty();
let mut b = Flags::empty();
assert!(a <= b && a >= b);
a = Flags::A;
assert!(a > b && a >= b);
assert!(b < a && b <= a);
b = Flags::B;
assert!(b > a && b >= a);
assert!(a < b && a <= b);
}
fn hash<T: Hash>(t: &T) -> u64 {
let mut s = DefaultHasher::new();
t.hash(&mut s);
s.finish()
}
#[test]
fn test_hash() {
let mut x = Flags::empty();
let mut y = Flags::empty();
assert_eq!(hash(&x), hash(&y));
x = Flags::all();
y = Flags::ABC;
assert_eq!(hash(&x), hash(&y));
}
#[test]
fn test_default() {
assert_eq!(Flags::empty(), Flags::default());
}
#[test]
fn test_debug() {
assert_eq!(format!("{:?}", Flags::A | Flags::B), "Flags(A | B)");
assert_eq!(format!("{:?}", Flags::empty()), "Flags(0x0)");
assert_eq!(format!("{:?}", Flags::ABC), "Flags(A | B | C)");
let extra = Flags::from_bits_retain(0xb8);
assert_eq!(format!("{:?}", extra), "Flags(0xb8)");
assert_eq!(format!("{:?}", Flags::A | extra), "Flags(A | 0xb8)");
assert_eq!(
format!("{:?}", Flags::ABC | extra),
"Flags(A | B | C | ABC | 0xb8)"
);
assert_eq!(format!("{:?}", EmptyFlags::empty()), "EmptyFlags(0x0)");
}
#[test]
fn test_display_from_str_roundtrip() {
fn format_parse_case<T: fmt::Debug + fmt::Display + str::FromStr + PartialEq>(flags: T) where <T as str::FromStr>::Err: fmt::Display {
assert_eq!(flags, {
match flags.to_string().parse::<T>() {
Ok(flags) => flags,
Err(e) => panic!("failed to parse `{}`: {}", flags, e),
}
});
}
fn parse_case<T: fmt::Debug + str::FromStr + PartialEq>(expected: T, flags: &str) where <T as str::FromStr>::Err: fmt::Display + fmt::Debug {
assert_eq!(expected, flags.parse::<T>().unwrap());
}
bitflags! {
#[derive(Debug, Eq, PartialEq)]
pub struct MultiBitFmtFlags: u8 {
const A = 0b0000_0001u8;
const B = 0b0001_1110u8;
}
}
impl fmt::Display for MultiBitFmtFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.0, f)
}
}
impl str::FromStr for MultiBitFmtFlags {
type Err = crate::parser::ParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(MultiBitFmtFlags(s.parse()?))
}
}
format_parse_case(FmtFlags::empty());
format_parse_case(FmtFlags::all());
format_parse_case(FmtFlags::고양이);
format_parse_case(FmtFlags::고양이 | FmtFlags::개);
format_parse_case(FmtFlags::물고기_고양이);
format_parse_case(FmtFlags::from_bits_retain(0xb8));
format_parse_case(FmtFlags::from_bits_retain(0x20));
format_parse_case(MultiBitFmtFlags::from_bits_retain(3));
parse_case(FmtFlags::empty(), "");
parse_case(FmtFlags::empty(), " \r\n\t");
parse_case(FmtFlags::empty(), "0x0");
parse_case(FmtFlags::empty(), "0x0");
parse_case(FmtFlags::고양이, "고양이");
parse_case(FmtFlags::고양이, " 고양이 ");
parse_case(FmtFlags::고양이, "고양이 | 고양이 | 고양이");
parse_case(FmtFlags::고양이, "0x01");
parse_case(FmtFlags::고양이 | FmtFlags::개, "고양이 | 개");
parse_case(FmtFlags::고양이 | FmtFlags::개, "고양이|개");
parse_case(FmtFlags::고양이 | FmtFlags::개, "\n고양이|개 ");
parse_case(FmtFlags::고양이 | FmtFlags::물고기, "물고기_고양이");
}
#[test]
fn test_from_str_err() {
fn parse_case(pat: &str, flags: &str) {
let err = flags.parse::<FmtFlags>().unwrap_err().to_string();
assert!(err.contains(pat), "`{}` not found in error `{}`", pat, err);
}
parse_case("empty flag", "|");
parse_case("empty flag", "|||");
parse_case("empty flag", "고양이 |");
parse_case("unrecognized named flag", "NOT_A_FLAG");
parse_case("unrecognized named flag", "고양이 개");
parse_case("unrecognized named flag", "고양이 | NOT_A_FLAG");
parse_case("invalid hex flag", "0xhi");
parse_case("invalid hex flag", "고양이 | 0xhi");
}
#[test]
fn test_binary() {
assert_eq!(format!("{:b}", Flags::ABC), "111");
assert_eq!(format!("{:#b}", Flags::ABC), "0b111");
let extra = Flags::from_bits_retain(0b1010000);
assert_eq!(format!("{:b}", Flags::ABC | extra), "1010111");
assert_eq!(format!("{:#b}", Flags::ABC | extra), "0b1010111");
}
#[test]
fn test_octal() {
assert_eq!(format!("{:o}", LongFlags::LONG_A), "177777");
assert_eq!(format!("{:#o}", LongFlags::LONG_A), "0o177777");
let extra = LongFlags::from_bits_retain(0o5000000);
assert_eq!(format!("{:o}", LongFlags::LONG_A | extra), "5177777");
assert_eq!(format!("{:#o}", LongFlags::LONG_A | extra), "0o5177777");
}
#[test]
fn test_lowerhex() {
assert_eq!(format!("{:x}", LongFlags::LONG_A), "ffff");
assert_eq!(format!("{:#x}", LongFlags::LONG_A), "0xffff");
let extra = LongFlags::from_bits_retain(0xe00000);
assert_eq!(format!("{:x}", LongFlags::LONG_A | extra), "e0ffff");
assert_eq!(format!("{:#x}", LongFlags::LONG_A | extra), "0xe0ffff");
}
#[test]
fn test_upperhex() {
assert_eq!(format!("{:X}", LongFlags::LONG_A), "FFFF");
assert_eq!(format!("{:#X}", LongFlags::LONG_A), "0xFFFF");
let extra = LongFlags::from_bits_retain(0xe00000);
assert_eq!(format!("{:X}", LongFlags::LONG_A | extra), "E0FFFF");
assert_eq!(format!("{:#X}", LongFlags::LONG_A | extra), "0xE0FFFF");
}
mod submodule {
bitflags! {
#[derive(Clone, Copy)]
pub struct PublicFlags: i8 {
const X = 0;
}
#[derive(Clone, Copy)]
struct PrivateFlags: i8 {
const Y = 0;
}
}
#[test]
fn test_private() {
let _ = PrivateFlags::Y;
}
}
#[test]
fn test_public() {
let _ = submodule::PublicFlags::X;
}
mod t1 {
mod foo {
pub type Bar = i32;
}
bitflags! {
/// baz
#[derive(Clone, Copy)]
struct Flags: foo::Bar {
const A = 0b00000001;
#[cfg(foo)]
const B = 0b00000010;
#[cfg(foo)]
const C = 0b00000010;
}
}
}
#[test]
fn test_in_function() {
bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Flags: u8 {
const A = 1;
#[cfg(any())] // false
const B = 2;
}
}
assert_eq!(Flags::all(), Flags::A);
assert_eq!(format!("{:?}", Flags::A), "Flags(A)");
}
#[test]
fn test_deprecated() {
bitflags! {
#[derive(Clone, Copy)]
pub struct TestFlags: u32 {
#[deprecated(note = "Use something else.")]
const ONE = 1;
}
}
}
#[test]
fn test_pub_crate() {
mod module {
bitflags! {
#[derive(Clone, Copy)]
pub (crate) struct Test: u8 {
const FOO = 1;
}
}
}
assert_eq!(module::Test::FOO.bits(), 1);
}
#[test]
fn test_pub_in_module() {
mod module {
mod submodule {
bitflags! {
// `pub (in super)` means only the module `module` will
// be able to access this.
#[derive(Clone, Copy)]
pub (in super) struct Test: u8 {
const FOO = 1;
}
}
}
mod test {
// Note: due to `pub (in super)`,
// this cannot be accessed directly by the testing code.
pub(super) fn value() -> u8 {
super::submodule::Test::FOO.bits()
}
}
pub fn value() -> u8 {
test::value()
}
}
assert_eq!(module::value(), 1)
}
#[test]
fn test_zero_value_flags() {
bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Flags: u32 {
const NONE = 0b0;
const SOME = 0b1;
}
}
assert!(Flags::empty().contains(Flags::NONE));
assert!(Flags::SOME.contains(Flags::NONE));
assert!(Flags::NONE.is_empty());
assert_eq!(format!("{:?}", Flags::SOME), "Flags(NONE | SOME)");
}
#[test]
fn test_empty_bitflags() {
bitflags! {}
}
#[test]
fn test_u128_bitflags() {
bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Flags: u128 {
const A = 0x0000_0000_0000_0000_0000_0000_0000_0001;
const B = 0x0000_0000_0000_1000_0000_0000_0000_0000;
const C = 0x8000_0000_0000_0000_0000_0000_0000_0000;
const ABC = Self::A.bits() | Self::B.bits() | Self::C.bits();
}
}
assert_eq!(Flags::ABC, Flags::A | Flags::B | Flags::C);
assert_eq!(Flags::A.bits(), 0x0000_0000_0000_0000_0000_0000_0000_0001);
assert_eq!(Flags::B.bits(), 0x0000_0000_0000_1000_0000_0000_0000_0000);
assert_eq!(Flags::C.bits(), 0x8000_0000_0000_0000_0000_0000_0000_0000);
assert_eq!(Flags::ABC.bits(), 0x8000_0000_0000_1000_0000_0000_0000_0001);
assert_eq!(format!("{:?}", Flags::A), "Flags(A)");
assert_eq!(format!("{:?}", Flags::B), "Flags(B)");
assert_eq!(format!("{:?}", Flags::C), "Flags(C)");
assert_eq!(format!("{:?}", Flags::ABC), "Flags(A | B | C)");
}
#[test]
fn test_from_bits_edge_cases() {
bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Flags: u8 {
const A = 0b00000001;
const BC = 0b00000110;
}
}
let flags = Flags::from_bits(0b00000100);
assert_eq!(flags, None);
let flags = Flags::from_bits(0b00000101);
assert_eq!(flags, None);
}
#[test]
fn test_from_bits_truncate_edge_cases() {
bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Flags: u8 {
const A = 0b00000001;
const BC = 0b00000110;
}
}
let flags = Flags::from_bits_truncate(0b00000100);
assert_eq!(flags, Flags::empty());
let flags = Flags::from_bits_truncate(0b00000101);
assert_eq!(flags, Flags::A);
}
#[test]
fn test_iter() {
bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct Flags: u32 {
const ONE = 0b001;
const TWO = 0b010;
const THREE = 0b100;
#[cfg(windows)]
const FOUR_WIN = 0b1000;
#[cfg(unix)]
const FOUR_UNIX = 0b10000;
const FIVE = 0b01000100;
}
}
let count = {
#[cfg(any(unix, windows))]
{
5
}
#[cfg(not(any(unix, windows)))]
{
4
}
};
let flags = Flags::all();
assert_eq!(flags.into_iter().count(), count);
for flag in flags.into_iter() {
assert!(flags.contains(flag));
}
let mut iter = flags.iter_names();
assert_eq!(iter.next().unwrap(), ("ONE", Flags::ONE));
assert_eq!(iter.next().unwrap(), ("TWO", Flags::TWO));
assert_eq!(iter.next().unwrap(), ("THREE", Flags::THREE));
#[cfg(unix)]
{
assert_eq!(iter.next().unwrap(), ("FOUR_UNIX", Flags::FOUR_UNIX));
}
#[cfg(windows)]
{
assert_eq!(iter.next().unwrap(), ("FOUR_WIN", Flags::FOUR_WIN));
}
assert_eq!(iter.next().unwrap(), ("FIVE", Flags::FIVE));
assert_eq!(iter.next(), None);
let flags = Flags::empty();
assert_eq!(flags.into_iter().count(), 0);
let flags = Flags::ONE | Flags::THREE;
assert_eq!(flags.into_iter().count(), 2);
let mut iter = flags.iter_names();
assert_eq!(iter.next().unwrap(), ("ONE", Flags::ONE));
assert_eq!(iter.next().unwrap(), ("THREE", Flags::THREE));
assert_eq!(iter.next(), None);
let flags = Flags::from_bits_retain(0b1000_0000);
assert_eq!(flags.into_iter().count(), 1);
assert_eq!(flags.iter_names().count(), 0);
}
#[test]
fn into_iter_from_iter_roundtrip() {
let flags = Flags::ABC | Flags::from_bits_retain(0b1000_0000);
assert_eq!(flags, flags.into_iter().collect::<Flags>());
}
#[test]
fn test_from_name() {
let flags = Flags::all();
let mut rebuilt = Flags::empty();
for (name, value) in flags.iter_names() {
assert_eq!(value, Flags::from_name(name).unwrap());
rebuilt |= Flags::from_name(name).unwrap();
}
assert_eq!(flags, rebuilt);
}
#[test]
fn bits_types() {
bitflags! {
pub struct I8: i8 {
const A = 1;
}
pub struct I16: i16 {
const A = 1;
}
pub struct I32: i32 {
const A = 1;
}
pub struct I64: i64 {
const A = 1;
}
pub struct I128: i128 {
const A = 1;
}
pub struct Isize: isize {
const A = 1;
}
pub struct U8: u8 {
const A = 1;
}
pub struct U16: u16 {
const A = 1;
}
pub struct U32: u32 {
const A = 1;
}
pub struct U64: u64 {
const A = 1;
}
pub struct U128: u128 {
const A = 1;
}
pub struct Usize: usize {
const A = 1;
}
}
}
}