blob: 3875d2cfc791ea712934cc1393a936d4aa77de0a [file] [log] [blame]
use alloc::vec::Vec;
use core::cmp::{min, max};
use core::cmp::Ordering::{Less, Equal};
use core::convert::From;
use core::fmt;
use core::iter::FusedIterator;
use core::option::Option::{Some, None};
#[cfg(not(feature = "std"))]
use core::error::Error;
#[cfg(feature = "std")]
use std::error::Error;
#[cfg(not(feature = "std"))]
use core::net::{IpAddr, Ipv4Addr, Ipv6Addr};
#[cfg(feature = "std")]
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
use crate::ipext::{IpAdd, IpSub, IpStep, IpAddrRange, Ipv4AddrRange, Ipv6AddrRange};
use crate::mask::{ip_mask_to_prefix, ipv4_mask_to_prefix, ipv6_mask_to_prefix};
/// An IP network address, either IPv4 or IPv6.
///
/// This enum can contain either an [`Ipv4Net`] or an [`Ipv6Net`]. A
/// [`From`] implementation is provided to convert these into an
/// `IpNet`.
///
/// # Textual representation
///
/// `IpNet` provides a [`FromStr`] implementation for parsing network
/// addresses represented in CIDR notation. See [IETF RFC 4632] for the
/// CIDR notation.
///
/// [`Ipv4Net`]: struct.Ipv4Net.html
/// [`Ipv6Net`]: struct.Ipv6Net.html
/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html
/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632
///
/// # Examples
///
/// ```
/// use std::net::IpAddr;
/// use ipnet::IpNet;
///
/// let net: IpNet = "10.1.1.0/24".parse().unwrap();
/// assert_eq!(Ok(net.network()), "10.1.1.0".parse());
///
/// let net: IpNet = "fd00::/32".parse().unwrap();
/// assert_eq!(Ok(net.network()), "fd00::".parse());
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum IpNet {
V4(Ipv4Net),
V6(Ipv6Net),
}
/// An IPv4 network address.
///
/// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network
/// addresses.
///
/// # Textual representation
///
/// `Ipv4Net` provides a [`FromStr`] implementation for parsing network
/// addresses represented in CIDR notation. See [IETF RFC 4632] for the
/// CIDR notation.
///
/// [`IpNet`]: enum.IpNet.html
/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632
///
/// # Examples
///
/// ```
/// # #![cfg_attr(not(feature = "std"), feature(ip_in_core))]
/// # #[cfg(feature = "std")]
/// # use std::net::Ipv6Addr;
/// # #[cfg(not(feature = "std"))]
/// # use core::net::Ipv6Addr;
/// use ipnet::Ipv4Net;
///
/// let net: Ipv4Net = "10.1.1.0/24".parse().unwrap();
/// assert_eq!(Ok(net.network()), "10.1.1.0".parse());
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Ipv4Net {
addr: Ipv4Addr,
prefix_len: u8,
}
/// An IPv6 network address.
///
/// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network
/// addresses.
///
/// # Textual representation
///
/// `Ipv6Net` provides a [`FromStr`] implementation for parsing network
/// addresses represented in CIDR notation. See [IETF RFC 4632] for the
/// CIDR notation.
///
/// [`IpNet`]: enum.IpNet.html
/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html
/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
/// use ipnet::Ipv6Net;
///
/// let net: Ipv6Net = "fd00::/32".parse().unwrap();
/// assert_eq!(Ok(net.network()), "fd00::".parse());
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Ipv6Net {
addr: Ipv6Addr,
prefix_len: u8,
}
/// An error which can be returned when the prefix length is invalid.
///
/// Valid prefix lengths are 0 to 32 for IPv4 and 0 to 128 for IPv6.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PrefixLenError;
impl fmt::Display for PrefixLenError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt.write_str("invalid IP prefix length")
}
}
impl Error for PrefixLenError {}
impl IpNet {
/// Creates a new IP network address from an `IpAddr` and prefix
/// length.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
/// use ipnet::{IpNet, PrefixLenError};
///
/// let net = IpNet::new(Ipv6Addr::LOCALHOST.into(), 48);
/// assert!(net.is_ok());
///
/// let bad_prefix_len = IpNet::new(Ipv6Addr::LOCALHOST.into(), 129);
/// assert_eq!(bad_prefix_len, Err(PrefixLenError));
/// ```
pub fn new(ip: IpAddr, prefix_len: u8) -> Result<IpNet, PrefixLenError> {
Ok(match ip {
IpAddr::V4(a) => Ipv4Net::new(a, prefix_len)?.into(),
IpAddr::V6(a) => Ipv6Net::new(a, prefix_len)?.into(),
})
}
/// Creates a new IP network address from an `IpAddr` and netmask.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
/// use ipnet::{IpNet, PrefixLenError};
///
/// let net = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0000_0000_0000_0000).into());
/// assert!(net.is_ok());
///
/// let bad_prefix_len = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0001_0000_0000_0000).into());
/// assert_eq!(bad_prefix_len, Err(PrefixLenError));
/// ```
pub fn with_netmask(ip: IpAddr, netmask: IpAddr) -> Result<IpNet, PrefixLenError> {
let prefix = ip_mask_to_prefix(netmask)?;
Self::new(ip, prefix)
}
/// Returns a copy of the network with the address truncated to the
/// prefix length.
///
/// # Examples
///
/// ```
/// # use ipnet::IpNet;
/// #
/// assert_eq!(
/// "192.168.12.34/16".parse::<IpNet>().unwrap().trunc(),
/// "192.168.0.0/16".parse().unwrap()
/// );
///
/// assert_eq!(
/// "fd00::1:2:3:4/16".parse::<IpNet>().unwrap().trunc(),
/// "fd00::/16".parse().unwrap()
/// );
/// ```
pub fn trunc(&self) -> IpNet {
match *self {
IpNet::V4(ref a) => IpNet::V4(a.trunc()),
IpNet::V6(ref a) => IpNet::V6(a.trunc()),
}
}
/// Returns the address.
pub fn addr(&self) -> IpAddr {
match *self {
IpNet::V4(ref a) => IpAddr::V4(a.addr),
IpNet::V6(ref a) => IpAddr::V6(a.addr),
}
}
/// Returns the prefix length.
pub fn prefix_len(&self) -> u8 {
match *self {
IpNet::V4(ref a) => a.prefix_len(),
IpNet::V6(ref a) => a.prefix_len(),
}
}
/// Returns the maximum valid prefix length.
pub fn max_prefix_len(&self) -> u8 {
match *self {
IpNet::V4(ref a) => a.max_prefix_len(),
IpNet::V6(ref a) => a.max_prefix_len(),
}
}
/// Returns the network mask.
///
/// # Examples
///
/// ```
/// # use std::net::IpAddr;
/// # use ipnet::IpNet;
/// #
/// let net: IpNet = "10.1.0.0/20".parse().unwrap();
/// assert_eq!(Ok(net.netmask()), "255.255.240.0".parse());
///
/// let net: IpNet = "fd00::/24".parse().unwrap();
/// assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse());
/// ```
pub fn netmask(&self) -> IpAddr {
match *self {
IpNet::V4(ref a) => IpAddr::V4(a.netmask()),
IpNet::V6(ref a) => IpAddr::V6(a.netmask()),
}
}
/// Returns the host mask.
///
/// # Examples
///
/// ```
/// # use std::net::IpAddr;
/// # use ipnet::IpNet;
/// #
/// let net: IpNet = "10.1.0.0/20".parse().unwrap();
/// assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse());
///
/// let net: IpNet = "fd00::/24".parse().unwrap();
/// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
/// ```
pub fn hostmask(&self) -> IpAddr {
match *self {
IpNet::V4(ref a) => IpAddr::V4(a.hostmask()),
IpNet::V6(ref a) => IpAddr::V6(a.hostmask()),
}
}
/// Returns the network address.
///
/// # Examples
///
/// ```
/// # use std::net::IpAddr;
/// # use ipnet::IpNet;
/// #
/// let net: IpNet = "172.16.123.123/16".parse().unwrap();
/// assert_eq!(Ok(net.network()), "172.16.0.0".parse());
///
/// let net: IpNet = "fd00:1234:5678::/24".parse().unwrap();
/// assert_eq!(Ok(net.network()), "fd00:1200::".parse());
/// ```
pub fn network(&self) -> IpAddr {
match *self {
IpNet::V4(ref a) => IpAddr::V4(a.network()),
IpNet::V6(ref a) => IpAddr::V6(a.network()),
}
}
/// Returns the broadcast address.
///
/// # Examples
///
/// ```
/// # use std::net::IpAddr;
/// # use ipnet::IpNet;
/// #
/// let net: IpNet = "172.16.0.0/22".parse().unwrap();
/// assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse());
///
/// let net: IpNet = "fd00:1234:5678::/24".parse().unwrap();
/// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
/// ```
pub fn broadcast(&self) -> IpAddr {
match *self {
IpNet::V4(ref a) => IpAddr::V4(a.broadcast()),
IpNet::V6(ref a) => IpAddr::V6(a.broadcast()),
}
}
/// Returns the `IpNet` that contains this one.
///
/// # Examples
///
/// ```
/// # use ipnet::IpNet;
/// #
/// let n1: IpNet = "172.16.1.0/24".parse().unwrap();
/// let n2: IpNet = "172.16.0.0/23".parse().unwrap();
/// let n3: IpNet = "172.16.0.0/0".parse().unwrap();
///
/// assert_eq!(n1.supernet().unwrap(), n2);
/// assert_eq!(n3.supernet(), None);
///
/// let n1: IpNet = "fd00:ff00::/24".parse().unwrap();
/// let n2: IpNet = "fd00:fe00::/23".parse().unwrap();
/// let n3: IpNet = "fd00:fe00::/0".parse().unwrap();
///
/// assert_eq!(n1.supernet().unwrap(), n2);
/// assert_eq!(n3.supernet(), None);
/// ```
pub fn supernet(&self) -> Option<IpNet> {
match *self {
IpNet::V4(ref a) => a.supernet().map(IpNet::V4),
IpNet::V6(ref a) => a.supernet().map(IpNet::V6),
}
}
/// Returns `true` if this network and the given network are
/// children of the same supernet.
///
/// # Examples
///
/// ```
/// # use ipnet::IpNet;
/// #
/// let n4_1: IpNet = "10.1.0.0/24".parse().unwrap();
/// let n4_2: IpNet = "10.1.1.0/24".parse().unwrap();
/// let n4_3: IpNet = "10.1.2.0/24".parse().unwrap();
/// let n6_1: IpNet = "fd00::/18".parse().unwrap();
/// let n6_2: IpNet = "fd00:4000::/18".parse().unwrap();
/// let n6_3: IpNet = "fd00:8000::/18".parse().unwrap();
///
/// assert!( n4_1.is_sibling(&n4_2));
/// assert!(!n4_2.is_sibling(&n4_3));
/// assert!( n6_1.is_sibling(&n6_2));
/// assert!(!n6_2.is_sibling(&n6_3));
/// assert!(!n4_1.is_sibling(&n6_2));
/// ```
pub fn is_sibling(&self, other: &IpNet) -> bool {
match (*self, *other) {
(IpNet::V4(ref a), IpNet::V4(ref b)) => a.is_sibling(b),
(IpNet::V6(ref a), IpNet::V6(ref b)) => a.is_sibling(b),
_ => false,
}
}
/// Return an `Iterator` over the host addresses in this network.
///
/// # Examples
///
/// ```
/// # use std::net::IpAddr;
/// # use ipnet::IpNet;
/// #
/// let net: IpNet = "10.0.0.0/30".parse().unwrap();
/// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
/// "10.0.0.1".parse::<IpAddr>().unwrap(),
/// "10.0.0.2".parse().unwrap(),
/// ]);
///
/// let net: IpNet = "10.0.0.0/31".parse().unwrap();
/// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
/// "10.0.0.0".parse::<IpAddr>().unwrap(),
/// "10.0.0.1".parse().unwrap(),
/// ]);
///
/// let net: IpNet = "fd00::/126".parse().unwrap();
/// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![
/// "fd00::".parse::<IpAddr>().unwrap(),
/// "fd00::1".parse().unwrap(),
/// "fd00::2".parse().unwrap(),
/// "fd00::3".parse().unwrap(),
/// ]);
/// ```
pub fn hosts(&self) -> IpAddrRange {
match *self {
IpNet::V4(ref a) => IpAddrRange::V4(a.hosts()),
IpNet::V6(ref a) => IpAddrRange::V6(a.hosts()),
}
}
/// Returns an `Iterator` over the subnets of this network with the
/// given prefix length.
///
/// # Examples
///
/// ```
/// # use ipnet::{IpNet, PrefixLenError};
/// #
/// let net: IpNet = "10.0.0.0/24".parse().unwrap();
/// assert_eq!(net.subnets(26).unwrap().collect::<Vec<IpNet>>(), vec![
/// "10.0.0.0/26".parse::<IpNet>().unwrap(),
/// "10.0.0.64/26".parse().unwrap(),
/// "10.0.0.128/26".parse().unwrap(),
/// "10.0.0.192/26".parse().unwrap(),
/// ]);
///
/// let net: IpNet = "fd00::/16".parse().unwrap();
/// assert_eq!(net.subnets(18).unwrap().collect::<Vec<IpNet>>(), vec![
/// "fd00::/18".parse::<IpNet>().unwrap(),
/// "fd00:4000::/18".parse().unwrap(),
/// "fd00:8000::/18".parse().unwrap(),
/// "fd00:c000::/18".parse().unwrap(),
/// ]);
///
/// let net: IpNet = "10.0.0.0/24".parse().unwrap();
/// assert_eq!(net.subnets(23), Err(PrefixLenError));
///
/// let net: IpNet = "10.0.0.0/24".parse().unwrap();
/// assert_eq!(net.subnets(33), Err(PrefixLenError));
///
/// let net: IpNet = "fd00::/16".parse().unwrap();
/// assert_eq!(net.subnets(15), Err(PrefixLenError));
///
/// let net: IpNet = "fd00::/16".parse().unwrap();
/// assert_eq!(net.subnets(129), Err(PrefixLenError));
/// ```
pub fn subnets(&self, new_prefix_len: u8) -> Result<IpSubnets, PrefixLenError> {
match *self {
IpNet::V4(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V4),
IpNet::V6(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V6),
}
}
/// Test if a network address contains either another network
/// address or an IP address.
///
/// # Examples
///
/// ```
/// # use std::net::IpAddr;
/// # use ipnet::IpNet;
/// #
/// let net4: IpNet = "192.168.0.0/24".parse().unwrap();
/// let net4_yes: IpNet = "192.168.0.0/25".parse().unwrap();
/// let net4_no: IpNet = "192.168.0.0/23".parse().unwrap();
/// let ip4_yes: IpAddr = "192.168.0.1".parse().unwrap();
/// let ip4_no: IpAddr = "192.168.1.0".parse().unwrap();
///
/// assert!(net4.contains(&net4));
/// assert!(net4.contains(&net4_yes));
/// assert!(!net4.contains(&net4_no));
/// assert!(net4.contains(&ip4_yes));
/// assert!(!net4.contains(&ip4_no));
///
///
/// let net6: IpNet = "fd00::/16".parse().unwrap();
/// let net6_yes: IpNet = "fd00::/17".parse().unwrap();
/// let net6_no: IpNet = "fd00::/15".parse().unwrap();
/// let ip6_yes: IpAddr = "fd00::1".parse().unwrap();
/// let ip6_no: IpAddr = "fd01::".parse().unwrap();
///
/// assert!(net6.contains(&net6));
/// assert!(net6.contains(&net6_yes));
/// assert!(!net6.contains(&net6_no));
/// assert!(net6.contains(&ip6_yes));
/// assert!(!net6.contains(&ip6_no));
///
/// assert!(!net4.contains(&net6));
/// assert!(!net6.contains(&net4));
/// assert!(!net4.contains(&ip6_no));
/// assert!(!net6.contains(&ip4_no));
/// ```
pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> {
Contains::contains(self, other)
}
/// Aggregate a `Vec` of `IpNet`s and return the result as a new
/// `Vec`.
///
/// # Examples
///
/// ```
/// # use ipnet::IpNet;
/// #
/// let nets = vec![
/// "10.0.0.0/24".parse::<IpNet>().unwrap(),
/// "10.0.1.0/24".parse().unwrap(),
/// "10.0.2.0/24".parse().unwrap(),
/// "fd00::/18".parse().unwrap(),
/// "fd00:4000::/18".parse().unwrap(),
/// "fd00:8000::/18".parse().unwrap(),
/// ];
///
/// assert_eq!(IpNet::aggregate(&nets), vec![
/// "10.0.0.0/23".parse::<IpNet>().unwrap(),
/// "10.0.2.0/24".parse().unwrap(),
/// "fd00::/17".parse().unwrap(),
/// "fd00:8000::/18".parse().unwrap(),
/// ]);
/// ```
pub fn aggregate(networks: &Vec<IpNet>) -> Vec<IpNet> {
// It's 2.5x faster to split the input up and run them using the
// specific IPv4 and IPV6 implementations. merge_intervals() and
// the comparisons are much faster running over integers.
let mut ipv4nets: Vec<Ipv4Net> = Vec::new();
let mut ipv6nets: Vec<Ipv6Net> = Vec::new();
for n in networks {
match *n {
IpNet::V4(x) => ipv4nets.push(x),
IpNet::V6(x) => ipv6nets.push(x),
}
}
let mut res: Vec<IpNet> = Vec::new();
let ipv4aggs = Ipv4Net::aggregate(&ipv4nets);
let ipv6aggs = Ipv6Net::aggregate(&ipv6nets);
res.extend::<Vec<IpNet>>(ipv4aggs.into_iter().map(IpNet::V4).collect::<Vec<IpNet>>());
res.extend::<Vec<IpNet>>(ipv6aggs.into_iter().map(IpNet::V6).collect::<Vec<IpNet>>());
res
}
}
impl Default for IpNet {
fn default() -> Self {
Self::V4(Ipv4Net::default())
}
}
impl fmt::Debug for IpNet {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl fmt::Display for IpNet {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
IpNet::V4(ref a) => a.fmt(fmt),
IpNet::V6(ref a) => a.fmt(fmt),
}
}
}
impl From<Ipv4Net> for IpNet {
fn from(net: Ipv4Net) -> IpNet {
IpNet::V4(net)
}
}
impl From<Ipv6Net> for IpNet {
fn from(net: Ipv6Net) -> IpNet {
IpNet::V6(net)
}
}
impl From<IpAddr> for IpNet {
fn from(addr: IpAddr) -> IpNet {
match addr {
IpAddr::V4(a) => IpNet::V4(a.into()),
IpAddr::V6(a) => IpNet::V6(a.into()),
}
}
}
impl Ipv4Net {
/// Creates a new IPv4 network address from an `Ipv4Addr` and prefix
/// length.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnet::{Ipv4Net, PrefixLenError};
///
/// let net = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 24);
/// assert!(net.is_ok());
///
/// let bad_prefix_len = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 33);
/// assert_eq!(bad_prefix_len, Err(PrefixLenError));
/// ```
#[inline]
pub const fn new(ip: Ipv4Addr, prefix_len: u8) -> Result<Ipv4Net, PrefixLenError> {
if prefix_len > 32 {
return Err(PrefixLenError);
}
Ok(Ipv4Net { addr: ip, prefix_len: prefix_len })
}
/// Creates a new IPv4 network address from an `Ipv4Addr` and netmask.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnet::{Ipv4Net, PrefixLenError};
///
/// let net = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 255, 0));
/// assert!(net.is_ok());
///
/// let bad_prefix_len = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 0, 1));
/// assert_eq!(bad_prefix_len, Err(PrefixLenError));
/// ```
pub fn with_netmask(ip: Ipv4Addr, netmask: Ipv4Addr) -> Result<Ipv4Net, PrefixLenError> {
let prefix = ipv4_mask_to_prefix(netmask)?;
Self::new(ip, prefix)
}
/// Returns a copy of the network with the address truncated to the
/// prefix length.
///
/// # Examples
///
/// ```
/// # use ipnet::Ipv4Net;
/// #
/// assert_eq!(
/// "192.168.12.34/16".parse::<Ipv4Net>().unwrap().trunc(),
/// "192.168.0.0/16".parse().unwrap()
/// );
/// ```
pub fn trunc(&self) -> Ipv4Net {
Ipv4Net::new(self.network(), self.prefix_len).unwrap()
}
/// Returns the address.
#[inline]
pub const fn addr(&self) -> Ipv4Addr {
self.addr
}
/// Returns the prefix length.
#[inline]
pub const fn prefix_len(&self) -> u8 {
self.prefix_len
}
/// Returns the maximum valid prefix length.
#[inline]
pub const fn max_prefix_len(&self) -> u8 {
32
}
/// Returns the network mask.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv4Addr;
/// # use ipnet::Ipv4Net;
/// #
/// let net: Ipv4Net = "10.1.0.0/20".parse().unwrap();
/// assert_eq!(Ok(net.netmask()), "255.255.240.0".parse());
/// ```
pub fn netmask(&self) -> Ipv4Addr {
Ipv4Addr::from(self.netmask_u32())
}
fn netmask_u32(&self) -> u32 {
u32::max_value().checked_shl(32 - self.prefix_len as u32).unwrap_or(0)
}
/// Returns the host mask.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv4Addr;
/// # use ipnet::Ipv4Net;
/// #
/// let net: Ipv4Net = "10.1.0.0/20".parse().unwrap();
/// assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse());
/// ```
pub fn hostmask(&self) -> Ipv4Addr {
Ipv4Addr::from(self.hostmask_u32())
}
fn hostmask_u32(&self) -> u32 {
u32::max_value().checked_shr(self.prefix_len as u32).unwrap_or(0)
}
/// Returns the network address.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv4Addr;
/// # use ipnet::Ipv4Net;
/// #
/// let net: Ipv4Net = "172.16.123.123/16".parse().unwrap();
/// assert_eq!(Ok(net.network()), "172.16.0.0".parse());
/// ```
pub fn network(&self) -> Ipv4Addr {
Ipv4Addr::from(u32::from(self.addr) & self.netmask_u32())
}
/// Returns the broadcast address.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv4Addr;
/// # use ipnet::Ipv4Net;
/// #
/// let net: Ipv4Net = "172.16.0.0/22".parse().unwrap();
/// assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse());
/// ```
pub fn broadcast(&self) -> Ipv4Addr {
Ipv4Addr::from(u32::from(self.addr) | self.hostmask_u32())
}
/// Returns the `Ipv4Net` that contains this one.
///
/// # Examples
///
/// ```
/// # use ipnet::Ipv4Net;
/// #
/// let n1: Ipv4Net = "172.16.1.0/24".parse().unwrap();
/// let n2: Ipv4Net = "172.16.0.0/23".parse().unwrap();
/// let n3: Ipv4Net = "172.16.0.0/0".parse().unwrap();
///
/// assert_eq!(n1.supernet().unwrap(), n2);
/// assert_eq!(n3.supernet(), None);
/// ```
pub fn supernet(&self) -> Option<Ipv4Net> {
Ipv4Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok()
}
/// Returns `true` if this network and the given network are
/// children of the same supernet.
///
/// # Examples
///
/// ```
/// # use ipnet::Ipv4Net;
/// #
/// let n1: Ipv4Net = "10.1.0.0/24".parse().unwrap();
/// let n2: Ipv4Net = "10.1.1.0/24".parse().unwrap();
/// let n3: Ipv4Net = "10.1.2.0/24".parse().unwrap();
///
/// assert!(n1.is_sibling(&n2));
/// assert!(!n2.is_sibling(&n3));
/// ```
pub fn is_sibling(&self, other: &Ipv4Net) -> bool {
self.prefix_len > 0 &&
self.prefix_len == other.prefix_len &&
self.supernet().unwrap().contains(other)
}
/// Return an `Iterator` over the host addresses in this network.
///
/// If the prefix length is less than 31 both the network address
/// and broadcast address are excluded. These are only valid host
/// addresses when the prefix length is 31.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv4Addr;
/// # use ipnet::Ipv4Net;
/// #
/// let net: Ipv4Net = "10.0.0.0/30".parse().unwrap();
/// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![
/// "10.0.0.1".parse::<Ipv4Addr>().unwrap(),
/// "10.0.0.2".parse().unwrap(),
/// ]);
///
/// let net: Ipv4Net = "10.0.0.0/31".parse().unwrap();
/// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![
/// "10.0.0.0".parse::<Ipv4Addr>().unwrap(),
/// "10.0.0.1".parse().unwrap(),
/// ]);
/// ```
pub fn hosts(&self) -> Ipv4AddrRange {
let mut start = self.network();
let mut end = self.broadcast();
if self.prefix_len < 31 {
start = start.saturating_add(1);
end = end.saturating_sub(1);
}
Ipv4AddrRange::new(start, end)
}
/// Returns an `Iterator` over the subnets of this network with the
/// given prefix length.
///
/// # Examples
///
/// ```
/// # use ipnet::{Ipv4Net, PrefixLenError};
/// #
/// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap();
/// assert_eq!(net.subnets(26).unwrap().collect::<Vec<Ipv4Net>>(), vec![
/// "10.0.0.0/26".parse::<Ipv4Net>().unwrap(),
/// "10.0.0.64/26".parse().unwrap(),
/// "10.0.0.128/26".parse().unwrap(),
/// "10.0.0.192/26".parse().unwrap(),
/// ]);
///
/// let net: Ipv4Net = "10.0.0.0/30".parse().unwrap();
/// assert_eq!(net.subnets(32).unwrap().collect::<Vec<Ipv4Net>>(), vec![
/// "10.0.0.0/32".parse::<Ipv4Net>().unwrap(),
/// "10.0.0.1/32".parse().unwrap(),
/// "10.0.0.2/32".parse().unwrap(),
/// "10.0.0.3/32".parse().unwrap(),
/// ]);
///
/// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap();
/// assert_eq!(net.subnets(23), Err(PrefixLenError));
///
/// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap();
/// assert_eq!(net.subnets(33), Err(PrefixLenError));
/// ```
pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv4Subnets, PrefixLenError> {
if self.prefix_len > new_prefix_len || new_prefix_len > 32 {
return Err(PrefixLenError);
}
Ok(Ipv4Subnets::new(
self.network(),
self.broadcast(),
new_prefix_len,
))
}
/// Test if a network address contains either another network
/// address or an IP address.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv4Addr;
/// # use ipnet::Ipv4Net;
/// #
/// let net: Ipv4Net = "192.168.0.0/24".parse().unwrap();
/// let net_yes: Ipv4Net = "192.168.0.0/25".parse().unwrap();
/// let net_no: Ipv4Net = "192.168.0.0/23".parse().unwrap();
/// let ip_yes: Ipv4Addr = "192.168.0.1".parse().unwrap();
/// let ip_no: Ipv4Addr = "192.168.1.0".parse().unwrap();
///
/// assert!(net.contains(&net));
/// assert!(net.contains(&net_yes));
/// assert!(!net.contains(&net_no));
/// assert!(net.contains(&ip_yes));
/// assert!(!net.contains(&ip_no));
/// ```
pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> {
Contains::contains(self, other)
}
// It is significantly faster to work on u32 than Ipv4Addr.
fn interval(&self) -> (u32, u32) {
(
u32::from(self.network()),
u32::from(self.broadcast()).saturating_add(1),
)
}
/// Aggregate a `Vec` of `Ipv4Net`s and return the result as a new
/// `Vec`.
///
/// # Examples
///
/// ```
/// # use ipnet::Ipv4Net;
/// #
/// let nets = vec![
/// "10.0.0.0/24".parse::<Ipv4Net>().unwrap(),
/// "10.0.1.0/24".parse().unwrap(),
/// "10.0.2.0/24".parse().unwrap(),
/// ];
///
/// assert_eq!(Ipv4Net::aggregate(&nets), vec![
/// "10.0.0.0/23".parse::<Ipv4Net>().unwrap(),
/// "10.0.2.0/24".parse().unwrap(),
/// ]);
pub fn aggregate(networks: &Vec<Ipv4Net>) -> Vec<Ipv4Net> {
let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect();
intervals = merge_intervals(intervals);
let mut res: Vec<Ipv4Net> = Vec::new();
for (start, mut end) in intervals {
if end != core::u32::MAX {
end = end.saturating_sub(1)
}
let iter = Ipv4Subnets::new(start.into(), end.into(), 0);
res.extend(iter);
}
res
}
}
impl Default for Ipv4Net {
fn default() -> Self {
Self {
addr: Ipv4Addr::from(0),
prefix_len: 0,
}
}
}
impl fmt::Debug for Ipv4Net {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl fmt::Display for Ipv4Net {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}/{}", self.addr, self.prefix_len)
}
}
impl From<Ipv4Addr> for Ipv4Net {
fn from(addr: Ipv4Addr) -> Ipv4Net {
Ipv4Net { addr, prefix_len: 32 }
}
}
impl Ipv6Net {
/// Creates a new IPv6 network address from an `Ipv6Addr` and prefix
/// length.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
/// use ipnet::{Ipv6Net, PrefixLenError};
///
/// let net = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24);
/// assert!(net.is_ok());
///
/// let bad_prefix_len = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129);
/// assert_eq!(bad_prefix_len, Err(PrefixLenError));
/// ```
#[inline]
pub const fn new(ip: Ipv6Addr, prefix_len: u8) -> Result<Ipv6Net, PrefixLenError> {
if prefix_len > 128 {
return Err(PrefixLenError);
}
Ok(Ipv6Net { addr: ip, prefix_len: prefix_len })
}
/// Creates a new IPv6 network address from an `Ipv6Addr` and netmask.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
/// use ipnet::{Ipv6Net, PrefixLenError};
///
/// let net = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0000_0000_0000_0000));
/// assert!(net.is_ok());
///
/// let bad_prefix_len = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0001_0000_0000_0000));
/// assert_eq!(bad_prefix_len, Err(PrefixLenError));
/// ```
pub fn with_netmask(ip: Ipv6Addr, netmask: Ipv6Addr) -> Result<Ipv6Net, PrefixLenError> {
let prefix = ipv6_mask_to_prefix(netmask)?;
Self::new(ip, prefix)
}
/// Returns a copy of the network with the address truncated to the
/// prefix length.
///
/// # Examples
///
/// ```
/// # use ipnet::Ipv6Net;
/// #
/// assert_eq!(
/// "fd00::1:2:3:4/16".parse::<Ipv6Net>().unwrap().trunc(),
/// "fd00::/16".parse().unwrap()
/// );
/// ```
pub fn trunc(&self) -> Ipv6Net {
Ipv6Net::new(self.network(), self.prefix_len).unwrap()
}
/// Returns the address.
#[inline]
pub const fn addr(&self) -> Ipv6Addr {
self.addr
}
/// Returns the prefix length.
#[inline]
pub const fn prefix_len(&self) -> u8 {
self.prefix_len
}
/// Returns the maximum valid prefix length.
#[inline]
pub const fn max_prefix_len(&self) -> u8 {
128
}
/// Returns the network mask.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv6Addr;
/// # use ipnet::Ipv6Net;
/// #
/// let net: Ipv6Net = "fd00::/24".parse().unwrap();
/// assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse());
/// ```
pub fn netmask(&self) -> Ipv6Addr {
self.netmask_u128().into()
}
fn netmask_u128(&self) -> u128 {
u128::max_value().checked_shl((128 - self.prefix_len) as u32).unwrap_or(u128::min_value())
}
/// Returns the host mask.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv6Addr;
/// # use ipnet::Ipv6Net;
/// #
/// let net: Ipv6Net = "fd00::/24".parse().unwrap();
/// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
/// ```
pub fn hostmask(&self) -> Ipv6Addr {
self.hostmask_u128().into()
}
fn hostmask_u128(&self) -> u128 {
u128::max_value().checked_shr(self.prefix_len as u32).unwrap_or(u128::min_value())
}
/// Returns the network address.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv6Addr;
/// # use ipnet::Ipv6Net;
/// #
/// let net: Ipv6Net = "fd00:1234:5678::/24".parse().unwrap();
/// assert_eq!(Ok(net.network()), "fd00:1200::".parse());
/// ```
pub fn network(&self) -> Ipv6Addr {
(u128::from(self.addr) & self.netmask_u128()).into()
}
/// Returns the last address.
///
/// Technically there is no such thing as a broadcast address for
/// IPv6. The name is used for consistency with colloquial usage.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv6Addr;
/// # use ipnet::Ipv6Net;
/// #
/// let net: Ipv6Net = "fd00:1234:5678::/24".parse().unwrap();
/// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse());
/// ```
pub fn broadcast(&self) -> Ipv6Addr {
(u128::from(self.addr) | self.hostmask_u128()).into()
}
/// Returns the `Ipv6Net` that contains this one.
///
/// # Examples
///
/// ```
/// # use std::str::FromStr;
/// # use ipnet::Ipv6Net;
/// #
/// let n1: Ipv6Net = "fd00:ff00::/24".parse().unwrap();
/// let n2: Ipv6Net = "fd00:fe00::/23".parse().unwrap();
/// let n3: Ipv6Net = "fd00:fe00::/0".parse().unwrap();
///
/// assert_eq!(n1.supernet().unwrap(), n2);
/// assert_eq!(n3.supernet(), None);
/// ```
pub fn supernet(&self) -> Option<Ipv6Net> {
Ipv6Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok()
}
/// Returns `true` if this network and the given network are
/// children of the same supernet.
///
/// # Examples
///
/// ```
/// # use ipnet::Ipv6Net;
/// #
/// let n1: Ipv6Net = "fd00::/18".parse().unwrap();
/// let n2: Ipv6Net = "fd00:4000::/18".parse().unwrap();
/// let n3: Ipv6Net = "fd00:8000::/18".parse().unwrap();
///
/// assert!(n1.is_sibling(&n2));
/// assert!(!n2.is_sibling(&n3));
/// ```
pub fn is_sibling(&self, other: &Ipv6Net) -> bool {
self.prefix_len > 0 &&
self.prefix_len == other.prefix_len &&
self.supernet().unwrap().contains(other)
}
/// Return an `Iterator` over the host addresses in this network.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv6Addr;
/// # use ipnet::Ipv6Net;
/// #
/// let net: Ipv6Net = "fd00::/126".parse().unwrap();
/// assert_eq!(net.hosts().collect::<Vec<Ipv6Addr>>(), vec![
/// "fd00::".parse::<Ipv6Addr>().unwrap(),
/// "fd00::1".parse().unwrap(),
/// "fd00::2".parse().unwrap(),
/// "fd00::3".parse().unwrap(),
/// ]);
/// ```
pub fn hosts(&self) -> Ipv6AddrRange {
Ipv6AddrRange::new(self.network(), self.broadcast())
}
/// Returns an `Iterator` over the subnets of this network with the
/// given prefix length.
///
/// # Examples
///
/// ```
/// # use ipnet::{Ipv6Net, PrefixLenError};
/// #
/// let net: Ipv6Net = "fd00::/16".parse().unwrap();
/// assert_eq!(net.subnets(18).unwrap().collect::<Vec<Ipv6Net>>(), vec![
/// "fd00::/18".parse::<Ipv6Net>().unwrap(),
/// "fd00:4000::/18".parse().unwrap(),
/// "fd00:8000::/18".parse().unwrap(),
/// "fd00:c000::/18".parse().unwrap(),
/// ]);
///
/// let net: Ipv6Net = "fd00::/126".parse().unwrap();
/// assert_eq!(net.subnets(128).unwrap().collect::<Vec<Ipv6Net>>(), vec![
/// "fd00::/128".parse::<Ipv6Net>().unwrap(),
/// "fd00::1/128".parse().unwrap(),
/// "fd00::2/128".parse().unwrap(),
/// "fd00::3/128".parse().unwrap(),
/// ]);
///
/// let net: Ipv6Net = "fd00::/16".parse().unwrap();
/// assert_eq!(net.subnets(15), Err(PrefixLenError));
///
/// let net: Ipv6Net = "fd00::/16".parse().unwrap();
/// assert_eq!(net.subnets(129), Err(PrefixLenError));
/// ```
pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv6Subnets, PrefixLenError> {
if self.prefix_len > new_prefix_len || new_prefix_len > 128 {
return Err(PrefixLenError);
}
Ok(Ipv6Subnets::new(
self.network(),
self.broadcast(),
new_prefix_len,
))
}
/// Test if a network address contains either another network
/// address or an IP address.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv6Addr;
/// # use ipnet::Ipv6Net;
/// #
/// let net: Ipv6Net = "fd00::/16".parse().unwrap();
/// let net_yes: Ipv6Net = "fd00::/17".parse().unwrap();
/// let net_no: Ipv6Net = "fd00::/15".parse().unwrap();
/// let ip_yes: Ipv6Addr = "fd00::1".parse().unwrap();
/// let ip_no: Ipv6Addr = "fd01::".parse().unwrap();
///
/// assert!(net.contains(&net));
/// assert!(net.contains(&net_yes));
/// assert!(!net.contains(&net_no));
/// assert!(net.contains(&ip_yes));
/// assert!(!net.contains(&ip_no));
/// ```
pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> {
Contains::contains(self, other)
}
// It is significantly faster to work on u128 that Ipv6Addr.
fn interval(&self) -> (u128, u128) {
(
u128::from(self.network()),
u128::from(self.broadcast()).saturating_add(1),
)
}
/// Aggregate a `Vec` of `Ipv6Net`s and return the result as a new
/// `Vec`.
///
/// # Examples
///
/// ```
/// # use ipnet::Ipv6Net;
/// #
/// let nets = vec![
/// "fd00::/18".parse::<Ipv6Net>().unwrap(),
/// "fd00:4000::/18".parse().unwrap(),
/// "fd00:8000::/18".parse().unwrap(),
/// ];
/// assert_eq!(Ipv6Net::aggregate(&nets), vec![
/// "fd00::/17".parse::<Ipv6Net>().unwrap(),
/// "fd00:8000::/18".parse().unwrap(),
/// ]);
/// ```
pub fn aggregate(networks: &Vec<Ipv6Net>) -> Vec<Ipv6Net> {
let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect();
intervals = merge_intervals(intervals);
let mut res: Vec<Ipv6Net> = Vec::new();
for (start, mut end) in intervals {
if end != core::u128::MAX {
end = end.saturating_sub(1)
}
let iter = Ipv6Subnets::new(start.into(), end.into(), 0);
res.extend(iter);
}
res
}
}
impl Default for Ipv6Net {
fn default() -> Self {
Self {
addr: Ipv6Addr::from(0),
prefix_len: 0,
}
}
}
impl fmt::Debug for Ipv6Net {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl fmt::Display for Ipv6Net {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}/{}", self.addr, self.prefix_len)
}
}
impl From<Ipv6Addr> for Ipv6Net {
fn from(addr: Ipv6Addr) -> Ipv6Net {
Ipv6Net { addr, prefix_len: 128 }
}
}
/// Provides a method to test if a network address contains either
/// another network address or an IP address.
///
/// # Examples
///
/// ```
/// # use std::net::IpAddr;
/// # use ipnet::IpNet;
/// #
/// let n4_1: IpNet = "10.1.1.0/24".parse().unwrap();
/// let n4_2: IpNet = "10.1.1.0/26".parse().unwrap();
/// let n4_3: IpNet = "10.1.2.0/26".parse().unwrap();
/// let ip4_1: IpAddr = "10.1.1.1".parse().unwrap();
/// let ip4_2: IpAddr = "10.1.2.1".parse().unwrap();
///
/// let n6_1: IpNet = "fd00::/16".parse().unwrap();
/// let n6_2: IpNet = "fd00::/17".parse().unwrap();
/// let n6_3: IpNet = "fd01::/17".parse().unwrap();
/// let ip6_1: IpAddr = "fd00::1".parse().unwrap();
/// let ip6_2: IpAddr = "fd01::1".parse().unwrap();
///
/// assert!(n4_1.contains(&n4_2));
/// assert!(!n4_1.contains(&n4_3));
/// assert!(n4_1.contains(&ip4_1));
/// assert!(!n4_1.contains(&ip4_2));
///
/// assert!(n6_1.contains(&n6_2));
/// assert!(!n6_1.contains(&n6_3));
/// assert!(n6_1.contains(&ip6_1));
/// assert!(!n6_1.contains(&ip6_2));
///
/// assert!(!n4_1.contains(&n6_1) && !n6_1.contains(&n4_1));
/// assert!(!n4_1.contains(&ip6_1) && !n6_1.contains(&ip4_1));
/// ```
pub trait Contains<T> {
fn contains(&self, other: T) -> bool;
}
impl<'a> Contains<&'a IpNet> for IpNet {
fn contains(&self, other: &IpNet) -> bool {
match (*self, *other) {
(IpNet::V4(ref a), IpNet::V4(ref b)) => a.contains(b),
(IpNet::V6(ref a), IpNet::V6(ref b)) => a.contains(b),
_ => false,
}
}
}
impl<'a> Contains<&'a IpAddr> for IpNet {
fn contains(&self, other: &IpAddr) -> bool {
match (*self, *other) {
(IpNet::V4(ref a), IpAddr::V4(ref b)) => a.contains(b),
(IpNet::V6(ref a), IpAddr::V6(ref b)) => a.contains(b),
_ => false,
}
}
}
impl<'a> Contains<&'a Ipv4Net> for Ipv4Net {
fn contains(&self, other: &'a Ipv4Net) -> bool {
self.network() <= other.network() && other.broadcast() <= self.broadcast()
}
}
impl<'a> Contains<&'a Ipv4Addr> for Ipv4Net {
fn contains(&self, other: &'a Ipv4Addr) -> bool {
self.network() <= *other && *other <= self.broadcast()
}
}
impl<'a> Contains<&'a Ipv6Net> for Ipv6Net {
fn contains(&self, other: &'a Ipv6Net) -> bool {
self.network() <= other.network() && other.broadcast() <= self.broadcast()
}
}
impl<'a> Contains<&'a Ipv6Addr> for Ipv6Net {
fn contains(&self, other: &'a Ipv6Addr) -> bool {
self.network() <= *other && *other <= self.broadcast()
}
}
/// An `Iterator` that generates IP network addresses, either IPv4 or
/// IPv6.
///
/// Generates the subnets between the provided `start` and `end` IP
/// addresses inclusive of `end`. Each iteration generates the next
/// network address of the largest valid size it can, while using a
/// prefix length not less than `min_prefix_len`.
///
/// # Examples
///
/// ```
/// # use std::net::{Ipv4Addr, Ipv6Addr};
/// # use std::str::FromStr;
/// # use ipnet::{IpNet, IpSubnets, Ipv4Subnets, Ipv6Subnets};
/// let subnets = IpSubnets::from(Ipv4Subnets::new(
/// "10.0.0.0".parse().unwrap(),
/// "10.0.0.239".parse().unwrap(),
/// 26,
/// ));
///
/// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![
/// "10.0.0.0/26".parse().unwrap(),
/// "10.0.0.64/26".parse().unwrap(),
/// "10.0.0.128/26".parse().unwrap(),
/// "10.0.0.192/27".parse().unwrap(),
/// "10.0.0.224/28".parse().unwrap(),
/// ]);
///
/// let subnets = IpSubnets::from(Ipv6Subnets::new(
/// "fd00::".parse().unwrap(),
/// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(),
/// 26,
/// ));
///
/// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![
/// "fd00::/26".parse().unwrap(),
/// "fd00:40::/26".parse().unwrap(),
/// "fd00:80::/26".parse().unwrap(),
/// "fd00:c0::/27".parse().unwrap(),
/// "fd00:e0::/28".parse().unwrap(),
/// ]);
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
pub enum IpSubnets {
V4(Ipv4Subnets),
V6(Ipv6Subnets),
}
/// An `Iterator` that generates IPv4 network addresses.
///
/// Generates the subnets between the provided `start` and `end` IP
/// addresses inclusive of `end`. Each iteration generates the next
/// network address of the largest valid size it can, while using a
/// prefix length not less than `min_prefix_len`.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv4Addr;
/// # use std::str::FromStr;
/// # use ipnet::{Ipv4Net, Ipv4Subnets};
/// let subnets = Ipv4Subnets::new(
/// "10.0.0.0".parse().unwrap(),
/// "10.0.0.239".parse().unwrap(),
/// 26,
/// );
///
/// assert_eq!(subnets.collect::<Vec<Ipv4Net>>(), vec![
/// "10.0.0.0/26".parse().unwrap(),
/// "10.0.0.64/26".parse().unwrap(),
/// "10.0.0.128/26".parse().unwrap(),
/// "10.0.0.192/27".parse().unwrap(),
/// "10.0.0.224/28".parse().unwrap(),
/// ]);
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
pub struct Ipv4Subnets {
start: Ipv4Addr,
end: Ipv4Addr, // end is inclusive
min_prefix_len: u8,
}
/// An `Iterator` that generates IPv6 network addresses.
///
/// Generates the subnets between the provided `start` and `end` IP
/// addresses inclusive of `end`. Each iteration generates the next
/// network address of the largest valid size it can, while using a
/// prefix length not less than `min_prefix_len`.
///
/// # Examples
///
/// ```
/// # use std::net::Ipv6Addr;
/// # use std::str::FromStr;
/// # use ipnet::{Ipv6Net, Ipv6Subnets};
/// let subnets = Ipv6Subnets::new(
/// "fd00::".parse().unwrap(),
/// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(),
/// 26,
/// );
///
/// assert_eq!(subnets.collect::<Vec<Ipv6Net>>(), vec![
/// "fd00::/26".parse().unwrap(),
/// "fd00:40::/26".parse().unwrap(),
/// "fd00:80::/26".parse().unwrap(),
/// "fd00:c0::/27".parse().unwrap(),
/// "fd00:e0::/28".parse().unwrap(),
/// ]);
/// ```
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
pub struct Ipv6Subnets {
start: Ipv6Addr,
end: Ipv6Addr, // end is inclusive
min_prefix_len: u8,
}
impl Ipv4Subnets {
pub fn new(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Self {
Ipv4Subnets {
start: start,
end: end,
min_prefix_len: min_prefix_len,
}
}
}
impl Ipv6Subnets {
pub fn new(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Self {
Ipv6Subnets {
start: start,
end: end,
min_prefix_len: min_prefix_len,
}
}
}
impl From<Ipv4Subnets> for IpSubnets {
fn from(i: Ipv4Subnets) -> IpSubnets {
IpSubnets::V4(i)
}
}
impl From<Ipv6Subnets> for IpSubnets {
fn from(i: Ipv6Subnets) -> IpSubnets {
IpSubnets::V6(i)
}
}
impl Iterator for IpSubnets {
type Item = IpNet;
fn next(&mut self) -> Option<Self::Item> {
match *self {
IpSubnets::V4(ref mut a) => a.next().map(IpNet::V4),
IpSubnets::V6(ref mut a) => a.next().map(IpNet::V6),
}
}
}
fn next_ipv4_subnet(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Ipv4Net {
let range = end.saturating_sub(start).saturating_add(1);
if range == core::u32::MAX && min_prefix_len == 0 {
Ipv4Net::new(start, min_prefix_len).unwrap()
}
else {
let range_bits = 32u32.saturating_sub(range.leading_zeros()).saturating_sub(1);
let start_tz = u32::from(start).trailing_zeros();
let new_prefix_len = 32 - min(range_bits, start_tz);
let next_prefix_len = max(new_prefix_len as u8, min_prefix_len);
Ipv4Net::new(start, next_prefix_len).unwrap()
}
}
fn next_ipv6_subnet(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Ipv6Net {
let range = end.saturating_sub(start).saturating_add(1);
if range == core::u128::MAX && min_prefix_len == 0 {
Ipv6Net::new(start, min_prefix_len).unwrap()
}
else {
let range = end.saturating_sub(start).saturating_add(1);
let range_bits = 128u32.saturating_sub(range.leading_zeros()).saturating_sub(1);
let start_tz = u128::from(start).trailing_zeros();
let new_prefix_len = 128 - min(range_bits, start_tz);
let next_prefix_len = max(new_prefix_len as u8, min_prefix_len);
Ipv6Net::new(start, next_prefix_len).unwrap()
}
}
impl Iterator for Ipv4Subnets {
type Item = Ipv4Net;
fn next(&mut self) -> Option<Self::Item> {
match self.start.partial_cmp(&self.end) {
Some(Less) => {
let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len);
self.start = next.broadcast().saturating_add(1);
// Stop the iterator if we saturated self.start. This
// check worsens performance slightly but overall this
// approach of operating on Ipv4Addr types is faster
// than what we were doing before using Ipv4Net.
if self.start == next.broadcast() {
self.end.replace_zero();
}
Some(next)
},
Some(Equal) => {
let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len);
self.start = next.broadcast().saturating_add(1);
self.end.replace_zero();
Some(next)
},
_ => None,
}
}
}
impl Iterator for Ipv6Subnets {
type Item = Ipv6Net;
fn next(&mut self) -> Option<Self::Item> {
match self.start.partial_cmp(&self.end) {
Some(Less) => {
let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len);
self.start = next.broadcast().saturating_add(1);
// Stop the iterator if we saturated self.start. This
// check worsens performance slightly but overall this
// approach of operating on Ipv6Addr types is faster
// than what we were doing before using Ipv6Net.
if self.start == next.broadcast() {
self.end.replace_zero();
}
Some(next)
},
Some(Equal) => {
let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len);
self.start = next.broadcast().saturating_add(1);
self.end.replace_zero();
Some(next)
},
_ => None,
}
}
}
impl FusedIterator for IpSubnets {}
impl FusedIterator for Ipv4Subnets {}
impl FusedIterator for Ipv6Subnets {}
// Generic function for merging a vector of intervals.
fn merge_intervals<T: Copy + Ord>(mut intervals: Vec<(T, T)>) -> Vec<(T, T)> {
if intervals.len() == 0 {
return intervals;
}
intervals.sort();
let mut res: Vec<(T, T)> = Vec::new();
let (mut start, mut end) = intervals[0];
let mut i = 1;
let len = intervals.len();
while i < len {
let (next_start, next_end) = intervals[i];
if end >= next_start {
start = min(start, next_start);
end = max(end, next_end);
}
else {
res.push((start, end));
start = next_start;
end = next_end;
}
i += 1;
}
res.push((start, end));
res
}
#[cfg(test)]
mod tests {
use super::*;
macro_rules! make_ipnet_vec {
($($x:expr),*) => ( vec![$($x.parse::<IpNet>().unwrap(),)*] );
($($x:expr,)*) => ( make_ipnet_vec![$($x),*] );
}
#[test]
fn test_make_ipnet_vec() {
assert_eq!(
make_ipnet_vec![
"10.1.1.1/32", "10.2.2.2/24", "10.3.3.3/16",
"fd00::1/128", "fd00::2/127", "fd00::3/126",
],
vec![
"10.1.1.1/32".parse().unwrap(),
"10.2.2.2/24".parse().unwrap(),
"10.3.3.3/16".parse().unwrap(),
"fd00::1/128".parse().unwrap(),
"fd00::2/127".parse().unwrap(),
"fd00::3/126".parse().unwrap(),
]
);
}
#[test]
fn test_merge_intervals() {
let v = vec![
(0, 1), (1, 2), (2, 3),
(11, 12), (13, 14), (10, 15), (11, 13),
(20, 25), (24, 29),
];
let v_ok = vec![
(0, 3),
(10, 15),
(20, 29),
];
let vv = vec![
([0, 1], [0, 2]), ([0, 2], [0, 3]), ([0, 0], [0, 1]),
([10, 15], [11, 0]), ([10, 0], [10, 16]),
];
let vv_ok = vec![
([0, 0], [0, 3]),
([10, 0], [11, 0]),
];
assert_eq!(merge_intervals(v), v_ok);
assert_eq!(merge_intervals(vv), vv_ok);
}
macro_rules! make_ipv4_subnets_test {
($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => (
#[test]
fn $name() {
let subnets = IpSubnets::from(Ipv4Subnets::new(
$start.parse().unwrap(),
$end.parse().unwrap(),
$min_prefix_len,
));
let results = make_ipnet_vec![$($x),*];
assert_eq!(subnets.collect::<Vec<IpNet>>(), results);
}
);
($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => (
make_ipv4_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*);
);
}
macro_rules! make_ipv6_subnets_test {
($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => (
#[test]
fn $name() {
let subnets = IpSubnets::from(Ipv6Subnets::new(
$start.parse().unwrap(),
$end.parse().unwrap(),
$min_prefix_len,
));
let results = make_ipnet_vec![$($x),*];
assert_eq!(subnets.collect::<Vec<IpNet>>(), results);
}
);
($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => (
make_ipv6_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*);
);
}
make_ipv4_subnets_test!(
test_ipv4_subnets_zero_zero,
"0.0.0.0", "0.0.0.0", 0,
"0.0.0.0/32",
);
make_ipv4_subnets_test!(
test_ipv4_subnets_zero_max,
"0.0.0.0", "255.255.255.255", 0,
"0.0.0.0/0",
);
make_ipv4_subnets_test!(
test_ipv4_subnets_max_max,
"255.255.255.255", "255.255.255.255", 0,
"255.255.255.255/32",
);
make_ipv4_subnets_test!(
test_ipv4_subnets_none,
"0.0.0.1", "0.0.0.0", 0,
);
make_ipv4_subnets_test!(
test_ipv4_subnets_one,
"0.0.0.0", "0.0.0.1", 0,
"0.0.0.0/31",
);
make_ipv4_subnets_test!(
test_ipv4_subnets_two,
"0.0.0.0", "0.0.0.2", 0,
"0.0.0.0/31",
"0.0.0.2/32",
);
make_ipv4_subnets_test!(
test_ipv4_subnets_taper,
"0.0.0.0", "0.0.0.10", 30,
"0.0.0.0/30",
"0.0.0.4/30",
"0.0.0.8/31",
"0.0.0.10/32",
);
make_ipv6_subnets_test!(
test_ipv6_subnets_zero_zero,
"::", "::", 0,
"::/128",
);
make_ipv6_subnets_test!(
test_ipv6_subnets_zero_max,
"::", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", 0,
"::/0",
);
make_ipv6_subnets_test!(
test_ipv6_subnets_max_max,
"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", 0,
"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/128",
);
make_ipv6_subnets_test!(
test_ipv6_subnets_none,
"::1", "::", 0,
);
make_ipv6_subnets_test!(
test_ipv6_subnets_one,
"::", "::1", 0,
"::/127",
);
make_ipv6_subnets_test!(
test_ipv6_subnets_two,
"::", "::2", 0,
"::/127",
"::2/128",
);
make_ipv6_subnets_test!(
test_ipv6_subnets_taper,
"::", "::a", 126,
"::/126",
"::4/126",
"::8/127",
"::a/128",
);
#[test]
fn test_aggregate() {
let ip_nets = make_ipnet_vec![
"10.0.0.0/24", "10.0.1.0/24", "10.0.1.1/24", "10.0.1.2/24",
"10.0.2.0/24",
"10.1.0.0/24", "10.1.1.0/24",
"192.168.0.0/24", "192.168.1.0/24", "192.168.2.0/24", "192.168.3.0/24",
"fd00::/32", "fd00:1::/32",
"fd00:2::/32",
];
let ip_aggs = make_ipnet_vec![
"10.0.0.0/23",
"10.0.2.0/24",
"10.1.0.0/23",
"192.168.0.0/22",
"fd00::/31",
"fd00:2::/32",
];
let ipv4_nets: Vec<Ipv4Net> = ip_nets.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect();
let ipv4_aggs: Vec<Ipv4Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect();
let ipv6_nets: Vec<Ipv6Net> = ip_nets.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect();
let ipv6_aggs: Vec<Ipv6Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect();
assert_eq!(IpNet::aggregate(&ip_nets), ip_aggs);
assert_eq!(Ipv4Net::aggregate(&ipv4_nets), ipv4_aggs);
assert_eq!(Ipv6Net::aggregate(&ipv6_nets), ipv6_aggs);
}
#[test]
fn test_aggregate_issue44() {
let nets: Vec<Ipv4Net> = vec!["128.0.0.0/1".parse().unwrap()];
assert_eq!(Ipv4Net::aggregate(&nets), nets);
let nets: Vec<Ipv4Net> = vec!["0.0.0.0/1".parse().unwrap(), "128.0.0.0/1".parse().unwrap()];
assert_eq!(Ipv4Net::aggregate(&nets), vec!["0.0.0.0/0".parse().unwrap()]);
let nets: Vec<Ipv6Net> = vec!["8000::/1".parse().unwrap()];
assert_eq!(Ipv6Net::aggregate(&nets), nets);
let nets: Vec<Ipv6Net> = vec!["::/1".parse().unwrap(), "8000::/1".parse().unwrap()];
assert_eq!(Ipv6Net::aggregate(&nets), vec!["::/0".parse().unwrap()]);
}
#[test]
fn ipnet_default() {
let ipnet: IpNet = "0.0.0.0/0".parse().unwrap();
assert_eq!(ipnet, IpNet::default());
}
#[test]
fn ipv4net_default() {
let ipnet: Ipv4Net = "0.0.0.0/0".parse().unwrap();
assert_eq!(ipnet, Ipv4Net::default());
}
#[test]
fn ipv6net_default() {
let ipnet: Ipv6Net = "::/0".parse().unwrap();
assert_eq!(ipnet, Ipv6Net::default());
}
}