blob: 94456bf858d9c5cb1bae5b81999d3eaf188206a8 [file] [log] [blame]
//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the construction of a VPlan-based Hierarchical CFG
/// (H-CFG) for an incoming IR. This construction comprises the following
/// components and steps:
//
/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
/// in the plain CFG.
/// NOTE: At this point, there is a direct correspondence between all the
/// VPBasicBlocks created for the initial plain CFG and the incoming
/// BasicBlocks. However, this might change in the future.
///
//===----------------------------------------------------------------------===//
#include "VPlanHCFGBuilder.h"
#include "LoopVectorizationPlanner.h"
#include "llvm/Analysis/LoopIterator.h"
#define DEBUG_TYPE "loop-vectorize"
using namespace llvm;
namespace {
// Class that is used to build the plain CFG for the incoming IR.
class PlainCFGBuilder {
private:
// The outermost loop of the input loop nest considered for vectorization.
Loop *TheLoop;
// Loop Info analysis.
LoopInfo *LI;
// Vectorization plan that we are working on.
VPlan &Plan;
// Builder of the VPlan instruction-level representation.
VPBuilder VPIRBuilder;
// NOTE: The following maps are intentionally destroyed after the plain CFG
// construction because subsequent VPlan-to-VPlan transformation may
// invalidate them.
// Map incoming BasicBlocks to their newly-created VPBasicBlocks.
DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
// Map incoming Value definitions to their newly-created VPValues.
DenseMap<Value *, VPValue *> IRDef2VPValue;
// Hold phi node's that need to be fixed once the plain CFG has been built.
SmallVector<PHINode *, 8> PhisToFix;
/// Maps loops in the original IR to their corresponding region.
DenseMap<Loop *, VPRegionBlock *> Loop2Region;
// Utility functions.
void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB);
void fixPhiNodes();
VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
#ifndef NDEBUG
bool isExternalDef(Value *Val);
#endif
VPValue *getOrCreateVPOperand(Value *IRVal);
void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
public:
PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
: TheLoop(Lp), LI(LI), Plan(P) {}
/// Build plain CFG for TheLoop and connects it to Plan's entry.
void buildPlainCFG();
};
} // anonymous namespace
// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
// must have no predecessors.
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * {
auto *SinglePred = BB->getSinglePredecessor();
Loop *LoopForBB = LI->getLoopFor(BB);
if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB)
return nullptr;
// The input IR must be in loop-simplify form, ensuring a single predecessor
// for exit blocks.
assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() &&
"SinglePred must be the only loop latch");
return SinglePred;
};
if (auto *LatchBB = GetLatchOfExit(BB)) {
auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent();
assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) &&
"successor must already be set for PredRegion; it must have VPBB "
"as single successor");
VPBB->setPredecessors({PredRegion});
return;
}
// Collect VPBB predecessors.
SmallVector<VPBlockBase *, 2> VPBBPreds;
for (BasicBlock *Pred : predecessors(BB))
VPBBPreds.push_back(getOrCreateVPBB(Pred));
VPBB->setPredecessors(VPBBPreds);
}
static bool isHeaderBB(BasicBlock *BB, Loop *L) {
return L && BB == L->getHeader();
}
void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region,
BasicBlock *BB) {
// BB is a loop header block. Connect the region to the loop preheader.
Loop *LoopOfBB = LI->getLoopFor(BB);
Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())});
}
// Add operands to VPInstructions representing phi nodes from the input IR.
void PlainCFGBuilder::fixPhiNodes() {
for (auto *Phi : PhisToFix) {
assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
VPValue *VPVal = IRDef2VPValue[Phi];
assert(isa<VPWidenPHIRecipe>(VPVal) &&
"Expected WidenPHIRecipe for phi node.");
auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal);
assert(VPPhi->getNumOperands() == 0 &&
"Expected VPInstruction with no operands.");
Loop *L = LI->getLoopFor(Phi->getParent());
if (isHeaderBB(Phi->getParent(), L)) {
// For header phis, make sure the incoming value from the loop
// predecessor is the first operand of the recipe.
assert(Phi->getNumOperands() == 2);
BasicBlock *LoopPred = L->getLoopPredecessor();
VPPhi->addIncoming(
getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)),
BB2VPBB[LoopPred]);
BasicBlock *LoopLatch = L->getLoopLatch();
VPPhi->addIncoming(
getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)),
BB2VPBB[LoopLatch]);
continue;
}
for (unsigned I = 0; I != Phi->getNumOperands(); ++I)
VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)),
BB2VPBB[Phi->getIncomingBlock(I)]);
}
}
static bool isHeaderVPBB(VPBasicBlock *VPBB) {
return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB;
}
/// Return true of \p L loop is contained within \p OuterLoop.
static bool doesContainLoop(const Loop *L, const Loop *OuterLoop) {
if (L->getLoopDepth() < OuterLoop->getLoopDepth())
return false;
const Loop *P = L;
while (P) {
if (P == OuterLoop)
return true;
P = P->getParentLoop();
}
return false;
}
// Create a new empty VPBasicBlock for an incoming BasicBlock in the region
// corresponding to the containing loop or retrieve an existing one if it was
// already created. If no region exists yet for the loop containing \p BB, a new
// one is created.
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
if (auto *VPBB = BB2VPBB.lookup(BB)) {
// Retrieve existing VPBB.
return VPBB;
}
// Create new VPBB.
StringRef Name = isHeaderBB(BB, TheLoop) ? "vector.body" : BB->getName();
LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n");
VPBasicBlock *VPBB = new VPBasicBlock(Name);
BB2VPBB[BB] = VPBB;
// Get or create a region for the loop containing BB.
Loop *LoopOfBB = LI->getLoopFor(BB);
if (!LoopOfBB || !doesContainLoop(LoopOfBB, TheLoop))
return VPBB;
auto *RegionOfVPBB = Loop2Region.lookup(LoopOfBB);
if (!isHeaderBB(BB, LoopOfBB)) {
assert(RegionOfVPBB &&
"Region should have been created by visiting header earlier");
VPBB->setParent(RegionOfVPBB);
return VPBB;
}
assert(!RegionOfVPBB &&
"First visit of a header basic block expects to register its region.");
// Handle a header - take care of its Region.
if (LoopOfBB == TheLoop) {
RegionOfVPBB = Plan.getVectorLoopRegion();
} else {
RegionOfVPBB = new VPRegionBlock(Name.str(), false /*isReplicator*/);
RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]);
}
RegionOfVPBB->setEntry(VPBB);
Loop2Region[LoopOfBB] = RegionOfVPBB;
return VPBB;
}
#ifndef NDEBUG
// Return true if \p Val is considered an external definition. An external
// definition is either:
// 1. A Value that is not an Instruction. This will be refined in the future.
// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
// outermost loop exits.
bool PlainCFGBuilder::isExternalDef(Value *Val) {
// All the Values that are not Instructions are considered external
// definitions for now.
Instruction *Inst = dyn_cast<Instruction>(Val);
if (!Inst)
return true;
BasicBlock *InstParent = Inst->getParent();
assert(InstParent && "Expected instruction parent.");
// Check whether Instruction definition is in loop PH.
BasicBlock *PH = TheLoop->getLoopPreheader();
assert(PH && "Expected loop pre-header.");
if (InstParent == PH)
// Instruction definition is in outermost loop PH.
return false;
// Check whether Instruction definition is in the loop exit.
BasicBlock *Exit = TheLoop->getUniqueExitBlock();
assert(Exit && "Expected loop with single exit.");
if (InstParent == Exit) {
// Instruction definition is in outermost loop exit.
return false;
}
// Check whether Instruction definition is in loop body.
return !TheLoop->contains(Inst);
}
#endif
// Create a new VPValue or retrieve an existing one for the Instruction's
// operand \p IRVal. This function must only be used to create/retrieve VPValues
// for *Instruction's operands* and not to create regular VPInstruction's. For
// the latter, please, look at 'createVPInstructionsForVPBB'.
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
auto VPValIt = IRDef2VPValue.find(IRVal);
if (VPValIt != IRDef2VPValue.end())
// Operand has an associated VPInstruction or VPValue that was previously
// created.
return VPValIt->second;
// Operand doesn't have a previously created VPInstruction/VPValue. This
// means that operand is:
// A) a definition external to VPlan,
// B) any other Value without specific representation in VPlan.
// For now, we use VPValue to represent A and B and classify both as external
// definitions. We may introduce specific VPValue subclasses for them in the
// future.
assert(isExternalDef(IRVal) && "Expected external definition as operand.");
// A and B: Create VPValue and add it to the pool of external definitions and
// to the Value->VPValue map.
VPValue *NewVPVal = Plan.getVPValueOrAddLiveIn(IRVal);
IRDef2VPValue[IRVal] = NewVPVal;
return NewVPVal;
}
// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
// counterpart. This function must be invoked in RPO so that the operands of a
// VPInstruction in \p BB have been visited before (except for Phi nodes).
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
BasicBlock *BB) {
VPIRBuilder.setInsertPoint(VPBB);
for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) {
Instruction *Inst = &InstRef;
// There shouldn't be any VPValue for Inst at this point. Otherwise, we
// visited Inst when we shouldn't, breaking the RPO traversal order.
assert(!IRDef2VPValue.count(Inst) &&
"Instruction shouldn't have been visited.");
if (auto *Br = dyn_cast<BranchInst>(Inst)) {
// Conditional branch instruction are represented using BranchOnCond
// recipes.
if (Br->isConditional()) {
VPValue *Cond = getOrCreateVPOperand(Br->getCondition());
VPBB->appendRecipe(
new VPInstruction(VPInstruction::BranchOnCond, {Cond}));
}
// Skip the rest of the Instruction processing for Branch instructions.
continue;
}
VPValue *NewVPV;
if (auto *Phi = dyn_cast<PHINode>(Inst)) {
// Phi node's operands may have not been visited at this point. We create
// an empty VPInstruction that we will fix once the whole plain CFG has
// been built.
NewVPV = new VPWidenPHIRecipe(Phi);
VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV));
PhisToFix.push_back(Phi);
} else {
// Translate LLVM-IR operands into VPValue operands and set them in the
// new VPInstruction.
SmallVector<VPValue *, 4> VPOperands;
for (Value *Op : Inst->operands())
VPOperands.push_back(getOrCreateVPOperand(Op));
// Build VPInstruction for any arbitrary Instruction without specific
// representation in VPlan.
NewVPV = cast<VPInstruction>(
VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
}
IRDef2VPValue[Inst] = NewVPV;
}
}
// Main interface to build the plain CFG.
void PlainCFGBuilder::buildPlainCFG() {
// 0. Reuse the top-level region, vector-preheader and exit VPBBs from the
// skeleton. These were created directly rather than via getOrCreateVPBB(),
// revisit them now to update BB2VPBB. Note that header/entry and
// latch/exiting VPBB's of top-level region have yet to be created.
VPRegionBlock *TheRegion = Plan.getVectorLoopRegion();
BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader();
assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
"Unexpected loop preheader");
auto *VectorPreheaderVPBB =
cast<VPBasicBlock>(TheRegion->getSinglePredecessor());
// ThePreheaderBB conceptually corresponds to both Plan.getPreheader() (which
// wraps the original preheader BB) and Plan.getEntry() (which represents the
// new vector preheader); here we're interested in setting BB2VPBB to the
// latter.
BB2VPBB[ThePreheaderBB] = VectorPreheaderVPBB;
BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
assert(LoopExitBB && "Loops with multiple exits are not supported.");
BB2VPBB[LoopExitBB] = cast<VPBasicBlock>(TheRegion->getSingleSuccessor());
// 1. Scan the body of the loop in a topological order to visit each basic
// block after having visited its predecessor basic blocks. Create a VPBB for
// each BB and link it to its successor and predecessor VPBBs. Note that
// predecessors must be set in the same order as they are in the incomming IR.
// Otherwise, there might be problems with existing phi nodes and algorithm
// based on predecessors traversal.
// Loop PH needs to be explicitly visited since it's not taken into account by
// LoopBlocksDFS.
for (auto &I : *ThePreheaderBB) {
if (I.getType()->isVoidTy())
continue;
IRDef2VPValue[&I] = Plan.getVPValueOrAddLiveIn(&I);
}
LoopBlocksRPO RPO(TheLoop);
RPO.perform(LI);
for (BasicBlock *BB : RPO) {
// Create or retrieve the VPBasicBlock for this BB and create its
// VPInstructions.
VPBasicBlock *VPBB = getOrCreateVPBB(BB);
VPRegionBlock *Region = VPBB->getParent();
createVPInstructionsForVPBB(VPBB, BB);
Loop *LoopForBB = LI->getLoopFor(BB);
// Set VPBB predecessors in the same order as they are in the incoming BB.
if (!isHeaderBB(BB, LoopForBB)) {
setVPBBPredsFromBB(VPBB, BB);
} else {
// BB is a loop header, set the predecessor for the region, except for the
// top region, whose predecessor was set when creating VPlan's skeleton.
assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree");
if (TheRegion != Region)
setRegionPredsFromBB(Region, BB);
}
// Set VPBB successors. We create empty VPBBs for successors if they don't
// exist already. Recipes will be created when the successor is visited
// during the RPO traversal.
auto *BI = cast<BranchInst>(BB->getTerminator());
unsigned NumSuccs = succ_size(BB);
if (NumSuccs == 1) {
auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor());
VPBB->setOneSuccessor(isHeaderVPBB(Successor)
? Successor->getParent()
: static_cast<VPBlockBase *>(Successor));
continue;
}
assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() &&
"block must have conditional branch with 2 successors");
// Look up the branch condition to get the corresponding VPValue
// representing the condition bit in VPlan (which may be in another VPBB).
assert(IRDef2VPValue.contains(BI->getCondition()) &&
"Missing condition bit in IRDef2VPValue!");
VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0));
VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1));
if (!LoopForBB || BB != LoopForBB->getLoopLatch()) {
VPBB->setTwoSuccessors(Successor0, Successor1);
continue;
}
// For a latch we need to set the successor of the region rather than that
// of VPBB and it should be set to the exit, i.e., non-header successor,
// except for the top region, whose successor was set when creating VPlan's
// skeleton.
if (TheRegion != Region)
Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1
: Successor0);
Region->setExiting(VPBB);
}
// 2. The whole CFG has been built at this point so all the input Values must
// have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
// VPlan operands.
fixPhiNodes();
}
void VPlanHCFGBuilder::buildPlainCFG() {
PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
PCFGBuilder.buildPlainCFG();
}
// Public interface to build a H-CFG.
void VPlanHCFGBuilder::buildHierarchicalCFG() {
// Build Top Region enclosing the plain CFG.
buildPlainCFG();
LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
Verifier.verifyHierarchicalCFG(TopRegion);
// Compute plain CFG dom tree for VPLInfo.
VPDomTree.recalculate(Plan);
LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
VPDomTree.print(dbgs()));
}