blob: 97a8a1803bbf5a5d4e8490773da572d50e425c91 [file] [log] [blame]
//===- VPlanAnalysis.cpp - Various Analyses working on VPlan ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "VPlanAnalysis.h"
#include "VPlan.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace llvm;
#define DEBUG_TYPE "vplan"
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPBlendRecipe *R) {
Type *ResTy = inferScalarType(R->getIncomingValue(0));
for (unsigned I = 1, E = R->getNumIncomingValues(); I != E; ++I) {
VPValue *Inc = R->getIncomingValue(I);
assert(inferScalarType(Inc) == ResTy &&
"different types inferred for different incoming values");
CachedTypes[Inc] = ResTy;
}
return ResTy;
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPInstruction *R) {
switch (R->getOpcode()) {
case Instruction::Select: {
Type *ResTy = inferScalarType(R->getOperand(1));
VPValue *OtherV = R->getOperand(2);
assert(inferScalarType(OtherV) == ResTy &&
"different types inferred for different operands");
CachedTypes[OtherV] = ResTy;
return ResTy;
}
case VPInstruction::FirstOrderRecurrenceSplice: {
Type *ResTy = inferScalarType(R->getOperand(0));
VPValue *OtherV = R->getOperand(1);
assert(inferScalarType(OtherV) == ResTy &&
"different types inferred for different operands");
CachedTypes[OtherV] = ResTy;
return ResTy;
}
default:
break;
}
// Type inference not implemented for opcode.
LLVM_DEBUG({
dbgs() << "LV: Found unhandled opcode for: ";
R->getVPSingleValue()->dump();
});
llvm_unreachable("Unhandled opcode!");
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenRecipe *R) {
unsigned Opcode = R->getOpcode();
switch (Opcode) {
case Instruction::ICmp:
case Instruction::FCmp:
return IntegerType::get(Ctx, 1);
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
Type *ResTy = inferScalarType(R->getOperand(0));
assert(ResTy == inferScalarType(R->getOperand(1)) &&
"types for both operands must match for binary op");
CachedTypes[R->getOperand(1)] = ResTy;
return ResTy;
}
case Instruction::FNeg:
case Instruction::Freeze:
return inferScalarType(R->getOperand(0));
default:
break;
}
// Type inference not implemented for opcode.
LLVM_DEBUG({
dbgs() << "LV: Found unhandled opcode for: ";
R->getVPSingleValue()->dump();
});
llvm_unreachable("Unhandled opcode!");
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenCallRecipe *R) {
auto &CI = *cast<CallInst>(R->getUnderlyingInstr());
return CI.getType();
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(
const VPWidenMemoryInstructionRecipe *R) {
assert(!R->isStore() && "Store recipes should not define any values");
return cast<LoadInst>(&R->getIngredient())->getType();
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPWidenSelectRecipe *R) {
Type *ResTy = inferScalarType(R->getOperand(1));
VPValue *OtherV = R->getOperand(2);
assert(inferScalarType(OtherV) == ResTy &&
"different types inferred for different operands");
CachedTypes[OtherV] = ResTy;
return ResTy;
}
Type *VPTypeAnalysis::inferScalarTypeForRecipe(const VPReplicateRecipe *R) {
switch (R->getUnderlyingInstr()->getOpcode()) {
case Instruction::Call: {
unsigned CallIdx = R->getNumOperands() - (R->isPredicated() ? 2 : 1);
return cast<Function>(R->getOperand(CallIdx)->getLiveInIRValue())
->getReturnType();
}
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
Type *ResTy = inferScalarType(R->getOperand(0));
assert(ResTy == inferScalarType(R->getOperand(1)) &&
"inferred types for operands of binary op don't match");
CachedTypes[R->getOperand(1)] = ResTy;
return ResTy;
}
case Instruction::Select: {
Type *ResTy = inferScalarType(R->getOperand(1));
assert(ResTy == inferScalarType(R->getOperand(2)) &&
"inferred types for operands of select op don't match");
CachedTypes[R->getOperand(2)] = ResTy;
return ResTy;
}
case Instruction::ICmp:
case Instruction::FCmp:
return IntegerType::get(Ctx, 1);
case Instruction::Alloca:
case Instruction::BitCast:
case Instruction::Trunc:
case Instruction::SExt:
case Instruction::ZExt:
case Instruction::FPExt:
case Instruction::FPTrunc:
case Instruction::ExtractValue:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::FPToSI:
case Instruction::FPToUI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
return R->getUnderlyingInstr()->getType();
case Instruction::Freeze:
case Instruction::FNeg:
case Instruction::GetElementPtr:
return inferScalarType(R->getOperand(0));
case Instruction::Load:
return cast<LoadInst>(R->getUnderlyingInstr())->getType();
case Instruction::Store:
// FIXME: VPReplicateRecipes with store opcodes still define a result
// VPValue, so we need to handle them here. Remove the code here once this
// is modeled accurately in VPlan.
return Type::getVoidTy(Ctx);
default:
break;
}
// Type inference not implemented for opcode.
LLVM_DEBUG({
dbgs() << "LV: Found unhandled opcode for: ";
R->getVPSingleValue()->dump();
});
llvm_unreachable("Unhandled opcode");
}
Type *VPTypeAnalysis::inferScalarType(const VPValue *V) {
if (Type *CachedTy = CachedTypes.lookup(V))
return CachedTy;
if (V->isLiveIn())
return V->getLiveInIRValue()->getType();
Type *ResultTy =
TypeSwitch<const VPRecipeBase *, Type *>(V->getDefiningRecipe())
.Case<VPCanonicalIVPHIRecipe, VPFirstOrderRecurrencePHIRecipe,
VPReductionPHIRecipe, VPWidenPointerInductionRecipe>(
[this](const auto *R) {
// Handle header phi recipes, except VPWienIntOrFpInduction
// which needs special handling due it being possibly truncated.
// TODO: consider inferring/caching type of siblings, e.g.,
// backedge value, here and in cases below.
return inferScalarType(R->getStartValue());
})
.Case<VPWidenIntOrFpInductionRecipe, VPDerivedIVRecipe>(
[](const auto *R) { return R->getScalarType(); })
.Case<VPPredInstPHIRecipe, VPWidenPHIRecipe, VPScalarIVStepsRecipe,
VPWidenGEPRecipe>([this](const VPRecipeBase *R) {
return inferScalarType(R->getOperand(0));
})
.Case<VPBlendRecipe, VPInstruction, VPWidenRecipe, VPReplicateRecipe,
VPWidenCallRecipe, VPWidenMemoryInstructionRecipe,
VPWidenSelectRecipe>(
[this](const auto *R) { return inferScalarTypeForRecipe(R); })
.Case<VPInterleaveRecipe>([V](const VPInterleaveRecipe *R) {
// TODO: Use info from interleave group.
return V->getUnderlyingValue()->getType();
})
.Case<VPWidenCastRecipe>(
[](const VPWidenCastRecipe *R) { return R->getResultType(); });
assert(ResultTy && "could not infer type for the given VPValue");
CachedTypes[V] = ResultTy;
return ResultTy;
}