blob: 3eca9ac7c2673bee8232965f273d3f06e70d009c [file] [log] [blame]
//===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass converts vector operations into scalar operations (or, optionally,
// operations on smaller vector widths), in order to expose optimization
// opportunities on the individual scalar operations.
// It is mainly intended for targets that do not have vector units, but it
// may also be useful for revectorizing code to different vector widths.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/Scalarizer.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "scalarizer"
static cl::opt<bool> ClScalarizeVariableInsertExtract(
"scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
cl::desc("Allow the scalarizer pass to scalarize "
"insertelement/extractelement with variable index"));
// This is disabled by default because having separate loads and stores
// makes it more likely that the -combiner-alias-analysis limits will be
// reached.
static cl::opt<bool> ClScalarizeLoadStore(
"scalarize-load-store", cl::init(false), cl::Hidden,
cl::desc("Allow the scalarizer pass to scalarize loads and store"));
// Split vectors larger than this size into fragments, where each fragment is
// either a vector no larger than this size or a scalar.
//
// Instructions with operands or results of different sizes that would be split
// into a different number of fragments are currently left as-is.
static cl::opt<unsigned> ClScalarizeMinBits(
"scalarize-min-bits", cl::init(0), cl::Hidden,
cl::desc("Instruct the scalarizer pass to attempt to keep values of a "
"minimum number of bits"));
namespace {
BasicBlock::iterator skipPastPhiNodesAndDbg(BasicBlock::iterator Itr) {
BasicBlock *BB = Itr->getParent();
if (isa<PHINode>(Itr))
Itr = BB->getFirstInsertionPt();
if (Itr != BB->end())
Itr = skipDebugIntrinsics(Itr);
return Itr;
}
// Used to store the scattered form of a vector.
using ValueVector = SmallVector<Value *, 8>;
// Used to map a vector Value and associated type to its scattered form.
// The associated type is only non-null for pointer values that are "scattered"
// when used as pointer operands to load or store.
//
// We use std::map because we want iterators to persist across insertion and
// because the values are relatively large.
using ScatterMap = std::map<std::pair<Value *, Type *>, ValueVector>;
// Lists Instructions that have been replaced with scalar implementations,
// along with a pointer to their scattered forms.
using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
struct VectorSplit {
// The type of the vector.
FixedVectorType *VecTy = nullptr;
// The number of elements packed in a fragment (other than the remainder).
unsigned NumPacked = 0;
// The number of fragments (scalars or smaller vectors) into which the vector
// shall be split.
unsigned NumFragments = 0;
// The type of each complete fragment.
Type *SplitTy = nullptr;
// The type of the remainder (last) fragment; null if all fragments are
// complete.
Type *RemainderTy = nullptr;
Type *getFragmentType(unsigned I) const {
return RemainderTy && I == NumFragments - 1 ? RemainderTy : SplitTy;
}
};
// Provides a very limited vector-like interface for lazily accessing one
// component of a scattered vector or vector pointer.
class Scatterer {
public:
Scatterer() = default;
// Scatter V into Size components. If new instructions are needed,
// insert them before BBI in BB. If Cache is nonnull, use it to cache
// the results.
Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
const VectorSplit &VS, ValueVector *cachePtr = nullptr);
// Return component I, creating a new Value for it if necessary.
Value *operator[](unsigned I);
// Return the number of components.
unsigned size() const { return VS.NumFragments; }
private:
BasicBlock *BB;
BasicBlock::iterator BBI;
Value *V;
VectorSplit VS;
bool IsPointer;
ValueVector *CachePtr;
ValueVector Tmp;
};
// FCmpSplitter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
// called Name that compares X and Y in the same way as FCI.
struct FCmpSplitter {
FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
}
FCmpInst &FCI;
};
// ICmpSplitter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
// called Name that compares X and Y in the same way as ICI.
struct ICmpSplitter {
ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
}
ICmpInst &ICI;
};
// UnarySplitter(UO)(Builder, X, Name) uses Builder to create
// a unary operator like UO called Name with operand X.
struct UnarySplitter {
UnarySplitter(UnaryOperator &uo) : UO(uo) {}
Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
}
UnaryOperator &UO;
};
// BinarySplitter(BO)(Builder, X, Y, Name) uses Builder to create
// a binary operator like BO called Name with operands X and Y.
struct BinarySplitter {
BinarySplitter(BinaryOperator &bo) : BO(bo) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
}
BinaryOperator &BO;
};
// Information about a load or store that we're scalarizing.
struct VectorLayout {
VectorLayout() = default;
// Return the alignment of fragment Frag.
Align getFragmentAlign(unsigned Frag) {
return commonAlignment(VecAlign, Frag * SplitSize);
}
// The split of the underlying vector type.
VectorSplit VS;
// The alignment of the vector.
Align VecAlign;
// The size of each (non-remainder) fragment in bytes.
uint64_t SplitSize = 0;
};
/// Concatenate the given fragments to a single vector value of the type
/// described in @p VS.
static Value *concatenate(IRBuilder<> &Builder, ArrayRef<Value *> Fragments,
const VectorSplit &VS, Twine Name) {
unsigned NumElements = VS.VecTy->getNumElements();
SmallVector<int> ExtendMask;
SmallVector<int> InsertMask;
if (VS.NumPacked > 1) {
// Prepare the shufflevector masks once and re-use them for all
// fragments.
ExtendMask.resize(NumElements, -1);
for (unsigned I = 0; I < VS.NumPacked; ++I)
ExtendMask[I] = I;
InsertMask.resize(NumElements);
for (unsigned I = 0; I < NumElements; ++I)
InsertMask[I] = I;
}
Value *Res = PoisonValue::get(VS.VecTy);
for (unsigned I = 0; I < VS.NumFragments; ++I) {
Value *Fragment = Fragments[I];
unsigned NumPacked = VS.NumPacked;
if (I == VS.NumFragments - 1 && VS.RemainderTy) {
if (auto *RemVecTy = dyn_cast<FixedVectorType>(VS.RemainderTy))
NumPacked = RemVecTy->getNumElements();
else
NumPacked = 1;
}
if (NumPacked == 1) {
Res = Builder.CreateInsertElement(Res, Fragment, I * VS.NumPacked,
Name + ".upto" + Twine(I));
} else {
Fragment = Builder.CreateShuffleVector(Fragment, Fragment, ExtendMask);
if (I == 0) {
Res = Fragment;
} else {
for (unsigned J = 0; J < NumPacked; ++J)
InsertMask[I * VS.NumPacked + J] = NumElements + J;
Res = Builder.CreateShuffleVector(Res, Fragment, InsertMask,
Name + ".upto" + Twine(I));
for (unsigned J = 0; J < NumPacked; ++J)
InsertMask[I * VS.NumPacked + J] = I * VS.NumPacked + J;
}
}
}
return Res;
}
template <typename T>
T getWithDefaultOverride(const cl::opt<T> &ClOption,
const std::optional<T> &DefaultOverride) {
return ClOption.getNumOccurrences() ? ClOption
: DefaultOverride.value_or(ClOption);
}
class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
public:
ScalarizerVisitor(DominatorTree *DT, ScalarizerPassOptions Options)
: DT(DT), ScalarizeVariableInsertExtract(getWithDefaultOverride(
ClScalarizeVariableInsertExtract,
Options.ScalarizeVariableInsertExtract)),
ScalarizeLoadStore(getWithDefaultOverride(ClScalarizeLoadStore,
Options.ScalarizeLoadStore)),
ScalarizeMinBits(getWithDefaultOverride(ClScalarizeMinBits,
Options.ScalarizeMinBits)) {}
bool visit(Function &F);
// InstVisitor methods. They return true if the instruction was scalarized,
// false if nothing changed.
bool visitInstruction(Instruction &I) { return false; }
bool visitSelectInst(SelectInst &SI);
bool visitICmpInst(ICmpInst &ICI);
bool visitFCmpInst(FCmpInst &FCI);
bool visitUnaryOperator(UnaryOperator &UO);
bool visitBinaryOperator(BinaryOperator &BO);
bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
bool visitCastInst(CastInst &CI);
bool visitBitCastInst(BitCastInst &BCI);
bool visitInsertElementInst(InsertElementInst &IEI);
bool visitExtractElementInst(ExtractElementInst &EEI);
bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
bool visitPHINode(PHINode &PHI);
bool visitLoadInst(LoadInst &LI);
bool visitStoreInst(StoreInst &SI);
bool visitCallInst(CallInst &ICI);
bool visitFreezeInst(FreezeInst &FI);
private:
Scatterer scatter(Instruction *Point, Value *V, const VectorSplit &VS);
void gather(Instruction *Op, const ValueVector &CV, const VectorSplit &VS);
void replaceUses(Instruction *Op, Value *CV);
bool canTransferMetadata(unsigned Kind);
void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
std::optional<VectorSplit> getVectorSplit(Type *Ty);
std::optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
const DataLayout &DL);
bool finish();
template<typename T> bool splitUnary(Instruction &, const T &);
template<typename T> bool splitBinary(Instruction &, const T &);
bool splitCall(CallInst &CI);
ScatterMap Scattered;
GatherList Gathered;
bool Scalarized;
SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
DominatorTree *DT;
const bool ScalarizeVariableInsertExtract;
const bool ScalarizeLoadStore;
const unsigned ScalarizeMinBits;
};
} // end anonymous namespace
Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
const VectorSplit &VS, ValueVector *cachePtr)
: BB(bb), BBI(bbi), V(v), VS(VS), CachePtr(cachePtr) {
IsPointer = V->getType()->isPointerTy();
if (!CachePtr) {
Tmp.resize(VS.NumFragments, nullptr);
} else {
assert((CachePtr->empty() || VS.NumFragments == CachePtr->size() ||
IsPointer) &&
"Inconsistent vector sizes");
if (VS.NumFragments > CachePtr->size())
CachePtr->resize(VS.NumFragments, nullptr);
}
}
// Return fragment Frag, creating a new Value for it if necessary.
Value *Scatterer::operator[](unsigned Frag) {
ValueVector &CV = CachePtr ? *CachePtr : Tmp;
// Try to reuse a previous value.
if (CV[Frag])
return CV[Frag];
IRBuilder<> Builder(BB, BBI);
if (IsPointer) {
if (Frag == 0)
CV[Frag] = V;
else
CV[Frag] = Builder.CreateConstGEP1_32(VS.SplitTy, V, Frag,
V->getName() + ".i" + Twine(Frag));
return CV[Frag];
}
Type *FragmentTy = VS.getFragmentType(Frag);
if (auto *VecTy = dyn_cast<FixedVectorType>(FragmentTy)) {
SmallVector<int> Mask;
for (unsigned J = 0; J < VecTy->getNumElements(); ++J)
Mask.push_back(Frag * VS.NumPacked + J);
CV[Frag] =
Builder.CreateShuffleVector(V, PoisonValue::get(V->getType()), Mask,
V->getName() + ".i" + Twine(Frag));
} else {
// Search through a chain of InsertElementInsts looking for element Frag.
// Record other elements in the cache. The new V is still suitable
// for all uncached indices.
while (true) {
InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
if (!Insert)
break;
ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
if (!Idx)
break;
unsigned J = Idx->getZExtValue();
V = Insert->getOperand(0);
if (Frag * VS.NumPacked == J) {
CV[Frag] = Insert->getOperand(1);
return CV[Frag];
}
if (VS.NumPacked == 1 && !CV[J]) {
// Only cache the first entry we find for each index we're not actively
// searching for. This prevents us from going too far up the chain and
// caching incorrect entries.
CV[J] = Insert->getOperand(1);
}
}
CV[Frag] = Builder.CreateExtractElement(V, Frag * VS.NumPacked,
V->getName() + ".i" + Twine(Frag));
}
return CV[Frag];
}
bool ScalarizerVisitor::visit(Function &F) {
assert(Gathered.empty() && Scattered.empty());
Scalarized = false;
// To ensure we replace gathered components correctly we need to do an ordered
// traversal of the basic blocks in the function.
ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
for (BasicBlock *BB : RPOT) {
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
Instruction *I = &*II;
bool Done = InstVisitor::visit(I);
++II;
if (Done && I->getType()->isVoidTy())
I->eraseFromParent();
}
}
return finish();
}
// Return a scattered form of V that can be accessed by Point. V must be a
// vector or a pointer to a vector.
Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V,
const VectorSplit &VS) {
if (Argument *VArg = dyn_cast<Argument>(V)) {
// Put the scattered form of arguments in the entry block,
// so that it can be used everywhere.
Function *F = VArg->getParent();
BasicBlock *BB = &F->getEntryBlock();
return Scatterer(BB, BB->begin(), V, VS, &Scattered[{V, VS.SplitTy}]);
}
if (Instruction *VOp = dyn_cast<Instruction>(V)) {
// When scalarizing PHI nodes we might try to examine/rewrite InsertElement
// nodes in predecessors. If those predecessors are unreachable from entry,
// then the IR in those blocks could have unexpected properties resulting in
// infinite loops in Scatterer::operator[]. By simply treating values
// originating from instructions in unreachable blocks as undef we do not
// need to analyse them further.
if (!DT->isReachableFromEntry(VOp->getParent()))
return Scatterer(Point->getParent(), Point->getIterator(),
PoisonValue::get(V->getType()), VS);
// Put the scattered form of an instruction directly after the
// instruction, skipping over PHI nodes and debug intrinsics.
BasicBlock *BB = VOp->getParent();
return Scatterer(
BB, skipPastPhiNodesAndDbg(std::next(BasicBlock::iterator(VOp))), V, VS,
&Scattered[{V, VS.SplitTy}]);
}
// In the fallback case, just put the scattered before Point and
// keep the result local to Point.
return Scatterer(Point->getParent(), Point->getIterator(), V, VS);
}
// Replace Op with the gathered form of the components in CV. Defer the
// deletion of Op and creation of the gathered form to the end of the pass,
// so that we can avoid creating the gathered form if all uses of Op are
// replaced with uses of CV.
void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV,
const VectorSplit &VS) {
transferMetadataAndIRFlags(Op, CV);
// If we already have a scattered form of Op (created from ExtractElements
// of Op itself), replace them with the new form.
ValueVector &SV = Scattered[{Op, VS.SplitTy}];
if (!SV.empty()) {
for (unsigned I = 0, E = SV.size(); I != E; ++I) {
Value *V = SV[I];
if (V == nullptr || SV[I] == CV[I])
continue;
Instruction *Old = cast<Instruction>(V);
if (isa<Instruction>(CV[I]))
CV[I]->takeName(Old);
Old->replaceAllUsesWith(CV[I]);
PotentiallyDeadInstrs.emplace_back(Old);
}
}
SV = CV;
Gathered.push_back(GatherList::value_type(Op, &SV));
}
// Replace Op with CV and collect Op has a potentially dead instruction.
void ScalarizerVisitor::replaceUses(Instruction *Op, Value *CV) {
if (CV != Op) {
Op->replaceAllUsesWith(CV);
PotentiallyDeadInstrs.emplace_back(Op);
Scalarized = true;
}
}
// Return true if it is safe to transfer the given metadata tag from
// vector to scalar instructions.
bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
return (Tag == LLVMContext::MD_tbaa
|| Tag == LLVMContext::MD_fpmath
|| Tag == LLVMContext::MD_tbaa_struct
|| Tag == LLVMContext::MD_invariant_load
|| Tag == LLVMContext::MD_alias_scope
|| Tag == LLVMContext::MD_noalias
|| Tag == LLVMContext::MD_mem_parallel_loop_access
|| Tag == LLVMContext::MD_access_group);
}
// Transfer metadata from Op to the instructions in CV if it is known
// to be safe to do so.
void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
const ValueVector &CV) {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
Op->getAllMetadataOtherThanDebugLoc(MDs);
for (unsigned I = 0, E = CV.size(); I != E; ++I) {
if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
for (const auto &MD : MDs)
if (canTransferMetadata(MD.first))
New->setMetadata(MD.first, MD.second);
New->copyIRFlags(Op);
if (Op->getDebugLoc() && !New->getDebugLoc())
New->setDebugLoc(Op->getDebugLoc());
}
}
}
// Determine how Ty is split, if at all.
std::optional<VectorSplit> ScalarizerVisitor::getVectorSplit(Type *Ty) {
VectorSplit Split;
Split.VecTy = dyn_cast<FixedVectorType>(Ty);
if (!Split.VecTy)
return {};
unsigned NumElems = Split.VecTy->getNumElements();
Type *ElemTy = Split.VecTy->getElementType();
if (NumElems == 1 || ElemTy->isPointerTy() ||
2 * ElemTy->getScalarSizeInBits() > ScalarizeMinBits) {
Split.NumPacked = 1;
Split.NumFragments = NumElems;
Split.SplitTy = ElemTy;
} else {
Split.NumPacked = ScalarizeMinBits / ElemTy->getScalarSizeInBits();
if (Split.NumPacked >= NumElems)
return {};
Split.NumFragments = divideCeil(NumElems, Split.NumPacked);
Split.SplitTy = FixedVectorType::get(ElemTy, Split.NumPacked);
unsigned RemainderElems = NumElems % Split.NumPacked;
if (RemainderElems > 1)
Split.RemainderTy = FixedVectorType::get(ElemTy, RemainderElems);
else if (RemainderElems == 1)
Split.RemainderTy = ElemTy;
}
return Split;
}
// Try to fill in Layout from Ty, returning true on success. Alignment is
// the alignment of the vector, or std::nullopt if the ABI default should be
// used.
std::optional<VectorLayout>
ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
const DataLayout &DL) {
std::optional<VectorSplit> VS = getVectorSplit(Ty);
if (!VS)
return {};
VectorLayout Layout;
Layout.VS = *VS;
// Check that we're dealing with full-byte fragments.
if (!DL.typeSizeEqualsStoreSize(VS->SplitTy) ||
(VS->RemainderTy && !DL.typeSizeEqualsStoreSize(VS->RemainderTy)))
return {};
Layout.VecAlign = Alignment;
Layout.SplitSize = DL.getTypeStoreSize(VS->SplitTy);
return Layout;
}
// Scalarize one-operand instruction I, using Split(Builder, X, Name)
// to create an instruction like I with operand X and name Name.
template<typename Splitter>
bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
std::optional<VectorSplit> VS = getVectorSplit(I.getType());
if (!VS)
return false;
std::optional<VectorSplit> OpVS;
if (I.getOperand(0)->getType() == I.getType()) {
OpVS = VS;
} else {
OpVS = getVectorSplit(I.getOperand(0)->getType());
if (!OpVS || VS->NumPacked != OpVS->NumPacked)
return false;
}
IRBuilder<> Builder(&I);
Scatterer Op = scatter(&I, I.getOperand(0), *OpVS);
assert(Op.size() == VS->NumFragments && "Mismatched unary operation");
ValueVector Res;
Res.resize(VS->NumFragments);
for (unsigned Frag = 0; Frag < VS->NumFragments; ++Frag)
Res[Frag] = Split(Builder, Op[Frag], I.getName() + ".i" + Twine(Frag));
gather(&I, Res, *VS);
return true;
}
// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
// to create an instruction like I with operands X and Y and name Name.
template<typename Splitter>
bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
std::optional<VectorSplit> VS = getVectorSplit(I.getType());
if (!VS)
return false;
std::optional<VectorSplit> OpVS;
if (I.getOperand(0)->getType() == I.getType()) {
OpVS = VS;
} else {
OpVS = getVectorSplit(I.getOperand(0)->getType());
if (!OpVS || VS->NumPacked != OpVS->NumPacked)
return false;
}
IRBuilder<> Builder(&I);
Scatterer VOp0 = scatter(&I, I.getOperand(0), *OpVS);
Scatterer VOp1 = scatter(&I, I.getOperand(1), *OpVS);
assert(VOp0.size() == VS->NumFragments && "Mismatched binary operation");
assert(VOp1.size() == VS->NumFragments && "Mismatched binary operation");
ValueVector Res;
Res.resize(VS->NumFragments);
for (unsigned Frag = 0; Frag < VS->NumFragments; ++Frag) {
Value *Op0 = VOp0[Frag];
Value *Op1 = VOp1[Frag];
Res[Frag] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Frag));
}
gather(&I, Res, *VS);
return true;
}
static bool isTriviallyScalariable(Intrinsic::ID ID) {
return isTriviallyVectorizable(ID);
}
/// If a call to a vector typed intrinsic function, split into a scalar call per
/// element if possible for the intrinsic.
bool ScalarizerVisitor::splitCall(CallInst &CI) {
std::optional<VectorSplit> VS = getVectorSplit(CI.getType());
if (!VS)
return false;
Function *F = CI.getCalledFunction();
if (!F)
return false;
Intrinsic::ID ID = F->getIntrinsicID();
if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
return false;
// unsigned NumElems = VT->getNumElements();
unsigned NumArgs = CI.arg_size();
ValueVector ScalarOperands(NumArgs);
SmallVector<Scatterer, 8> Scattered(NumArgs);
SmallVector<int> OverloadIdx(NumArgs, -1);
SmallVector<llvm::Type *, 3> Tys;
// Add return type if intrinsic is overloaded on it.
if (isVectorIntrinsicWithOverloadTypeAtArg(ID, -1))
Tys.push_back(VS->SplitTy);
// Assumes that any vector type has the same number of elements as the return
// vector type, which is true for all current intrinsics.
for (unsigned I = 0; I != NumArgs; ++I) {
Value *OpI = CI.getOperand(I);
if ([[maybe_unused]] auto *OpVecTy =
dyn_cast<FixedVectorType>(OpI->getType())) {
assert(OpVecTy->getNumElements() == VS->VecTy->getNumElements());
std::optional<VectorSplit> OpVS = getVectorSplit(OpI->getType());
if (!OpVS || OpVS->NumPacked != VS->NumPacked) {
// The natural split of the operand doesn't match the result. This could
// happen if the vector elements are different and the ScalarizeMinBits
// option is used.
//
// We could in principle handle this case as well, at the cost of
// complicating the scattering machinery to support multiple scattering
// granularities for a single value.
return false;
}
Scattered[I] = scatter(&CI, OpI, *OpVS);
if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I)) {
OverloadIdx[I] = Tys.size();
Tys.push_back(OpVS->SplitTy);
}
} else {
ScalarOperands[I] = OpI;
if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I))
Tys.push_back(OpI->getType());
}
}
ValueVector Res(VS->NumFragments);
ValueVector ScalarCallOps(NumArgs);
Function *NewIntrin = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
IRBuilder<> Builder(&CI);
// Perform actual scalarization, taking care to preserve any scalar operands.
for (unsigned I = 0; I < VS->NumFragments; ++I) {
bool IsRemainder = I == VS->NumFragments - 1 && VS->RemainderTy;
ScalarCallOps.clear();
if (IsRemainder)
Tys[0] = VS->RemainderTy;
for (unsigned J = 0; J != NumArgs; ++J) {
if (isVectorIntrinsicWithScalarOpAtArg(ID, J)) {
ScalarCallOps.push_back(ScalarOperands[J]);
} else {
ScalarCallOps.push_back(Scattered[J][I]);
if (IsRemainder && OverloadIdx[J] >= 0)
Tys[OverloadIdx[J]] = Scattered[J][I]->getType();
}
}
if (IsRemainder)
NewIntrin = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
Res[I] = Builder.CreateCall(NewIntrin, ScalarCallOps,
CI.getName() + ".i" + Twine(I));
}
gather(&CI, Res, *VS);
return true;
}
bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
std::optional<VectorSplit> VS = getVectorSplit(SI.getType());
if (!VS)
return false;
std::optional<VectorSplit> CondVS;
if (isa<FixedVectorType>(SI.getCondition()->getType())) {
CondVS = getVectorSplit(SI.getCondition()->getType());
if (!CondVS || CondVS->NumPacked != VS->NumPacked) {
// This happens when ScalarizeMinBits is used.
return false;
}
}
IRBuilder<> Builder(&SI);
Scatterer VOp1 = scatter(&SI, SI.getOperand(1), *VS);
Scatterer VOp2 = scatter(&SI, SI.getOperand(2), *VS);
assert(VOp1.size() == VS->NumFragments && "Mismatched select");
assert(VOp2.size() == VS->NumFragments && "Mismatched select");
ValueVector Res;
Res.resize(VS->NumFragments);
if (CondVS) {
Scatterer VOp0 = scatter(&SI, SI.getOperand(0), *CondVS);
assert(VOp0.size() == CondVS->NumFragments && "Mismatched select");
for (unsigned I = 0; I < VS->NumFragments; ++I) {
Value *Op0 = VOp0[I];
Value *Op1 = VOp1[I];
Value *Op2 = VOp2[I];
Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
SI.getName() + ".i" + Twine(I));
}
} else {
Value *Op0 = SI.getOperand(0);
for (unsigned I = 0; I < VS->NumFragments; ++I) {
Value *Op1 = VOp1[I];
Value *Op2 = VOp2[I];
Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
SI.getName() + ".i" + Twine(I));
}
}
gather(&SI, Res, *VS);
return true;
}
bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
return splitBinary(ICI, ICmpSplitter(ICI));
}
bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
return splitBinary(FCI, FCmpSplitter(FCI));
}
bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
return splitUnary(UO, UnarySplitter(UO));
}
bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
return splitBinary(BO, BinarySplitter(BO));
}
bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
std::optional<VectorSplit> VS = getVectorSplit(GEPI.getType());
if (!VS)
return false;
IRBuilder<> Builder(&GEPI);
unsigned NumIndices = GEPI.getNumIndices();
// The base pointer and indices might be scalar even if it's a vector GEP.
SmallVector<Value *, 8> ScalarOps{1 + NumIndices};
SmallVector<Scatterer, 8> ScatterOps{1 + NumIndices};
for (unsigned I = 0; I < 1 + NumIndices; ++I) {
if (auto *VecTy =
dyn_cast<FixedVectorType>(GEPI.getOperand(I)->getType())) {
std::optional<VectorSplit> OpVS = getVectorSplit(VecTy);
if (!OpVS || OpVS->NumPacked != VS->NumPacked) {
// This can happen when ScalarizeMinBits is used.
return false;
}
ScatterOps[I] = scatter(&GEPI, GEPI.getOperand(I), *OpVS);
} else {
ScalarOps[I] = GEPI.getOperand(I);
}
}
ValueVector Res;
Res.resize(VS->NumFragments);
for (unsigned I = 0; I < VS->NumFragments; ++I) {
SmallVector<Value *, 8> SplitOps;
SplitOps.resize(1 + NumIndices);
for (unsigned J = 0; J < 1 + NumIndices; ++J) {
if (ScalarOps[J])
SplitOps[J] = ScalarOps[J];
else
SplitOps[J] = ScatterOps[J][I];
}
Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), SplitOps[0],
ArrayRef(SplitOps).drop_front(),
GEPI.getName() + ".i" + Twine(I));
if (GEPI.isInBounds())
if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
NewGEPI->setIsInBounds();
}
gather(&GEPI, Res, *VS);
return true;
}
bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
std::optional<VectorSplit> DestVS = getVectorSplit(CI.getDestTy());
if (!DestVS)
return false;
std::optional<VectorSplit> SrcVS = getVectorSplit(CI.getSrcTy());
if (!SrcVS || SrcVS->NumPacked != DestVS->NumPacked)
return false;
IRBuilder<> Builder(&CI);
Scatterer Op0 = scatter(&CI, CI.getOperand(0), *SrcVS);
assert(Op0.size() == SrcVS->NumFragments && "Mismatched cast");
ValueVector Res;
Res.resize(DestVS->NumFragments);
for (unsigned I = 0; I < DestVS->NumFragments; ++I)
Res[I] =
Builder.CreateCast(CI.getOpcode(), Op0[I], DestVS->getFragmentType(I),
CI.getName() + ".i" + Twine(I));
gather(&CI, Res, *DestVS);
return true;
}
bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
std::optional<VectorSplit> DstVS = getVectorSplit(BCI.getDestTy());
std::optional<VectorSplit> SrcVS = getVectorSplit(BCI.getSrcTy());
if (!DstVS || !SrcVS || DstVS->RemainderTy || SrcVS->RemainderTy)
return false;
const bool isPointerTy = DstVS->VecTy->getElementType()->isPointerTy();
// Vectors of pointers are always fully scalarized.
assert(!isPointerTy || (DstVS->NumPacked == 1 && SrcVS->NumPacked == 1));
IRBuilder<> Builder(&BCI);
Scatterer Op0 = scatter(&BCI, BCI.getOperand(0), *SrcVS);
ValueVector Res;
Res.resize(DstVS->NumFragments);
unsigned DstSplitBits = DstVS->SplitTy->getPrimitiveSizeInBits();
unsigned SrcSplitBits = SrcVS->SplitTy->getPrimitiveSizeInBits();
if (isPointerTy || DstSplitBits == SrcSplitBits) {
assert(DstVS->NumFragments == SrcVS->NumFragments);
for (unsigned I = 0; I < DstVS->NumFragments; ++I) {
Res[I] = Builder.CreateBitCast(Op0[I], DstVS->getFragmentType(I),
BCI.getName() + ".i" + Twine(I));
}
} else if (SrcSplitBits % DstSplitBits == 0) {
// Convert each source fragment to the same-sized destination vector and
// then scatter the result to the destination.
VectorSplit MidVS;
MidVS.NumPacked = DstVS->NumPacked;
MidVS.NumFragments = SrcSplitBits / DstSplitBits;
MidVS.VecTy = FixedVectorType::get(DstVS->VecTy->getElementType(),
MidVS.NumPacked * MidVS.NumFragments);
MidVS.SplitTy = DstVS->SplitTy;
unsigned ResI = 0;
for (unsigned I = 0; I < SrcVS->NumFragments; ++I) {
Value *V = Op0[I];
// Look through any existing bitcasts before converting to <N x t2>.
// In the best case, the resulting conversion might be a no-op.
Instruction *VI;
while ((VI = dyn_cast<Instruction>(V)) &&
VI->getOpcode() == Instruction::BitCast)
V = VI->getOperand(0);
V = Builder.CreateBitCast(V, MidVS.VecTy, V->getName() + ".cast");
Scatterer Mid = scatter(&BCI, V, MidVS);
for (unsigned J = 0; J < MidVS.NumFragments; ++J)
Res[ResI++] = Mid[J];
}
} else if (DstSplitBits % SrcSplitBits == 0) {
// Gather enough source fragments to make up a destination fragment and
// then convert to the destination type.
VectorSplit MidVS;
MidVS.NumFragments = DstSplitBits / SrcSplitBits;
MidVS.NumPacked = SrcVS->NumPacked;
MidVS.VecTy = FixedVectorType::get(SrcVS->VecTy->getElementType(),
MidVS.NumPacked * MidVS.NumFragments);
MidVS.SplitTy = SrcVS->SplitTy;
unsigned SrcI = 0;
SmallVector<Value *, 8> ConcatOps;
ConcatOps.resize(MidVS.NumFragments);
for (unsigned I = 0; I < DstVS->NumFragments; ++I) {
for (unsigned J = 0; J < MidVS.NumFragments; ++J)
ConcatOps[J] = Op0[SrcI++];
Value *V = concatenate(Builder, ConcatOps, MidVS,
BCI.getName() + ".i" + Twine(I));
Res[I] = Builder.CreateBitCast(V, DstVS->getFragmentType(I),
BCI.getName() + ".i" + Twine(I));
}
} else {
return false;
}
gather(&BCI, Res, *DstVS);
return true;
}
bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
std::optional<VectorSplit> VS = getVectorSplit(IEI.getType());
if (!VS)
return false;
IRBuilder<> Builder(&IEI);
Scatterer Op0 = scatter(&IEI, IEI.getOperand(0), *VS);
Value *NewElt = IEI.getOperand(1);
Value *InsIdx = IEI.getOperand(2);
ValueVector Res;
Res.resize(VS->NumFragments);
if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
unsigned Idx = CI->getZExtValue();
unsigned Fragment = Idx / VS->NumPacked;
for (unsigned I = 0; I < VS->NumFragments; ++I) {
if (I == Fragment) {
bool IsPacked = VS->NumPacked > 1;
if (Fragment == VS->NumFragments - 1 && VS->RemainderTy &&
!VS->RemainderTy->isVectorTy())
IsPacked = false;
if (IsPacked) {
Res[I] =
Builder.CreateInsertElement(Op0[I], NewElt, Idx % VS->NumPacked);
} else {
Res[I] = NewElt;
}
} else {
Res[I] = Op0[I];
}
}
} else {
// Never split a variable insertelement that isn't fully scalarized.
if (!ScalarizeVariableInsertExtract || VS->NumPacked > 1)
return false;
for (unsigned I = 0; I < VS->NumFragments; ++I) {
Value *ShouldReplace =
Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
InsIdx->getName() + ".is." + Twine(I));
Value *OldElt = Op0[I];
Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
IEI.getName() + ".i" + Twine(I));
}
}
gather(&IEI, Res, *VS);
return true;
}
bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
std::optional<VectorSplit> VS = getVectorSplit(EEI.getOperand(0)->getType());
if (!VS)
return false;
IRBuilder<> Builder(&EEI);
Scatterer Op0 = scatter(&EEI, EEI.getOperand(0), *VS);
Value *ExtIdx = EEI.getOperand(1);
if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
unsigned Idx = CI->getZExtValue();
unsigned Fragment = Idx / VS->NumPacked;
Value *Res = Op0[Fragment];
bool IsPacked = VS->NumPacked > 1;
if (Fragment == VS->NumFragments - 1 && VS->RemainderTy &&
!VS->RemainderTy->isVectorTy())
IsPacked = false;
if (IsPacked)
Res = Builder.CreateExtractElement(Res, Idx % VS->NumPacked);
replaceUses(&EEI, Res);
return true;
}
// Never split a variable extractelement that isn't fully scalarized.
if (!ScalarizeVariableInsertExtract || VS->NumPacked > 1)
return false;
Value *Res = PoisonValue::get(VS->VecTy->getElementType());
for (unsigned I = 0; I < VS->NumFragments; ++I) {
Value *ShouldExtract =
Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
ExtIdx->getName() + ".is." + Twine(I));
Value *Elt = Op0[I];
Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
EEI.getName() + ".upto" + Twine(I));
}
replaceUses(&EEI, Res);
return true;
}
bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
std::optional<VectorSplit> VS = getVectorSplit(SVI.getType());
std::optional<VectorSplit> VSOp =
getVectorSplit(SVI.getOperand(0)->getType());
if (!VS || !VSOp || VS->NumPacked > 1 || VSOp->NumPacked > 1)
return false;
Scatterer Op0 = scatter(&SVI, SVI.getOperand(0), *VSOp);
Scatterer Op1 = scatter(&SVI, SVI.getOperand(1), *VSOp);
ValueVector Res;
Res.resize(VS->NumFragments);
for (unsigned I = 0; I < VS->NumFragments; ++I) {
int Selector = SVI.getMaskValue(I);
if (Selector < 0)
Res[I] = PoisonValue::get(VS->VecTy->getElementType());
else if (unsigned(Selector) < Op0.size())
Res[I] = Op0[Selector];
else
Res[I] = Op1[Selector - Op0.size()];
}
gather(&SVI, Res, *VS);
return true;
}
bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
std::optional<VectorSplit> VS = getVectorSplit(PHI.getType());
if (!VS)
return false;
IRBuilder<> Builder(&PHI);
ValueVector Res;
Res.resize(VS->NumFragments);
unsigned NumOps = PHI.getNumOperands();
for (unsigned I = 0; I < VS->NumFragments; ++I) {
Res[I] = Builder.CreatePHI(VS->getFragmentType(I), NumOps,
PHI.getName() + ".i" + Twine(I));
}
for (unsigned I = 0; I < NumOps; ++I) {
Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I), *VS);
BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
for (unsigned J = 0; J < VS->NumFragments; ++J)
cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
}
gather(&PHI, Res, *VS);
return true;
}
bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
if (!ScalarizeLoadStore)
return false;
if (!LI.isSimple())
return false;
std::optional<VectorLayout> Layout = getVectorLayout(
LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
if (!Layout)
return false;
IRBuilder<> Builder(&LI);
Scatterer Ptr = scatter(&LI, LI.getPointerOperand(), Layout->VS);
ValueVector Res;
Res.resize(Layout->VS.NumFragments);
for (unsigned I = 0; I < Layout->VS.NumFragments; ++I) {
Res[I] = Builder.CreateAlignedLoad(Layout->VS.getFragmentType(I), Ptr[I],
Align(Layout->getFragmentAlign(I)),
LI.getName() + ".i" + Twine(I));
}
gather(&LI, Res, Layout->VS);
return true;
}
bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
if (!ScalarizeLoadStore)
return false;
if (!SI.isSimple())
return false;
Value *FullValue = SI.getValueOperand();
std::optional<VectorLayout> Layout = getVectorLayout(
FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
if (!Layout)
return false;
IRBuilder<> Builder(&SI);
Scatterer VPtr = scatter(&SI, SI.getPointerOperand(), Layout->VS);
Scatterer VVal = scatter(&SI, FullValue, Layout->VS);
ValueVector Stores;
Stores.resize(Layout->VS.NumFragments);
for (unsigned I = 0; I < Layout->VS.NumFragments; ++I) {
Value *Val = VVal[I];
Value *Ptr = VPtr[I];
Stores[I] =
Builder.CreateAlignedStore(Val, Ptr, Layout->getFragmentAlign(I));
}
transferMetadataAndIRFlags(&SI, Stores);
return true;
}
bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
return splitCall(CI);
}
bool ScalarizerVisitor::visitFreezeInst(FreezeInst &FI) {
return splitUnary(FI, [](IRBuilder<> &Builder, Value *Op, const Twine &Name) {
return Builder.CreateFreeze(Op, Name);
});
}
// Delete the instructions that we scalarized. If a full vector result
// is still needed, recreate it using InsertElements.
bool ScalarizerVisitor::finish() {
// The presence of data in Gathered or Scattered indicates changes
// made to the Function.
if (Gathered.empty() && Scattered.empty() && !Scalarized)
return false;
for (const auto &GMI : Gathered) {
Instruction *Op = GMI.first;
ValueVector &CV = *GMI.second;
if (!Op->use_empty()) {
// The value is still needed, so recreate it using a series of
// insertelements and/or shufflevectors.
Value *Res;
if (auto *Ty = dyn_cast<FixedVectorType>(Op->getType())) {
BasicBlock *BB = Op->getParent();
IRBuilder<> Builder(Op);
if (isa<PHINode>(Op))
Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
VectorSplit VS = *getVectorSplit(Ty);
assert(VS.NumFragments == CV.size());
Res = concatenate(Builder, CV, VS, Op->getName());
Res->takeName(Op);
} else {
assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
Res = CV[0];
if (Op == Res)
continue;
}
Op->replaceAllUsesWith(Res);
}
PotentiallyDeadInstrs.emplace_back(Op);
}
Gathered.clear();
Scattered.clear();
Scalarized = false;
RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
return true;
}
PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
ScalarizerVisitor Impl(DT, Options);
bool Changed = Impl.visit(F);
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return Changed ? PA : PreservedAnalyses::all();
}