blob: f0edf706bd8fd7a6026ddb785889dc2f1fa5ff5f [file] [log] [blame]
//===-------------- BPFMIPeephole.cpp - MI Peephole Cleanups -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass performs peephole optimizations to cleanup ugly code sequences at
// MachineInstruction layer.
//
// Currently, there are two optimizations implemented:
// - One pre-RA MachineSSA pass to eliminate type promotion sequences, those
// zero extend 32-bit subregisters to 64-bit registers, if the compiler
// could prove the subregisters is defined by 32-bit operations in which
// case the upper half of the underlying 64-bit registers were zeroed
// implicitly.
//
// - One post-RA PreEmit pass to do final cleanup on some redundant
// instructions generated due to bad RA on subregister.
//===----------------------------------------------------------------------===//
#include "BPF.h"
#include "BPFInstrInfo.h"
#include "BPFTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include <set>
using namespace llvm;
#define DEBUG_TYPE "bpf-mi-zext-elim"
static cl::opt<int> GotolAbsLowBound("gotol-abs-low-bound", cl::Hidden,
cl::init(INT16_MAX >> 1), cl::desc("Specify gotol lower bound"));
STATISTIC(ZExtElemNum, "Number of zero extension shifts eliminated");
namespace {
struct BPFMIPeephole : public MachineFunctionPass {
static char ID;
const BPFInstrInfo *TII;
MachineFunction *MF;
MachineRegisterInfo *MRI;
BPFMIPeephole() : MachineFunctionPass(ID) {
initializeBPFMIPeepholePass(*PassRegistry::getPassRegistry());
}
private:
// Initialize class variables.
void initialize(MachineFunction &MFParm);
bool isCopyFrom32Def(MachineInstr *CopyMI);
bool isInsnFrom32Def(MachineInstr *DefInsn);
bool isPhiFrom32Def(MachineInstr *MovMI);
bool isMovFrom32Def(MachineInstr *MovMI);
bool eliminateZExtSeq();
bool eliminateZExt();
std::set<MachineInstr *> PhiInsns;
public:
// Main entry point for this pass.
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
initialize(MF);
// First try to eliminate (zext, lshift, rshift) and then
// try to eliminate zext.
bool ZExtSeqExist, ZExtExist;
ZExtSeqExist = eliminateZExtSeq();
ZExtExist = eliminateZExt();
return ZExtSeqExist || ZExtExist;
}
};
// Initialize class variables.
void BPFMIPeephole::initialize(MachineFunction &MFParm) {
MF = &MFParm;
MRI = &MF->getRegInfo();
TII = MF->getSubtarget<BPFSubtarget>().getInstrInfo();
LLVM_DEBUG(dbgs() << "*** BPF MachineSSA ZEXT Elim peephole pass ***\n\n");
}
bool BPFMIPeephole::isCopyFrom32Def(MachineInstr *CopyMI)
{
MachineOperand &opnd = CopyMI->getOperand(1);
if (!opnd.isReg())
return false;
// Return false if getting value from a 32bit physical register.
// Most likely, this physical register is aliased to
// function call return value or current function parameters.
Register Reg = opnd.getReg();
if (!Reg.isVirtual())
return false;
if (MRI->getRegClass(Reg) == &BPF::GPRRegClass)
return false;
MachineInstr *DefInsn = MRI->getVRegDef(Reg);
if (!isInsnFrom32Def(DefInsn))
return false;
return true;
}
bool BPFMIPeephole::isPhiFrom32Def(MachineInstr *PhiMI)
{
for (unsigned i = 1, e = PhiMI->getNumOperands(); i < e; i += 2) {
MachineOperand &opnd = PhiMI->getOperand(i);
if (!opnd.isReg())
return false;
MachineInstr *PhiDef = MRI->getVRegDef(opnd.getReg());
if (!PhiDef)
return false;
if (PhiDef->isPHI()) {
if (!PhiInsns.insert(PhiDef).second)
return false;
if (!isPhiFrom32Def(PhiDef))
return false;
}
if (PhiDef->getOpcode() == BPF::COPY && !isCopyFrom32Def(PhiDef))
return false;
}
return true;
}
// The \p DefInsn instruction defines a virtual register.
bool BPFMIPeephole::isInsnFrom32Def(MachineInstr *DefInsn)
{
if (!DefInsn)
return false;
if (DefInsn->isPHI()) {
if (!PhiInsns.insert(DefInsn).second)
return false;
if (!isPhiFrom32Def(DefInsn))
return false;
} else if (DefInsn->getOpcode() == BPF::COPY) {
if (!isCopyFrom32Def(DefInsn))
return false;
}
return true;
}
bool BPFMIPeephole::isMovFrom32Def(MachineInstr *MovMI)
{
MachineInstr *DefInsn = MRI->getVRegDef(MovMI->getOperand(1).getReg());
LLVM_DEBUG(dbgs() << " Def of Mov Src:");
LLVM_DEBUG(DefInsn->dump());
PhiInsns.clear();
if (!isInsnFrom32Def(DefInsn))
return false;
LLVM_DEBUG(dbgs() << " One ZExt elim sequence identified.\n");
return true;
}
bool BPFMIPeephole::eliminateZExtSeq() {
MachineInstr* ToErase = nullptr;
bool Eliminated = false;
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
// If the previous instruction was marked for elimination, remove it now.
if (ToErase) {
ToErase->eraseFromParent();
ToErase = nullptr;
}
// Eliminate the 32-bit to 64-bit zero extension sequence when possible.
//
// MOV_32_64 rB, wA
// SLL_ri rB, rB, 32
// SRL_ri rB, rB, 32
if (MI.getOpcode() == BPF::SRL_ri &&
MI.getOperand(2).getImm() == 32) {
Register DstReg = MI.getOperand(0).getReg();
Register ShfReg = MI.getOperand(1).getReg();
MachineInstr *SllMI = MRI->getVRegDef(ShfReg);
LLVM_DEBUG(dbgs() << "Starting SRL found:");
LLVM_DEBUG(MI.dump());
if (!SllMI ||
SllMI->isPHI() ||
SllMI->getOpcode() != BPF::SLL_ri ||
SllMI->getOperand(2).getImm() != 32)
continue;
LLVM_DEBUG(dbgs() << " SLL found:");
LLVM_DEBUG(SllMI->dump());
MachineInstr *MovMI = MRI->getVRegDef(SllMI->getOperand(1).getReg());
if (!MovMI ||
MovMI->isPHI() ||
MovMI->getOpcode() != BPF::MOV_32_64)
continue;
LLVM_DEBUG(dbgs() << " Type cast Mov found:");
LLVM_DEBUG(MovMI->dump());
Register SubReg = MovMI->getOperand(1).getReg();
if (!isMovFrom32Def(MovMI)) {
LLVM_DEBUG(dbgs()
<< " One ZExt elim sequence failed qualifying elim.\n");
continue;
}
BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(BPF::SUBREG_TO_REG), DstReg)
.addImm(0).addReg(SubReg).addImm(BPF::sub_32);
SllMI->eraseFromParent();
MovMI->eraseFromParent();
// MI is the right shift, we can't erase it in it's own iteration.
// Mark it to ToErase, and erase in the next iteration.
ToErase = &MI;
ZExtElemNum++;
Eliminated = true;
}
}
}
return Eliminated;
}
bool BPFMIPeephole::eliminateZExt() {
MachineInstr* ToErase = nullptr;
bool Eliminated = false;
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
// If the previous instruction was marked for elimination, remove it now.
if (ToErase) {
ToErase->eraseFromParent();
ToErase = nullptr;
}
if (MI.getOpcode() != BPF::MOV_32_64)
continue;
// Eliminate MOV_32_64 if possible.
// MOV_32_64 rA, wB
//
// If wB has been zero extended, replace it with a SUBREG_TO_REG.
// This is to workaround BPF programs where pkt->{data, data_end}
// is encoded as u32, but actually the verifier populates them
// as 64bit pointer. The MOV_32_64 will zero out the top 32 bits.
LLVM_DEBUG(dbgs() << "Candidate MOV_32_64 instruction:");
LLVM_DEBUG(MI.dump());
if (!isMovFrom32Def(&MI))
continue;
LLVM_DEBUG(dbgs() << "Removing the MOV_32_64 instruction\n");
Register dst = MI.getOperand(0).getReg();
Register src = MI.getOperand(1).getReg();
// Build a SUBREG_TO_REG instruction.
BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(BPF::SUBREG_TO_REG), dst)
.addImm(0).addReg(src).addImm(BPF::sub_32);
ToErase = &MI;
Eliminated = true;
}
}
return Eliminated;
}
} // end default namespace
INITIALIZE_PASS(BPFMIPeephole, DEBUG_TYPE,
"BPF MachineSSA Peephole Optimization For ZEXT Eliminate",
false, false)
char BPFMIPeephole::ID = 0;
FunctionPass* llvm::createBPFMIPeepholePass() { return new BPFMIPeephole(); }
STATISTIC(RedundantMovElemNum, "Number of redundant moves eliminated");
namespace {
struct BPFMIPreEmitPeephole : public MachineFunctionPass {
static char ID;
MachineFunction *MF;
const TargetRegisterInfo *TRI;
const BPFInstrInfo *TII;
bool SupportGotol;
BPFMIPreEmitPeephole() : MachineFunctionPass(ID) {
initializeBPFMIPreEmitPeepholePass(*PassRegistry::getPassRegistry());
}
private:
// Initialize class variables.
void initialize(MachineFunction &MFParm);
bool in16BitRange(int Num);
bool eliminateRedundantMov();
bool adjustBranch();
public:
// Main entry point for this pass.
bool runOnMachineFunction(MachineFunction &MF) override {
if (skipFunction(MF.getFunction()))
return false;
initialize(MF);
bool Changed;
Changed = eliminateRedundantMov();
if (SupportGotol)
Changed = adjustBranch() || Changed;
return Changed;
}
};
// Initialize class variables.
void BPFMIPreEmitPeephole::initialize(MachineFunction &MFParm) {
MF = &MFParm;
TII = MF->getSubtarget<BPFSubtarget>().getInstrInfo();
TRI = MF->getSubtarget<BPFSubtarget>().getRegisterInfo();
SupportGotol = MF->getSubtarget<BPFSubtarget>().hasGotol();
LLVM_DEBUG(dbgs() << "*** BPF PreEmit peephole pass ***\n\n");
}
bool BPFMIPreEmitPeephole::eliminateRedundantMov() {
MachineInstr* ToErase = nullptr;
bool Eliminated = false;
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
// If the previous instruction was marked for elimination, remove it now.
if (ToErase) {
LLVM_DEBUG(dbgs() << " Redundant Mov Eliminated:");
LLVM_DEBUG(ToErase->dump());
ToErase->eraseFromParent();
ToErase = nullptr;
}
// Eliminate identical move:
//
// MOV rA, rA
//
// Note that we cannot remove
// MOV_32_64 rA, wA
// MOV_rr_32 wA, wA
// as these two instructions having side effects, zeroing out
// top 32 bits of rA.
unsigned Opcode = MI.getOpcode();
if (Opcode == BPF::MOV_rr) {
Register dst = MI.getOperand(0).getReg();
Register src = MI.getOperand(1).getReg();
if (dst != src)
continue;
ToErase = &MI;
RedundantMovElemNum++;
Eliminated = true;
}
}
}
return Eliminated;
}
bool BPFMIPreEmitPeephole::in16BitRange(int Num) {
// Well, the cut-off is not precisely at 16bit range since
// new codes are added during the transformation. So let us
// a little bit conservative.
return Num >= -GotolAbsLowBound && Num <= GotolAbsLowBound;
}
// Before cpu=v4, only 16bit branch target offset (-0x8000 to 0x7fff)
// is supported for both unconditional (JMP) and condition (JEQ, JSGT,
// etc.) branches. In certain cases, e.g., full unrolling, the branch
// target offset might exceed 16bit range. If this happens, the llvm
// will generate incorrect code as the offset is truncated to 16bit.
//
// To fix this rare case, a new insn JMPL is introduced. This new
// insn supports supports 32bit branch target offset. The compiler
// does not use this insn during insn selection. Rather, BPF backend
// will estimate the branch target offset and do JMP -> JMPL and
// JEQ -> JEQ + JMPL conversion if the estimated branch target offset
// is beyond 16bit.
bool BPFMIPreEmitPeephole::adjustBranch() {
bool Changed = false;
int CurrNumInsns = 0;
DenseMap<MachineBasicBlock *, int> SoFarNumInsns;
DenseMap<MachineBasicBlock *, MachineBasicBlock *> FollowThroughBB;
std::vector<MachineBasicBlock *> MBBs;
MachineBasicBlock *PrevBB = nullptr;
for (MachineBasicBlock &MBB : *MF) {
// MBB.size() is the number of insns in this basic block, including some
// debug info, e.g., DEBUG_VALUE, so we may over-count a little bit.
// Typically we have way more normal insns than DEBUG_VALUE insns.
// Also, if we indeed need to convert conditional branch like JEQ to
// JEQ + JMPL, we actually introduced some new insns like below.
CurrNumInsns += (int)MBB.size();
SoFarNumInsns[&MBB] = CurrNumInsns;
if (PrevBB != nullptr)
FollowThroughBB[PrevBB] = &MBB;
PrevBB = &MBB;
// A list of original BBs to make later traveral easier.
MBBs.push_back(&MBB);
}
FollowThroughBB[PrevBB] = nullptr;
for (unsigned i = 0; i < MBBs.size(); i++) {
// We have four cases here:
// (1). no terminator, simple follow through.
// (2). jmp to another bb.
// (3). conditional jmp to another bb or follow through.
// (4). conditional jmp followed by an unconditional jmp.
MachineInstr *CondJmp = nullptr, *UncondJmp = nullptr;
MachineBasicBlock *MBB = MBBs[i];
for (MachineInstr &Term : MBB->terminators()) {
if (Term.isConditionalBranch()) {
assert(CondJmp == nullptr);
CondJmp = &Term;
} else if (Term.isUnconditionalBranch()) {
assert(UncondJmp == nullptr);
UncondJmp = &Term;
}
}
// (1). no terminator, simple follow through.
if (!CondJmp && !UncondJmp)
continue;
MachineBasicBlock *CondTargetBB, *JmpBB;
CurrNumInsns = SoFarNumInsns[MBB];
// (2). jmp to another bb.
if (!CondJmp && UncondJmp) {
JmpBB = UncondJmp->getOperand(0).getMBB();
if (in16BitRange(SoFarNumInsns[JmpBB] - JmpBB->size() - CurrNumInsns))
continue;
// replace this insn as a JMPL.
BuildMI(MBB, UncondJmp->getDebugLoc(), TII->get(BPF::JMPL)).addMBB(JmpBB);
UncondJmp->eraseFromParent();
Changed = true;
continue;
}
const BasicBlock *TermBB = MBB->getBasicBlock();
int Dist;
// (3). conditional jmp to another bb or follow through.
if (!UncondJmp) {
CondTargetBB = CondJmp->getOperand(2).getMBB();
MachineBasicBlock *FollowBB = FollowThroughBB[MBB];
Dist = SoFarNumInsns[CondTargetBB] - CondTargetBB->size() - CurrNumInsns;
if (in16BitRange(Dist))
continue;
// We have
// B2: ...
// if (cond) goto B5
// B3: ...
// where B2 -> B5 is beyond 16bit range.
//
// We do not have 32bit cond jmp insn. So we try to do
// the following.
// B2: ...
// if (cond) goto New_B1
// New_B0 goto B3
// New_B1: gotol B5
// B3: ...
// Basically two new basic blocks are created.
MachineBasicBlock *New_B0 = MF->CreateMachineBasicBlock(TermBB);
MachineBasicBlock *New_B1 = MF->CreateMachineBasicBlock(TermBB);
// Insert New_B0 and New_B1 into function block list.
MachineFunction::iterator MBB_I = ++MBB->getIterator();
MF->insert(MBB_I, New_B0);
MF->insert(MBB_I, New_B1);
// replace B2 cond jump
if (CondJmp->getOperand(1).isReg())
BuildMI(*MBB, MachineBasicBlock::iterator(*CondJmp), CondJmp->getDebugLoc(), TII->get(CondJmp->getOpcode()))
.addReg(CondJmp->getOperand(0).getReg())
.addReg(CondJmp->getOperand(1).getReg())
.addMBB(New_B1);
else
BuildMI(*MBB, MachineBasicBlock::iterator(*CondJmp), CondJmp->getDebugLoc(), TII->get(CondJmp->getOpcode()))
.addReg(CondJmp->getOperand(0).getReg())
.addImm(CondJmp->getOperand(1).getImm())
.addMBB(New_B1);
// it is possible that CondTargetBB and FollowBB are the same. But the
// above Dist checking should already filtered this case.
MBB->removeSuccessor(CondTargetBB);
MBB->removeSuccessor(FollowBB);
MBB->addSuccessor(New_B0);
MBB->addSuccessor(New_B1);
// Populate insns in New_B0 and New_B1.
BuildMI(New_B0, CondJmp->getDebugLoc(), TII->get(BPF::JMP)).addMBB(FollowBB);
BuildMI(New_B1, CondJmp->getDebugLoc(), TII->get(BPF::JMPL))
.addMBB(CondTargetBB);
New_B0->addSuccessor(FollowBB);
New_B1->addSuccessor(CondTargetBB);
CondJmp->eraseFromParent();
Changed = true;
continue;
}
// (4). conditional jmp followed by an unconditional jmp.
CondTargetBB = CondJmp->getOperand(2).getMBB();
JmpBB = UncondJmp->getOperand(0).getMBB();
// We have
// B2: ...
// if (cond) goto B5
// JMP B7
// B3: ...
//
// If only B2->B5 is out of 16bit range, we can do
// B2: ...
// if (cond) goto new_B
// JMP B7
// New_B: gotol B5
// B3: ...
//
// If only 'JMP B7' is out of 16bit range, we can replace
// 'JMP B7' with 'JMPL B7'.
//
// If both B2->B5 and 'JMP B7' is out of range, just do
// both the above transformations.
Dist = SoFarNumInsns[CondTargetBB] - CondTargetBB->size() - CurrNumInsns;
if (!in16BitRange(Dist)) {
MachineBasicBlock *New_B = MF->CreateMachineBasicBlock(TermBB);
// Insert New_B0 into function block list.
MF->insert(++MBB->getIterator(), New_B);
// replace B2 cond jump
if (CondJmp->getOperand(1).isReg())
BuildMI(*MBB, MachineBasicBlock::iterator(*CondJmp), CondJmp->getDebugLoc(), TII->get(CondJmp->getOpcode()))
.addReg(CondJmp->getOperand(0).getReg())
.addReg(CondJmp->getOperand(1).getReg())
.addMBB(New_B);
else
BuildMI(*MBB, MachineBasicBlock::iterator(*CondJmp), CondJmp->getDebugLoc(), TII->get(CondJmp->getOpcode()))
.addReg(CondJmp->getOperand(0).getReg())
.addImm(CondJmp->getOperand(1).getImm())
.addMBB(New_B);
if (CondTargetBB != JmpBB)
MBB->removeSuccessor(CondTargetBB);
MBB->addSuccessor(New_B);
// Populate insn in New_B.
BuildMI(New_B, CondJmp->getDebugLoc(), TII->get(BPF::JMPL)).addMBB(CondTargetBB);
New_B->addSuccessor(CondTargetBB);
CondJmp->eraseFromParent();
Changed = true;
}
if (!in16BitRange(SoFarNumInsns[JmpBB] - CurrNumInsns)) {
BuildMI(MBB, UncondJmp->getDebugLoc(), TII->get(BPF::JMPL)).addMBB(JmpBB);
UncondJmp->eraseFromParent();
Changed = true;
}
}
return Changed;
}
} // end default namespace
INITIALIZE_PASS(BPFMIPreEmitPeephole, "bpf-mi-pemit-peephole",
"BPF PreEmit Peephole Optimization", false, false)
char BPFMIPreEmitPeephole::ID = 0;
FunctionPass* llvm::createBPFMIPreEmitPeepholePass()
{
return new BPFMIPreEmitPeephole();
}