blob: cfa0c21def791dd5f4965001aec2a31ce50df382 [file] [log] [blame]
//===-- SILowerI1Copies.cpp - Lower I1 Copies -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers all occurrences of i1 values (with a vreg_1 register class)
// to lane masks (32 / 64-bit scalar registers). The pass assumes machine SSA
// form and a wave-level control flow graph.
//
// Before this pass, values that are semantically i1 and are defined and used
// within the same basic block are already represented as lane masks in scalar
// registers. However, values that cross basic blocks are always transferred
// between basic blocks in vreg_1 virtual registers and are lowered by this
// pass.
//
// The only instructions that use or define vreg_1 virtual registers are COPY,
// PHI, and IMPLICIT_DEF.
//
//===----------------------------------------------------------------------===//
#include "SILowerI1Copies.h"
#include "AMDGPU.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/InitializePasses.h"
#include "llvm/Target/CGPassBuilderOption.h"
#define DEBUG_TYPE "si-i1-copies"
using namespace llvm;
static Register insertUndefLaneMask(MachineBasicBlock *MBB,
MachineRegisterInfo *MRI,
Register LaneMaskRegAttrs);
namespace {
class SILowerI1Copies : public MachineFunctionPass {
public:
static char ID;
SILowerI1Copies() : MachineFunctionPass(ID) {
initializeSILowerI1CopiesPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Lower i1 Copies"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
class Vreg1LoweringHelper : public PhiLoweringHelper {
public:
Vreg1LoweringHelper(MachineFunction *MF, MachineDominatorTree *DT,
MachinePostDominatorTree *PDT);
private:
DenseSet<Register> ConstrainRegs;
public:
void markAsLaneMask(Register DstReg) const override;
void getCandidatesForLowering(
SmallVectorImpl<MachineInstr *> &Vreg1Phis) const override;
void collectIncomingValuesFromPhi(
const MachineInstr *MI,
SmallVectorImpl<Incoming> &Incomings) const override;
void replaceDstReg(Register NewReg, Register OldReg,
MachineBasicBlock *MBB) override;
void buildMergeLaneMasks(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, const DebugLoc &DL,
Register DstReg, Register PrevReg,
Register CurReg) override;
void constrainIncomingRegisterTakenAsIs(Incoming &In) override;
bool lowerCopiesFromI1();
bool lowerCopiesToI1();
bool cleanConstrainRegs(bool Changed);
bool isVreg1(Register Reg) const {
return Reg.isVirtual() && MRI->getRegClass(Reg) == &AMDGPU::VReg_1RegClass;
}
};
Vreg1LoweringHelper::Vreg1LoweringHelper(MachineFunction *MF,
MachineDominatorTree *DT,
MachinePostDominatorTree *PDT)
: PhiLoweringHelper(MF, DT, PDT) {}
bool Vreg1LoweringHelper::cleanConstrainRegs(bool Changed) {
assert(Changed || ConstrainRegs.empty());
for (Register Reg : ConstrainRegs)
MRI->constrainRegClass(Reg, &AMDGPU::SReg_1_XEXECRegClass);
ConstrainRegs.clear();
return Changed;
}
/// Helper class that determines the relationship between incoming values of a
/// phi in the control flow graph to determine where an incoming value can
/// simply be taken as a scalar lane mask as-is, and where it needs to be
/// merged with another, previously defined lane mask.
///
/// The approach is as follows:
/// - Determine all basic blocks which, starting from the incoming blocks,
/// a wave may reach before entering the def block (the block containing the
/// phi).
/// - If an incoming block has no predecessors in this set, we can take the
/// incoming value as a scalar lane mask as-is.
/// -- A special case of this is when the def block has a self-loop.
/// - Otherwise, the incoming value needs to be merged with a previously
/// defined lane mask.
/// - If there is a path into the set of reachable blocks that does _not_ go
/// through an incoming block where we can take the scalar lane mask as-is,
/// we need to invent an available value for the SSAUpdater. Choices are
/// 0 and undef, with differing consequences for how to merge values etc.
///
/// TODO: We could use region analysis to quickly skip over SESE regions during
/// the traversal.
///
class PhiIncomingAnalysis {
MachinePostDominatorTree &PDT;
const SIInstrInfo *TII;
// For each reachable basic block, whether it is a source in the induced
// subgraph of the CFG.
DenseMap<MachineBasicBlock *, bool> ReachableMap;
SmallVector<MachineBasicBlock *, 4> ReachableOrdered;
SmallVector<MachineBasicBlock *, 4> Stack;
SmallVector<MachineBasicBlock *, 4> Predecessors;
public:
PhiIncomingAnalysis(MachinePostDominatorTree &PDT, const SIInstrInfo *TII)
: PDT(PDT), TII(TII) {}
/// Returns whether \p MBB is a source in the induced subgraph of reachable
/// blocks.
bool isSource(MachineBasicBlock &MBB) const {
return ReachableMap.find(&MBB)->second;
}
ArrayRef<MachineBasicBlock *> predecessors() const { return Predecessors; }
void analyze(MachineBasicBlock &DefBlock, ArrayRef<Incoming> Incomings) {
assert(Stack.empty());
ReachableMap.clear();
ReachableOrdered.clear();
Predecessors.clear();
// Insert the def block first, so that it acts as an end point for the
// traversal.
ReachableMap.try_emplace(&DefBlock, false);
ReachableOrdered.push_back(&DefBlock);
for (auto Incoming : Incomings) {
MachineBasicBlock *MBB = Incoming.Block;
if (MBB == &DefBlock) {
ReachableMap[&DefBlock] = true; // self-loop on DefBlock
continue;
}
ReachableMap.try_emplace(MBB, false);
ReachableOrdered.push_back(MBB);
// If this block has a divergent terminator and the def block is its
// post-dominator, the wave may first visit the other successors.
if (TII->hasDivergentBranch(MBB) && PDT.dominates(&DefBlock, MBB))
append_range(Stack, MBB->successors());
}
while (!Stack.empty()) {
MachineBasicBlock *MBB = Stack.pop_back_val();
if (!ReachableMap.try_emplace(MBB, false).second)
continue;
ReachableOrdered.push_back(MBB);
append_range(Stack, MBB->successors());
}
for (MachineBasicBlock *MBB : ReachableOrdered) {
bool HaveReachablePred = false;
for (MachineBasicBlock *Pred : MBB->predecessors()) {
if (ReachableMap.count(Pred)) {
HaveReachablePred = true;
} else {
Stack.push_back(Pred);
}
}
if (!HaveReachablePred)
ReachableMap[MBB] = true;
if (HaveReachablePred) {
for (MachineBasicBlock *UnreachablePred : Stack) {
if (!llvm::is_contained(Predecessors, UnreachablePred))
Predecessors.push_back(UnreachablePred);
}
}
Stack.clear();
}
}
};
/// Helper class that detects loops which require us to lower an i1 COPY into
/// bitwise manipulation.
///
/// Unfortunately, we cannot use LoopInfo because LoopInfo does not distinguish
/// between loops with the same header. Consider this example:
///
/// A-+-+
/// | | |
/// B-+ |
/// | |
/// C---+
///
/// A is the header of a loop containing A, B, and C as far as LoopInfo is
/// concerned. However, an i1 COPY in B that is used in C must be lowered to
/// bitwise operations to combine results from different loop iterations when
/// B has a divergent branch (since by default we will compile this code such
/// that threads in a wave are merged at the entry of C).
///
/// The following rule is implemented to determine whether bitwise operations
/// are required: use the bitwise lowering for a def in block B if a backward
/// edge to B is reachable without going through the nearest common
/// post-dominator of B and all uses of the def.
///
/// TODO: This rule is conservative because it does not check whether the
/// relevant branches are actually divergent.
///
/// The class is designed to cache the CFG traversal so that it can be re-used
/// for multiple defs within the same basic block.
///
/// TODO: We could use region analysis to quickly skip over SESE regions during
/// the traversal.
///
class LoopFinder {
MachineDominatorTree &DT;
MachinePostDominatorTree &PDT;
// All visited / reachable block, tagged by level (level 0 is the def block,
// level 1 are all blocks reachable including but not going through the def
// block's IPDOM, etc.).
DenseMap<MachineBasicBlock *, unsigned> Visited;
// Nearest common dominator of all visited blocks by level (level 0 is the
// def block). Used for seeding the SSAUpdater.
SmallVector<MachineBasicBlock *, 4> CommonDominators;
// Post-dominator of all visited blocks.
MachineBasicBlock *VisitedPostDom = nullptr;
// Level at which a loop was found: 0 is not possible; 1 = a backward edge is
// reachable without going through the IPDOM of the def block (if the IPDOM
// itself has an edge to the def block, the loop level is 2), etc.
unsigned FoundLoopLevel = ~0u;
MachineBasicBlock *DefBlock = nullptr;
SmallVector<MachineBasicBlock *, 4> Stack;
SmallVector<MachineBasicBlock *, 4> NextLevel;
public:
LoopFinder(MachineDominatorTree &DT, MachinePostDominatorTree &PDT)
: DT(DT), PDT(PDT) {}
void initialize(MachineBasicBlock &MBB) {
Visited.clear();
CommonDominators.clear();
Stack.clear();
NextLevel.clear();
VisitedPostDom = nullptr;
FoundLoopLevel = ~0u;
DefBlock = &MBB;
}
/// Check whether a backward edge can be reached without going through the
/// given \p PostDom of the def block.
///
/// Return the level of \p PostDom if a loop was found, or 0 otherwise.
unsigned findLoop(MachineBasicBlock *PostDom) {
MachineDomTreeNode *PDNode = PDT.getNode(DefBlock);
if (!VisitedPostDom)
advanceLevel();
unsigned Level = 0;
while (PDNode->getBlock() != PostDom) {
if (PDNode->getBlock() == VisitedPostDom)
advanceLevel();
PDNode = PDNode->getIDom();
Level++;
if (FoundLoopLevel == Level)
return Level;
}
return 0;
}
/// Add undef values dominating the loop and the optionally given additional
/// blocks, so that the SSA updater doesn't have to search all the way to the
/// function entry.
void addLoopEntries(unsigned LoopLevel, MachineSSAUpdater &SSAUpdater,
MachineRegisterInfo &MRI, Register LaneMaskRegAttrs,
ArrayRef<Incoming> Incomings = {}) {
assert(LoopLevel < CommonDominators.size());
MachineBasicBlock *Dom = CommonDominators[LoopLevel];
for (auto &Incoming : Incomings)
Dom = DT.findNearestCommonDominator(Dom, Incoming.Block);
if (!inLoopLevel(*Dom, LoopLevel, Incomings)) {
SSAUpdater.AddAvailableValue(
Dom, insertUndefLaneMask(Dom, &MRI, LaneMaskRegAttrs));
} else {
// The dominator is part of the loop or the given blocks, so add the
// undef value to unreachable predecessors instead.
for (MachineBasicBlock *Pred : Dom->predecessors()) {
if (!inLoopLevel(*Pred, LoopLevel, Incomings))
SSAUpdater.AddAvailableValue(
Pred, insertUndefLaneMask(Pred, &MRI, LaneMaskRegAttrs));
}
}
}
private:
bool inLoopLevel(MachineBasicBlock &MBB, unsigned LoopLevel,
ArrayRef<Incoming> Incomings) const {
auto DomIt = Visited.find(&MBB);
if (DomIt != Visited.end() && DomIt->second <= LoopLevel)
return true;
for (auto &Incoming : Incomings)
if (Incoming.Block == &MBB)
return true;
return false;
}
void advanceLevel() {
MachineBasicBlock *VisitedDom;
if (!VisitedPostDom) {
VisitedPostDom = DefBlock;
VisitedDom = DefBlock;
Stack.push_back(DefBlock);
} else {
VisitedPostDom = PDT.getNode(VisitedPostDom)->getIDom()->getBlock();
VisitedDom = CommonDominators.back();
for (unsigned i = 0; i < NextLevel.size();) {
if (PDT.dominates(VisitedPostDom, NextLevel[i])) {
Stack.push_back(NextLevel[i]);
NextLevel[i] = NextLevel.back();
NextLevel.pop_back();
} else {
i++;
}
}
}
unsigned Level = CommonDominators.size();
while (!Stack.empty()) {
MachineBasicBlock *MBB = Stack.pop_back_val();
if (!PDT.dominates(VisitedPostDom, MBB))
NextLevel.push_back(MBB);
Visited[MBB] = Level;
VisitedDom = DT.findNearestCommonDominator(VisitedDom, MBB);
for (MachineBasicBlock *Succ : MBB->successors()) {
if (Succ == DefBlock) {
if (MBB == VisitedPostDom)
FoundLoopLevel = std::min(FoundLoopLevel, Level + 1);
else
FoundLoopLevel = std::min(FoundLoopLevel, Level);
continue;
}
if (Visited.try_emplace(Succ, ~0u).second) {
if (MBB == VisitedPostDom)
NextLevel.push_back(Succ);
else
Stack.push_back(Succ);
}
}
}
CommonDominators.push_back(VisitedDom);
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SILowerI1Copies, DEBUG_TYPE, "SI Lower i1 Copies", false,
false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SILowerI1Copies, DEBUG_TYPE, "SI Lower i1 Copies", false,
false)
char SILowerI1Copies::ID = 0;
char &llvm::SILowerI1CopiesID = SILowerI1Copies::ID;
FunctionPass *llvm::createSILowerI1CopiesPass() {
return new SILowerI1Copies();
}
Register llvm::createLaneMaskReg(MachineRegisterInfo *MRI,
Register LaneMaskRegAttrs) {
return MRI->cloneVirtualRegister(LaneMaskRegAttrs);
}
static Register insertUndefLaneMask(MachineBasicBlock *MBB,
MachineRegisterInfo *MRI,
Register LaneMaskRegAttrs) {
MachineFunction &MF = *MBB->getParent();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
Register UndefReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
BuildMI(*MBB, MBB->getFirstTerminator(), {}, TII->get(AMDGPU::IMPLICIT_DEF),
UndefReg);
return UndefReg;
}
/// Lower all instructions that def or use vreg_1 registers.
///
/// In a first pass, we lower COPYs from vreg_1 to vector registers, as can
/// occur around inline assembly. We do this first, before vreg_1 registers
/// are changed to scalar mask registers.
///
/// Then we lower all defs of vreg_1 registers. Phi nodes are lowered before
/// all others, because phi lowering looks through copies and can therefore
/// often make copy lowering unnecessary.
bool SILowerI1Copies::runOnMachineFunction(MachineFunction &TheMF) {
// Only need to run this in SelectionDAG path.
if (TheMF.getProperties().hasProperty(
MachineFunctionProperties::Property::Selected))
return false;
Vreg1LoweringHelper Helper(&TheMF, &getAnalysis<MachineDominatorTree>(),
&getAnalysis<MachinePostDominatorTree>());
bool Changed = false;
Changed |= Helper.lowerCopiesFromI1();
Changed |= Helper.lowerPhis();
Changed |= Helper.lowerCopiesToI1();
return Helper.cleanConstrainRegs(Changed);
}
#ifndef NDEBUG
static bool isVRegCompatibleReg(const SIRegisterInfo &TRI,
const MachineRegisterInfo &MRI,
Register Reg) {
unsigned Size = TRI.getRegSizeInBits(Reg, MRI);
return Size == 1 || Size == 32;
}
#endif
bool Vreg1LoweringHelper::lowerCopiesFromI1() {
bool Changed = false;
SmallVector<MachineInstr *, 4> DeadCopies;
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() != AMDGPU::COPY)
continue;
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
if (!isVreg1(SrcReg))
continue;
if (isLaneMaskReg(DstReg) || isVreg1(DstReg))
continue;
Changed = true;
// Copy into a 32-bit vector register.
LLVM_DEBUG(dbgs() << "Lower copy from i1: " << MI);
DebugLoc DL = MI.getDebugLoc();
assert(isVRegCompatibleReg(TII->getRegisterInfo(), *MRI, DstReg));
assert(!MI.getOperand(0).getSubReg());
ConstrainRegs.insert(SrcReg);
BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.addImm(0)
.addImm(0)
.addImm(-1)
.addReg(SrcReg);
DeadCopies.push_back(&MI);
}
for (MachineInstr *MI : DeadCopies)
MI->eraseFromParent();
DeadCopies.clear();
}
return Changed;
}
PhiLoweringHelper::PhiLoweringHelper(MachineFunction *MF,
MachineDominatorTree *DT,
MachinePostDominatorTree *PDT)
: MF(MF), DT(DT), PDT(PDT) {
MRI = &MF->getRegInfo();
ST = &MF->getSubtarget<GCNSubtarget>();
TII = ST->getInstrInfo();
IsWave32 = ST->isWave32();
if (IsWave32) {
ExecReg = AMDGPU::EXEC_LO;
MovOp = AMDGPU::S_MOV_B32;
AndOp = AMDGPU::S_AND_B32;
OrOp = AMDGPU::S_OR_B32;
XorOp = AMDGPU::S_XOR_B32;
AndN2Op = AMDGPU::S_ANDN2_B32;
OrN2Op = AMDGPU::S_ORN2_B32;
} else {
ExecReg = AMDGPU::EXEC;
MovOp = AMDGPU::S_MOV_B64;
AndOp = AMDGPU::S_AND_B64;
OrOp = AMDGPU::S_OR_B64;
XorOp = AMDGPU::S_XOR_B64;
AndN2Op = AMDGPU::S_ANDN2_B64;
OrN2Op = AMDGPU::S_ORN2_B64;
}
}
bool PhiLoweringHelper::lowerPhis() {
MachineSSAUpdater SSAUpdater(*MF);
LoopFinder LF(*DT, *PDT);
PhiIncomingAnalysis PIA(*PDT, TII);
SmallVector<MachineInstr *, 4> Vreg1Phis;
SmallVector<Incoming, 4> Incomings;
getCandidatesForLowering(Vreg1Phis);
if (Vreg1Phis.empty())
return false;
DT->getBase().updateDFSNumbers();
MachineBasicBlock *PrevMBB = nullptr;
for (MachineInstr *MI : Vreg1Phis) {
MachineBasicBlock &MBB = *MI->getParent();
if (&MBB != PrevMBB) {
LF.initialize(MBB);
PrevMBB = &MBB;
}
LLVM_DEBUG(dbgs() << "Lower PHI: " << *MI);
Register DstReg = MI->getOperand(0).getReg();
markAsLaneMask(DstReg);
initializeLaneMaskRegisterAttributes(DstReg);
collectIncomingValuesFromPhi(MI, Incomings);
// Sort the incomings such that incoming values that dominate other incoming
// values are sorted earlier. This allows us to do some amount of on-the-fly
// constant folding.
// Incoming with smaller DFSNumIn goes first, DFSNumIn is 0 for entry block.
llvm::sort(Incomings, [this](Incoming LHS, Incoming RHS) {
return DT->getNode(LHS.Block)->getDFSNumIn() <
DT->getNode(RHS.Block)->getDFSNumIn();
});
#ifndef NDEBUG
PhiRegisters.insert(DstReg);
#endif
// Phis in a loop that are observed outside the loop receive a simple but
// conservatively correct treatment.
std::vector<MachineBasicBlock *> DomBlocks = {&MBB};
for (MachineInstr &Use : MRI->use_instructions(DstReg))
DomBlocks.push_back(Use.getParent());
MachineBasicBlock *PostDomBound =
PDT->findNearestCommonDominator(DomBlocks);
// FIXME: This fails to find irreducible cycles. If we have a def (other
// than a constant) in a pair of blocks that end up looping back to each
// other, it will be mishandle. Due to structurization this shouldn't occur
// in practice.
unsigned FoundLoopLevel = LF.findLoop(PostDomBound);
SSAUpdater.Initialize(DstReg);
if (FoundLoopLevel) {
LF.addLoopEntries(FoundLoopLevel, SSAUpdater, *MRI, LaneMaskRegAttrs,
Incomings);
for (auto &Incoming : Incomings) {
Incoming.UpdatedReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
SSAUpdater.AddAvailableValue(Incoming.Block, Incoming.UpdatedReg);
}
for (auto &Incoming : Incomings) {
MachineBasicBlock &IMBB = *Incoming.Block;
buildMergeLaneMasks(
IMBB, getSaluInsertionAtEnd(IMBB), {}, Incoming.UpdatedReg,
SSAUpdater.GetValueInMiddleOfBlock(&IMBB), Incoming.Reg);
}
} else {
// The phi is not observed from outside a loop. Use a more accurate
// lowering.
PIA.analyze(MBB, Incomings);
for (MachineBasicBlock *MBB : PIA.predecessors())
SSAUpdater.AddAvailableValue(
MBB, insertUndefLaneMask(MBB, MRI, LaneMaskRegAttrs));
for (auto &Incoming : Incomings) {
MachineBasicBlock &IMBB = *Incoming.Block;
if (PIA.isSource(IMBB)) {
constrainIncomingRegisterTakenAsIs(Incoming);
SSAUpdater.AddAvailableValue(&IMBB, Incoming.Reg);
} else {
Incoming.UpdatedReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
SSAUpdater.AddAvailableValue(&IMBB, Incoming.UpdatedReg);
}
}
for (auto &Incoming : Incomings) {
if (!Incoming.UpdatedReg.isValid())
continue;
MachineBasicBlock &IMBB = *Incoming.Block;
buildMergeLaneMasks(
IMBB, getSaluInsertionAtEnd(IMBB), {}, Incoming.UpdatedReg,
SSAUpdater.GetValueInMiddleOfBlock(&IMBB), Incoming.Reg);
}
}
Register NewReg = SSAUpdater.GetValueInMiddleOfBlock(&MBB);
if (NewReg != DstReg) {
replaceDstReg(NewReg, DstReg, &MBB);
MI->eraseFromParent();
}
Incomings.clear();
}
return true;
}
bool Vreg1LoweringHelper::lowerCopiesToI1() {
bool Changed = false;
MachineSSAUpdater SSAUpdater(*MF);
LoopFinder LF(*DT, *PDT);
SmallVector<MachineInstr *, 4> DeadCopies;
for (MachineBasicBlock &MBB : *MF) {
LF.initialize(MBB);
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() != AMDGPU::IMPLICIT_DEF &&
MI.getOpcode() != AMDGPU::COPY)
continue;
Register DstReg = MI.getOperand(0).getReg();
if (!isVreg1(DstReg))
continue;
Changed = true;
if (MRI->use_empty(DstReg)) {
DeadCopies.push_back(&MI);
continue;
}
LLVM_DEBUG(dbgs() << "Lower Other: " << MI);
markAsLaneMask(DstReg);
initializeLaneMaskRegisterAttributes(DstReg);
if (MI.getOpcode() == AMDGPU::IMPLICIT_DEF)
continue;
DebugLoc DL = MI.getDebugLoc();
Register SrcReg = MI.getOperand(1).getReg();
assert(!MI.getOperand(1).getSubReg());
if (!SrcReg.isVirtual() || (!isLaneMaskReg(SrcReg) && !isVreg1(SrcReg))) {
assert(TII->getRegisterInfo().getRegSizeInBits(SrcReg, *MRI) == 32);
Register TmpReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CMP_NE_U32_e64), TmpReg)
.addReg(SrcReg)
.addImm(0);
MI.getOperand(1).setReg(TmpReg);
SrcReg = TmpReg;
} else {
// SrcReg needs to be live beyond copy.
MI.getOperand(1).setIsKill(false);
}
// Defs in a loop that are observed outside the loop must be transformed
// into appropriate bit manipulation.
std::vector<MachineBasicBlock *> DomBlocks = {&MBB};
for (MachineInstr &Use : MRI->use_instructions(DstReg))
DomBlocks.push_back(Use.getParent());
MachineBasicBlock *PostDomBound =
PDT->findNearestCommonDominator(DomBlocks);
unsigned FoundLoopLevel = LF.findLoop(PostDomBound);
if (FoundLoopLevel) {
SSAUpdater.Initialize(DstReg);
SSAUpdater.AddAvailableValue(&MBB, DstReg);
LF.addLoopEntries(FoundLoopLevel, SSAUpdater, *MRI, LaneMaskRegAttrs);
buildMergeLaneMasks(MBB, MI, DL, DstReg,
SSAUpdater.GetValueInMiddleOfBlock(&MBB), SrcReg);
DeadCopies.push_back(&MI);
}
}
for (MachineInstr *MI : DeadCopies)
MI->eraseFromParent();
DeadCopies.clear();
}
return Changed;
}
bool PhiLoweringHelper::isConstantLaneMask(Register Reg, bool &Val) const {
const MachineInstr *MI;
for (;;) {
MI = MRI->getUniqueVRegDef(Reg);
if (MI->getOpcode() == AMDGPU::IMPLICIT_DEF)
return true;
if (MI->getOpcode() != AMDGPU::COPY)
break;
Reg = MI->getOperand(1).getReg();
if (!Reg.isVirtual())
return false;
if (!isLaneMaskReg(Reg))
return false;
}
if (MI->getOpcode() != MovOp)
return false;
if (!MI->getOperand(1).isImm())
return false;
int64_t Imm = MI->getOperand(1).getImm();
if (Imm == 0) {
Val = false;
return true;
}
if (Imm == -1) {
Val = true;
return true;
}
return false;
}
static void instrDefsUsesSCC(const MachineInstr &MI, bool &Def, bool &Use) {
Def = false;
Use = false;
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.getReg() == AMDGPU::SCC) {
if (MO.isUse())
Use = true;
else
Def = true;
}
}
}
/// Return a point at the end of the given \p MBB to insert SALU instructions
/// for lane mask calculation. Take terminators and SCC into account.
MachineBasicBlock::iterator
PhiLoweringHelper::getSaluInsertionAtEnd(MachineBasicBlock &MBB) const {
auto InsertionPt = MBB.getFirstTerminator();
bool TerminatorsUseSCC = false;
for (auto I = InsertionPt, E = MBB.end(); I != E; ++I) {
bool DefsSCC;
instrDefsUsesSCC(*I, DefsSCC, TerminatorsUseSCC);
if (TerminatorsUseSCC || DefsSCC)
break;
}
if (!TerminatorsUseSCC)
return InsertionPt;
while (InsertionPt != MBB.begin()) {
InsertionPt--;
bool DefSCC, UseSCC;
instrDefsUsesSCC(*InsertionPt, DefSCC, UseSCC);
if (DefSCC)
return InsertionPt;
}
// We should have at least seen an IMPLICIT_DEF or COPY
llvm_unreachable("SCC used by terminator but no def in block");
}
// VReg_1 -> SReg_32 or SReg_64
void Vreg1LoweringHelper::markAsLaneMask(Register DstReg) const {
MRI->setRegClass(DstReg, ST->getBoolRC());
}
void Vreg1LoweringHelper::getCandidatesForLowering(
SmallVectorImpl<MachineInstr *> &Vreg1Phis) const {
for (MachineBasicBlock &MBB : *MF) {
for (MachineInstr &MI : MBB.phis()) {
if (isVreg1(MI.getOperand(0).getReg()))
Vreg1Phis.push_back(&MI);
}
}
}
void Vreg1LoweringHelper::collectIncomingValuesFromPhi(
const MachineInstr *MI, SmallVectorImpl<Incoming> &Incomings) const {
for (unsigned i = 1; i < MI->getNumOperands(); i += 2) {
assert(i + 1 < MI->getNumOperands());
Register IncomingReg = MI->getOperand(i).getReg();
MachineBasicBlock *IncomingMBB = MI->getOperand(i + 1).getMBB();
MachineInstr *IncomingDef = MRI->getUniqueVRegDef(IncomingReg);
if (IncomingDef->getOpcode() == AMDGPU::COPY) {
IncomingReg = IncomingDef->getOperand(1).getReg();
assert(isLaneMaskReg(IncomingReg) || isVreg1(IncomingReg));
assert(!IncomingDef->getOperand(1).getSubReg());
} else if (IncomingDef->getOpcode() == AMDGPU::IMPLICIT_DEF) {
continue;
} else {
assert(IncomingDef->isPHI() || PhiRegisters.count(IncomingReg));
}
Incomings.emplace_back(IncomingReg, IncomingMBB, Register());
}
}
void Vreg1LoweringHelper::replaceDstReg(Register NewReg, Register OldReg,
MachineBasicBlock *MBB) {
MRI->replaceRegWith(NewReg, OldReg);
}
void Vreg1LoweringHelper::buildMergeLaneMasks(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL,
Register DstReg, Register PrevReg,
Register CurReg) {
bool PrevVal = false;
bool PrevConstant = isConstantLaneMask(PrevReg, PrevVal);
bool CurVal = false;
bool CurConstant = isConstantLaneMask(CurReg, CurVal);
if (PrevConstant && CurConstant) {
if (PrevVal == CurVal) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(CurReg);
} else if (CurVal) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(ExecReg);
} else {
BuildMI(MBB, I, DL, TII->get(XorOp), DstReg)
.addReg(ExecReg)
.addImm(-1);
}
return;
}
Register PrevMaskedReg;
Register CurMaskedReg;
if (!PrevConstant) {
if (CurConstant && CurVal) {
PrevMaskedReg = PrevReg;
} else {
PrevMaskedReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
BuildMI(MBB, I, DL, TII->get(AndN2Op), PrevMaskedReg)
.addReg(PrevReg)
.addReg(ExecReg);
}
}
if (!CurConstant) {
// TODO: check whether CurReg is already masked by EXEC
if (PrevConstant && PrevVal) {
CurMaskedReg = CurReg;
} else {
CurMaskedReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
BuildMI(MBB, I, DL, TII->get(AndOp), CurMaskedReg)
.addReg(CurReg)
.addReg(ExecReg);
}
}
if (PrevConstant && !PrevVal) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg)
.addReg(CurMaskedReg);
} else if (CurConstant && !CurVal) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg)
.addReg(PrevMaskedReg);
} else if (PrevConstant && PrevVal) {
BuildMI(MBB, I, DL, TII->get(OrN2Op), DstReg)
.addReg(CurMaskedReg)
.addReg(ExecReg);
} else {
BuildMI(MBB, I, DL, TII->get(OrOp), DstReg)
.addReg(PrevMaskedReg)
.addReg(CurMaskedReg ? CurMaskedReg : ExecReg);
}
}
void Vreg1LoweringHelper::constrainIncomingRegisterTakenAsIs(Incoming &In) {
return;
}