blob: addeb6db95969312d722ce16bb8d9e4d15992a41 [file] [log] [blame]
//===- lib/MC/GOFFObjectWriter.cpp - GOFF File Writer ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements GOFF object file writer information.
//
//===----------------------------------------------------------------------===//
#include "llvm/BinaryFormat/GOFF.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCGOFFObjectWriter.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "goff-writer"
namespace {
// The standard System/390 convention is to name the high-order (leftmost) bit
// in a byte as bit zero. The Flags type helps to set bits in a byte according
// to this numeration order.
class Flags {
uint8_t Val;
constexpr static uint8_t bits(uint8_t BitIndex, uint8_t Length, uint8_t Value,
uint8_t OldValue) {
assert(BitIndex < 8 && "Bit index out of bounds!");
assert(Length + BitIndex <= 8 && "Bit length too long!");
uint8_t Mask = ((1 << Length) - 1) << (8 - BitIndex - Length);
Value = Value << (8 - BitIndex - Length);
assert((Value & Mask) == Value && "Bits set outside of range!");
return (OldValue & ~Mask) | Value;
}
public:
constexpr Flags() : Val(0) {}
constexpr Flags(uint8_t BitIndex, uint8_t Length, uint8_t Value)
: Val(bits(BitIndex, Length, Value, 0)) {}
void set(uint8_t BitIndex, uint8_t Length, uint8_t Value) {
Val = bits(BitIndex, Length, Value, Val);
}
constexpr operator uint8_t() const { return Val; }
};
// Common flag values on records.
// Flag: This record is continued.
constexpr uint8_t RecContinued = Flags(7, 1, 1);
// Flag: This record is a continuation.
constexpr uint8_t RecContinuation = Flags(6, 1, 1);
// The GOFFOstream is responsible to write the data into the fixed physical
// records of the format. A user of this class announces the start of a new
// logical record and the size of its content. While writing the content, the
// physical records are created for the data. Possible fill bytes at the end of
// a physical record are written automatically. In principle, the GOFFOstream
// is agnostic of the endianness of the content. However, it also supports
// writing data in big endian byte order.
class GOFFOstream : public raw_ostream {
/// The underlying raw_pwrite_stream.
raw_pwrite_stream &OS;
/// The remaining size of this logical record, including fill bytes.
size_t RemainingSize;
#ifndef NDEBUG
/// The number of bytes needed to fill up the last physical record.
size_t Gap = 0;
#endif
/// The number of logical records emitted to far.
uint32_t LogicalRecords;
/// The type of the current (logical) record.
GOFF::RecordType CurrentType;
/// Signals start of new record.
bool NewLogicalRecord;
/// Static allocated buffer for the stream, used by the raw_ostream class. The
/// buffer is sized to hold the content of a physical record.
char Buffer[GOFF::RecordContentLength];
// Return the number of bytes left to write until next physical record.
// Please note that we maintain the total numbers of byte left, not the
// written size.
size_t bytesToNextPhysicalRecord() {
size_t Bytes = RemainingSize % GOFF::RecordContentLength;
return Bytes ? Bytes : GOFF::RecordContentLength;
}
/// Write the record prefix of a physical record, using the given record type.
static void writeRecordPrefix(raw_ostream &OS, GOFF::RecordType Type,
size_t RemainingSize,
uint8_t Flags = RecContinuation);
/// Fill the last physical record of a logical record with zero bytes.
void fillRecord();
/// See raw_ostream::write_impl.
void write_impl(const char *Ptr, size_t Size) override;
/// Return the current position within the stream, not counting the bytes
/// currently in the buffer.
uint64_t current_pos() const override { return OS.tell(); }
public:
explicit GOFFOstream(raw_pwrite_stream &OS)
: OS(OS), RemainingSize(0), LogicalRecords(0), NewLogicalRecord(false) {
SetBuffer(Buffer, sizeof(Buffer));
}
~GOFFOstream() { finalize(); }
raw_pwrite_stream &getOS() { return OS; }
void newRecord(GOFF::RecordType Type, size_t Size);
void finalize() { fillRecord(); }
uint32_t logicalRecords() { return LogicalRecords; }
// Support for endian-specific data.
template <typename value_type> void writebe(value_type Value) {
Value =
support::endian::byte_swap<value_type>(Value, llvm::endianness::big);
write(reinterpret_cast<const char *>(&Value), sizeof(value_type));
}
};
void GOFFOstream::writeRecordPrefix(raw_ostream &OS, GOFF::RecordType Type,
size_t RemainingSize, uint8_t Flags) {
uint8_t TypeAndFlags = Flags | (Type << 4);
if (RemainingSize > GOFF::RecordLength)
TypeAndFlags |= RecContinued;
OS << static_cast<unsigned char>(GOFF::PTVPrefix) // Record Type
<< static_cast<unsigned char>(TypeAndFlags) // Continuation
<< static_cast<unsigned char>(0); // Version
}
void GOFFOstream::newRecord(GOFF::RecordType Type, size_t Size) {
fillRecord();
CurrentType = Type;
RemainingSize = Size;
#ifdef NDEBUG
size_t Gap;
#endif
Gap = (RemainingSize % GOFF::RecordContentLength);
if (Gap) {
Gap = GOFF::RecordContentLength - Gap;
RemainingSize += Gap;
}
NewLogicalRecord = true;
++LogicalRecords;
}
void GOFFOstream::fillRecord() {
assert((GetNumBytesInBuffer() <= RemainingSize) &&
"More bytes in buffer than expected");
size_t Remains = RemainingSize - GetNumBytesInBuffer();
if (Remains) {
assert(Remains == Gap && "Wrong size of fill gap");
assert((Remains < GOFF::RecordLength) &&
"Attempt to fill more than one physical record");
raw_ostream::write_zeros(Remains);
}
flush();
assert(RemainingSize == 0 && "Not fully flushed");
assert(GetNumBytesInBuffer() == 0 && "Buffer not fully empty");
}
// This function is called from the raw_ostream implementation if:
// - The internal buffer is full. Size is excactly the size of the buffer.
// - Data larger than the internal buffer is written. Size is a multiple of the
// buffer size.
// - flush() has been called. Size is at most the buffer size.
// The GOFFOstream implementation ensures that flush() is called before a new
// logical record begins. Therefore it is sufficient to check for a new block
// only once.
void GOFFOstream::write_impl(const char *Ptr, size_t Size) {
assert((RemainingSize >= Size) && "Attempt to write too much data");
assert(RemainingSize && "Logical record overflow");
if (!(RemainingSize % GOFF::RecordContentLength)) {
writeRecordPrefix(OS, CurrentType, RemainingSize,
NewLogicalRecord ? 0 : RecContinuation);
NewLogicalRecord = false;
}
assert(!NewLogicalRecord &&
"New logical record not on physical record boundary");
size_t Idx = 0;
while (Size > 0) {
size_t BytesToWrite = bytesToNextPhysicalRecord();
if (BytesToWrite > Size)
BytesToWrite = Size;
OS.write(Ptr + Idx, BytesToWrite);
Idx += BytesToWrite;
Size -= BytesToWrite;
RemainingSize -= BytesToWrite;
if (Size)
writeRecordPrefix(OS, CurrentType, RemainingSize);
}
}
class GOFFObjectWriter : public MCObjectWriter {
// The target specific GOFF writer instance.
std::unique_ptr<MCGOFFObjectTargetWriter> TargetObjectWriter;
// The stream used to write the GOFF records.
GOFFOstream OS;
public:
GOFFObjectWriter(std::unique_ptr<MCGOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS)
: TargetObjectWriter(std::move(MOTW)), OS(OS) {}
~GOFFObjectWriter() override {}
// Write GOFF records.
void writeHeader();
void writeEnd();
// Implementation of the MCObjectWriter interface.
void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment *Fragment, const MCFixup &Fixup,
MCValue Target, uint64_t &FixedValue) override {}
void executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) override {}
uint64_t writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
};
} // end anonymous namespace
void GOFFObjectWriter::writeHeader() {
OS.newRecord(GOFF::RT_HDR, /*Size=*/57);
OS.write_zeros(1); // Reserved
OS.writebe<uint32_t>(0); // Target Hardware Environment
OS.writebe<uint32_t>(0); // Target Operating System Environment
OS.write_zeros(2); // Reserved
OS.writebe<uint16_t>(0); // CCSID
OS.write_zeros(16); // Character Set name
OS.write_zeros(16); // Language Product Identifier
OS.writebe<uint32_t>(1); // Architecture Level
OS.writebe<uint16_t>(0); // Module Properties Length
OS.write_zeros(6); // Reserved
}
void GOFFObjectWriter::writeEnd() {
uint8_t F = GOFF::END_EPR_None;
uint8_t AMODE = 0;
uint32_t ESDID = 0;
// TODO Set Flags/AMODE/ESDID for entry point.
OS.newRecord(GOFF::RT_END, /*Size=*/13);
OS.writebe<uint8_t>(Flags(6, 2, F)); // Indicator flags
OS.writebe<uint8_t>(AMODE); // AMODE
OS.write_zeros(3); // Reserved
// The record count is the number of logical records. In principle, this value
// is available as OS.logicalRecords(). However, some tools rely on this field
// being zero.
OS.writebe<uint32_t>(0); // Record Count
OS.writebe<uint32_t>(ESDID); // ESDID (of entry point)
OS.finalize();
}
uint64_t GOFFObjectWriter::writeObject(MCAssembler &Asm,
const MCAsmLayout &Layout) {
uint64_t StartOffset = OS.tell();
writeHeader();
writeEnd();
LLVM_DEBUG(dbgs() << "Wrote " << OS.logicalRecords() << " logical records.");
return OS.tell() - StartOffset;
}
std::unique_ptr<MCObjectWriter>
llvm::createGOFFObjectWriter(std::unique_ptr<MCGOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS) {
return std::make_unique<GOFFObjectWriter>(std::move(MOTW), OS);
}