blob: 6ae46e2b1262a40283d7ff2c89fefe35cc11f97b [file] [log] [blame]
//===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ExceptionAnalyzer.h"
namespace clang::tidy::utils {
void ExceptionAnalyzer::ExceptionInfo::registerException(
const Type *ExceptionType) {
assert(ExceptionType != nullptr && "Only valid types are accepted");
Behaviour = State::Throwing;
ThrownExceptions.insert(ExceptionType);
}
void ExceptionAnalyzer::ExceptionInfo::registerExceptions(
const Throwables &Exceptions) {
if (Exceptions.empty())
return;
Behaviour = State::Throwing;
ThrownExceptions.insert(Exceptions.begin(), Exceptions.end());
}
ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge(
const ExceptionAnalyzer::ExceptionInfo &Other) {
// Only the following two cases require an update to the local
// 'Behaviour'. If the local entity is already throwing there will be no
// change and if the other entity is throwing the merged entity will throw
// as well.
// If one of both entities is 'Unknown' and the other one does not throw
// the merged entity is 'Unknown' as well.
if (Other.Behaviour == State::Throwing)
Behaviour = State::Throwing;
else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing)
Behaviour = State::Unknown;
ContainsUnknown = ContainsUnknown || Other.ContainsUnknown;
ThrownExceptions.insert(Other.ThrownExceptions.begin(),
Other.ThrownExceptions.end());
return *this;
}
// FIXME: This could be ported to clang later.
namespace {
bool isUnambiguousPublicBaseClass(const Type *DerivedType,
const Type *BaseType) {
const auto *DerivedClass =
DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
const auto *BaseClass =
BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
if (!DerivedClass || !BaseClass)
return false;
CXXBasePaths Paths;
Paths.setOrigin(DerivedClass);
bool IsPublicBaseClass = false;
DerivedClass->lookupInBases(
[&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS,
CXXBasePath &) {
if (BS->getType()
->getCanonicalTypeUnqualified()
->getAsCXXRecordDecl() == BaseClass &&
BS->getAccessSpecifier() == AS_public) {
IsPublicBaseClass = true;
return true;
}
return false;
},
Paths);
return !Paths.isAmbiguous(BaseType->getCanonicalTypeUnqualified()) &&
IsPublicBaseClass;
}
inline bool isPointerOrPointerToMember(const Type *T) {
return T->isPointerType() || T->isMemberPointerType();
}
std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) {
if (T->isAnyPointerType() || T->isMemberPointerType())
return T->getPointeeType();
if (T->isArrayType())
return T->getAsArrayTypeUnsafe()->getElementType();
return std::nullopt;
}
bool isBaseOf(const Type *DerivedType, const Type *BaseType) {
const auto *DerivedClass = DerivedType->getAsCXXRecordDecl();
const auto *BaseClass = BaseType->getAsCXXRecordDecl();
if (!DerivedClass || !BaseClass)
return false;
return !DerivedClass->forallBases(
[BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; });
}
// Check if T1 is more or Equally qualified than T2.
bool moreOrEquallyQualified(QualType T1, QualType T2) {
return T1.getQualifiers().isStrictSupersetOf(T2.getQualifiers()) ||
T1.getQualifiers() == T2.getQualifiers();
}
bool isStandardPointerConvertible(QualType From, QualType To) {
assert((From->isPointerType() || From->isMemberPointerType()) &&
(To->isPointerType() || To->isMemberPointerType()) &&
"Pointer conversion should be performed on pointer types only.");
if (!moreOrEquallyQualified(To->getPointeeType(), From->getPointeeType()))
return false;
// (1)
// A null pointer constant can be converted to a pointer type ...
// The conversion of a null pointer constant to a pointer to cv-qualified type
// is a single conversion, and not the sequence of a pointer conversion
// followed by a qualification conversion. A null pointer constant of integral
// type can be converted to a prvalue of type std::nullptr_t
if (To->isPointerType() && From->isNullPtrType())
return true;
// (2)
// A prvalue of type “pointer to cv T”, where T is an object type, can be
// converted to a prvalue of type “pointer to cv void”.
if (To->isVoidPointerType() && From->isObjectPointerType())
return true;
// (3)
// A prvalue of type “pointer to cv D”, where D is a complete class type, can
// be converted to a prvalue of type “pointer to cv B”, where B is a base
// class of D. If B is an inaccessible or ambiguous base class of D, a program
// that necessitates this conversion is ill-formed.
if (const auto *RD = From->getPointeeCXXRecordDecl()) {
if (RD->isCompleteDefinition() &&
isBaseOf(From->getPointeeType().getTypePtr(),
To->getPointeeType().getTypePtr())) {
return true;
}
}
return false;
}
bool isFunctionPointerConvertible(QualType From, QualType To) {
if (!From->isFunctionPointerType() && !From->isFunctionType() &&
!From->isMemberFunctionPointerType())
return false;
if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType())
return false;
if (To->isFunctionPointerType()) {
if (From->isFunctionPointerType())
return To->getPointeeType() == From->getPointeeType();
if (From->isFunctionType())
return To->getPointeeType() == From;
return false;
}
if (To->isMemberFunctionPointerType()) {
if (!From->isMemberFunctionPointerType())
return false;
const auto *FromMember = cast<MemberPointerType>(From);
const auto *ToMember = cast<MemberPointerType>(To);
// Note: converting Derived::* to Base::* is a different kind of conversion,
// called Pointer-to-member conversion.
return FromMember->getClass() == ToMember->getClass() &&
FromMember->getPointeeType() == ToMember->getPointeeType();
}
return false;
}
// Checks if From is qualification convertible to To based on the current
// LangOpts. If From is any array, we perform the array to pointer conversion
// first. The function only performs checks based on C++ rules, which can differ
// from the C rules.
//
// The function should only be called in C++ mode.
bool isQualificationConvertiblePointer(QualType From, QualType To,
LangOptions LangOpts) {
// [N4659 7.5 (1)]
// A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is
// cv_0 P_0 cv_1 P_1 ... cv_n−1 P_n−1 cv_n U” for n > 0,
// where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”,
// “pointer to member of class C_i of type”, “array of N_i”, or
// “array of unknown bound of”.
//
// If P_i designates an array, the cv-qualifiers cv_i+1 on the element type
// are also taken as the cv-qualifiers cvi of the array.
//
// The n-tuple of cv-qualifiers after the first one in the longest
// cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the
// cv-qualification signature of T.
auto isValidP_i = [](QualType P) {
return P->isPointerType() || P->isMemberPointerType() ||
P->isConstantArrayType() || P->isIncompleteArrayType();
};
auto isSameP_i = [](QualType P1, QualType P2) {
if (P1->isPointerType())
return P2->isPointerType();
if (P1->isMemberPointerType())
return P2->isMemberPointerType() &&
P1->getAs<MemberPointerType>()->getClass() ==
P2->getAs<MemberPointerType>()->getClass();
if (P1->isConstantArrayType())
return P2->isConstantArrayType() &&
cast<ConstantArrayType>(P1)->getSize() ==
cast<ConstantArrayType>(P2)->getSize();
if (P1->isIncompleteArrayType())
return P2->isIncompleteArrayType();
return false;
};
// (2)
// Two types From and To are similar if they have cv-decompositions with the
// same n such that corresponding P_i components are the same [(added by
// N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown
// bound of”], and the types denoted by U are the same.
//
// (3)
// A prvalue expression of type From can be converted to type To if the
// following conditions are satisfied:
// - From and To are similar
// - For every i > 0, if const is in cv_i of From then const is in cv_i of
// To, and similarly for volatile.
// - [(derived from addition by N4849 7.3.5) If P_i of From is “array of
// unknown bound of”, P_i of To is “array of unknown bound of”.]
// - If the cv_i of From and cv_i of To are different, then const is in every
// cv_k of To for 0 < k < i.
int I = 0;
bool ConstUntilI = true;
auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From,
const QualType &To) {
if (I > 1) {
if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI)
return false;
}
if (I > 0) {
if (From.isConstQualified() && !To.isConstQualified())
return false;
if (From.isVolatileQualified() && !To.isVolatileQualified())
return false;
ConstUntilI = To.isConstQualified();
}
return true;
};
while (isValidP_i(From) && isValidP_i(To)) {
// Remove every sugar.
From = From.getCanonicalType();
To = To.getCanonicalType();
if (!SatisfiesCVRules(From, To))
return false;
if (!isSameP_i(From, To)) {
if (LangOpts.CPlusPlus20) {
if (From->isConstantArrayType() && !To->isIncompleteArrayType())
return false;
if (From->isIncompleteArrayType() && !To->isIncompleteArrayType())
return false;
} else {
return false;
}
}
++I;
std::optional<QualType> FromPointeeOrElem =
getPointeeOrArrayElementQualType(From);
std::optional<QualType> ToPointeeOrElem =
getPointeeOrArrayElementQualType(To);
assert(FromPointeeOrElem &&
"From pointer or array has no pointee or element!");
assert(ToPointeeOrElem && "To pointer or array has no pointee or element!");
From = *FromPointeeOrElem;
To = *ToPointeeOrElem;
}
// In this case the length (n) of From and To are not the same.
if (isValidP_i(From) || isValidP_i(To))
return false;
// We hit U.
if (!SatisfiesCVRules(From, To))
return false;
return From.getTypePtr() == To.getTypePtr();
}
} // namespace
static bool canThrow(const FunctionDecl *Func) {
const auto *FunProto = Func->getType()->getAs<FunctionProtoType>();
if (!FunProto)
return true;
switch (FunProto->canThrow()) {
case CT_Cannot:
return false;
case CT_Dependent: {
const Expr *NoexceptExpr = FunProto->getNoexceptExpr();
if (!NoexceptExpr)
return true; // no noexept - can throw
if (NoexceptExpr->isValueDependent())
return true; // depend on template - some instance can throw
bool Result = false;
if (!NoexceptExpr->EvaluateAsBooleanCondition(Result, Func->getASTContext(),
/*InConstantContext=*/true))
return true; // complex X condition in noexcept(X), cannot validate,
// assume that may throw
return !Result; // noexcept(false) - can throw
}
default:
return true;
};
}
bool ExceptionAnalyzer::ExceptionInfo::filterByCatch(
const Type *HandlerTy, const ASTContext &Context) {
llvm::SmallVector<const Type *, 8> TypesToDelete;
for (const Type *ExceptionTy : ThrownExceptions) {
CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified();
CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified();
// The handler is of type cv T or cv T& and E and T are the same type
// (ignoring the top-level cv-qualifiers) ...
if (ExceptionCanTy == HandlerCanTy) {
TypesToDelete.push_back(ExceptionTy);
}
// The handler is of type cv T or cv T& and T is an unambiguous public base
// class of E ...
else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(),
HandlerCanTy->getTypePtr())) {
TypesToDelete.push_back(ExceptionTy);
}
if (HandlerCanTy->getTypeClass() == Type::RValueReference ||
(HandlerCanTy->getTypeClass() == Type::LValueReference &&
!HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified()))
continue;
// The handler is of type cv T or const T& where T is a pointer or
// pointer-to-member type and E is a pointer or pointer-to-member type that
// can be converted to T by one or more of ...
if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) {
// A standard pointer conversion not involving conversions to pointers to
// private or protected or ambiguous classes ...
if (isStandardPointerConvertible(ExceptionCanTy, HandlerCanTy) &&
isUnambiguousPublicBaseClass(
ExceptionCanTy->getTypePtr()->getPointeeType().getTypePtr(),
HandlerCanTy->getTypePtr()->getPointeeType().getTypePtr())) {
TypesToDelete.push_back(ExceptionTy);
}
// A function pointer conversion ...
else if (isFunctionPointerConvertible(ExceptionCanTy, HandlerCanTy)) {
TypesToDelete.push_back(ExceptionTy);
}
// A a qualification conversion ...
else if (isQualificationConvertiblePointer(ExceptionCanTy, HandlerCanTy,
Context.getLangOpts())) {
TypesToDelete.push_back(ExceptionTy);
}
}
// The handler is of type cv T or const T& where T is a pointer or
// pointer-to-member type and E is std::nullptr_t.
else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
ExceptionCanTy->isNullPtrType()) {
TypesToDelete.push_back(ExceptionTy);
}
}
for (const Type *T : TypesToDelete)
ThrownExceptions.erase(T);
reevaluateBehaviour();
return !TypesToDelete.empty();
}
ExceptionAnalyzer::ExceptionInfo &
ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions(
const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) {
llvm::SmallVector<const Type *, 8> TypesToDelete;
// Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible.
// Therefore this slightly hacky implementation is required.
for (const Type *T : ThrownExceptions) {
if (const auto *TD = T->getAsTagDecl()) {
if (TD->getDeclName().isIdentifier()) {
if ((IgnoreBadAlloc &&
(TD->getName() == "bad_alloc" && TD->isInStdNamespace())) ||
(IgnoredTypes.count(TD->getName()) > 0))
TypesToDelete.push_back(T);
}
}
}
for (const Type *T : TypesToDelete)
ThrownExceptions.erase(T);
reevaluateBehaviour();
return *this;
}
void ExceptionAnalyzer::ExceptionInfo::clear() {
Behaviour = State::NotThrowing;
ContainsUnknown = false;
ThrownExceptions.clear();
}
void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() {
if (ThrownExceptions.empty())
if (ContainsUnknown)
Behaviour = State::Unknown;
else
Behaviour = State::NotThrowing;
else
Behaviour = State::Throwing;
}
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
const FunctionDecl *Func, const ExceptionInfo::Throwables &Caught,
llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
if (!Func || CallStack.count(Func) || (!CallStack.empty() && !canThrow(Func)))
return ExceptionInfo::createNonThrowing();
if (const Stmt *Body = Func->getBody()) {
CallStack.insert(Func);
ExceptionInfo Result = throwsException(Body, Caught, CallStack);
// For a constructor, we also have to check the initializers.
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Func)) {
for (const CXXCtorInitializer *Init : Ctor->inits()) {
ExceptionInfo Excs =
throwsException(Init->getInit(), Caught, CallStack);
Result.merge(Excs);
}
}
CallStack.erase(Func);
return Result;
}
auto Result = ExceptionInfo::createUnknown();
if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) {
for (const QualType &Ex : FPT->exceptions())
Result.registerException(Ex.getTypePtr());
}
return Result;
}
/// Analyzes a single statement on it's throwing behaviour. This is in principle
/// possible except some 'Unknown' functions are called.
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
const Stmt *St, const ExceptionInfo::Throwables &Caught,
llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
auto Results = ExceptionInfo::createNonThrowing();
if (!St)
return Results;
if (const auto *Throw = dyn_cast<CXXThrowExpr>(St)) {
if (const auto *ThrownExpr = Throw->getSubExpr()) {
const auto *ThrownType =
ThrownExpr->getType()->getUnqualifiedDesugaredType();
if (ThrownType->isReferenceType())
ThrownType = ThrownType->castAs<ReferenceType>()
->getPointeeType()
->getUnqualifiedDesugaredType();
Results.registerException(
ThrownExpr->getType()->getUnqualifiedDesugaredType());
} else
// A rethrow of a caught exception happens which makes it possible
// to throw all exception that are caught in the 'catch' clause of
// the parent try-catch block.
Results.registerExceptions(Caught);
} else if (const auto *Try = dyn_cast<CXXTryStmt>(St)) {
ExceptionInfo Uncaught =
throwsException(Try->getTryBlock(), Caught, CallStack);
for (unsigned I = 0; I < Try->getNumHandlers(); ++I) {
const CXXCatchStmt *Catch = Try->getHandler(I);
// Everything is catched through 'catch(...)'.
if (!Catch->getExceptionDecl()) {
ExceptionInfo Rethrown = throwsException(
Catch->getHandlerBlock(), Uncaught.getExceptionTypes(), CallStack);
Results.merge(Rethrown);
Uncaught.clear();
} else {
const auto *CaughtType =
Catch->getCaughtType()->getUnqualifiedDesugaredType();
if (CaughtType->isReferenceType()) {
CaughtType = CaughtType->castAs<ReferenceType>()
->getPointeeType()
->getUnqualifiedDesugaredType();
}
// If the caught exception will catch multiple previously potential
// thrown types (because it's sensitive to inheritance) the throwing
// situation changes. First of all filter the exception types and
// analyze if the baseclass-exception is rethrown.
if (Uncaught.filterByCatch(
CaughtType, Catch->getExceptionDecl()->getASTContext())) {
ExceptionInfo::Throwables CaughtExceptions;
CaughtExceptions.insert(CaughtType);
ExceptionInfo Rethrown = throwsException(Catch->getHandlerBlock(),
CaughtExceptions, CallStack);
Results.merge(Rethrown);
}
}
}
Results.merge(Uncaught);
} else if (const auto *Call = dyn_cast<CallExpr>(St)) {
if (const FunctionDecl *Func = Call->getDirectCallee()) {
ExceptionInfo Excs = throwsException(Func, Caught, CallStack);
Results.merge(Excs);
}
} else if (const auto *Construct = dyn_cast<CXXConstructExpr>(St)) {
ExceptionInfo Excs =
throwsException(Construct->getConstructor(), Caught, CallStack);
Results.merge(Excs);
} else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(St)) {
ExceptionInfo Excs =
throwsException(DefaultInit->getExpr(), Caught, CallStack);
Results.merge(Excs);
} else if (const auto *Coro = dyn_cast<CoroutineBodyStmt>(St)) {
for (const Stmt *Child : Coro->childrenExclBody()) {
if (Child != Coro->getExceptionHandler()) {
ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
Results.merge(Excs);
}
}
ExceptionInfo Excs = throwsException(Coro->getBody(), Caught, CallStack);
Results.merge(throwsException(Coro->getExceptionHandler(),
Excs.getExceptionTypes(), CallStack));
for (const Type *Throwable : Excs.getExceptionTypes()) {
if (const auto ThrowableRec = Throwable->getAsCXXRecordDecl()) {
ExceptionInfo DestructorExcs =
throwsException(ThrowableRec->getDestructor(), Caught, CallStack);
Results.merge(DestructorExcs);
}
}
} else {
for (const Stmt *Child : St->children()) {
ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
Results.merge(Excs);
}
}
return Results;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) {
ExceptionInfo ExceptionList;
// Check if the function has already been analyzed and reuse that result.
const auto CacheEntry = FunctionCache.find(Func);
if (CacheEntry == FunctionCache.end()) {
llvm::SmallSet<const FunctionDecl *, 32> CallStack;
ExceptionList =
throwsException(Func, ExceptionInfo::Throwables(), CallStack);
// Cache the result of the analysis. This is done prior to filtering
// because it is best to keep as much information as possible.
// The results here might be relevant to different analysis passes
// with different needs as well.
FunctionCache.try_emplace(Func, ExceptionList);
} else
ExceptionList = CacheEntry->getSecond();
return ExceptionList;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) {
llvm::SmallSet<const FunctionDecl *, 32> CallStack;
return throwsException(Stmt, ExceptionInfo::Throwables(), CallStack);
}
template <typename T>
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeDispatch(const T *Node) {
ExceptionInfo ExceptionList = analyzeImpl(Node);
if (ExceptionList.getBehaviour() == State::NotThrowing ||
ExceptionList.getBehaviour() == State::Unknown)
return ExceptionList;
// Remove all ignored exceptions from the list of exceptions that can be
// thrown.
ExceptionList.filterIgnoredExceptions(IgnoredExceptions, IgnoreBadAlloc);
return ExceptionList;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyze(const FunctionDecl *Func) {
return analyzeDispatch(Func);
}
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const Stmt *Stmt) {
return analyzeDispatch(Stmt);
}
} // namespace clang::tidy::utils