blob: 841bcf592e489df40b53a3c50c51252aaabd79de [file] [log] [blame]
//! Module to handle integer operations.
//! This module exists because some integer types are not supported on some gcc platforms, e.g.
//! 128-bit integers on 32-bit platforms and thus require to be handled manually.
use std::convert::TryFrom;
use gccjit::{BinaryOp, ComparisonOp, FunctionType, Location, RValue, ToRValue, Type, UnaryOp};
use rustc_codegen_ssa::common::{IntPredicate, TypeKind};
use rustc_codegen_ssa::traits::{BackendTypes, BaseTypeMethods, BuilderMethods, OverflowOp};
use rustc_middle::ty::{ParamEnv, Ty};
use rustc_target::abi::{
call::{ArgAbi, ArgAttributes, Conv, FnAbi, PassMode},
Endian,
};
use rustc_target::spec;
use crate::builder::ToGccComp;
use crate::{
builder::Builder,
common::{SignType, TypeReflection},
context::CodegenCx,
};
impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
pub fn gcc_urem(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// 128-bit unsigned %: __umodti3
self.multiplicative_operation(BinaryOp::Modulo, "mod", false, a, b)
}
pub fn gcc_srem(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// 128-bit signed %: __modti3
self.multiplicative_operation(BinaryOp::Modulo, "mod", true, a, b)
}
pub fn gcc_not(&self, a: RValue<'gcc>) -> RValue<'gcc> {
let typ = a.get_type();
if self.is_native_int_type_or_bool(typ) {
let operation =
if typ.is_bool() { UnaryOp::LogicalNegate } else { UnaryOp::BitwiseNegate };
self.cx.context.new_unary_op(self.location, operation, typ, a)
} else {
let element_type = typ.dyncast_array().expect("element type");
self.from_low_high_rvalues(
typ,
self.cx.context.new_unary_op(
self.location,
UnaryOp::BitwiseNegate,
element_type,
self.low(a),
),
self.cx.context.new_unary_op(
self.location,
UnaryOp::BitwiseNegate,
element_type,
self.high(a),
),
)
}
}
pub fn gcc_neg(&self, a: RValue<'gcc>) -> RValue<'gcc> {
let a_type = a.get_type();
if self.is_native_int_type(a_type) || a_type.is_vector() {
self.cx.context.new_unary_op(self.location, UnaryOp::Minus, a.get_type(), a)
} else {
self.gcc_add(self.gcc_not(a), self.gcc_int(a_type, 1))
}
}
pub fn gcc_and(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.cx.bitwise_operation(BinaryOp::BitwiseAnd, a, b, self.location)
}
pub fn gcc_lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
let a_type = a.get_type();
let b_type = b.get_type();
let a_native = self.is_native_int_type(a_type);
let b_native = self.is_native_int_type(b_type);
if a_native && b_native {
// FIXME(antoyo): remove the casts when libgccjit can shift an unsigned number by a signed number.
// TODO(antoyo): cast to unsigned to do a logical shift if that does not work.
if a_type.is_signed(self) != b_type.is_signed(self) {
let b = self.context.new_cast(self.location, b, a_type);
a >> b
} else {
a >> b
}
} else if a_type.is_vector() && a_type.is_vector() {
a >> b
} else if a_native && !b_native {
self.gcc_lshr(a, self.gcc_int_cast(b, a_type))
} else {
// NOTE: we cannot use the lshr builtin because it's calling hi() (to get the most
// significant half of the number) which uses lshr.
let native_int_type = a_type.dyncast_array().expect("get element type");
let func = self.current_func();
let then_block = func.new_block("then");
let else_block = func.new_block("else");
let after_block = func.new_block("after");
let b0_block = func.new_block("b0");
let actual_else_block = func.new_block("actual_else");
let result = func.new_local(self.location, a_type, "shiftResult");
let sixty_four = self.gcc_int(native_int_type, 64);
let sixty_three = self.gcc_int(native_int_type, 63);
let zero = self.gcc_zero(native_int_type);
let b = self.gcc_int_cast(b, native_int_type);
let condition = self.gcc_icmp(IntPredicate::IntNE, self.gcc_and(b, sixty_four), zero);
self.llbb().end_with_conditional(self.location, condition, then_block, else_block);
let shift_value = self.gcc_sub(b, sixty_four);
let high = self.high(a);
let sign = if a_type.is_signed(self) { high >> sixty_three } else { zero };
let array_value = self.from_low_high_rvalues(a_type, high >> shift_value, sign);
then_block.add_assignment(self.location, result, array_value);
then_block.end_with_jump(self.location, after_block);
let condition = self.gcc_icmp(IntPredicate::IntEQ, b, zero);
else_block.end_with_conditional(self.location, condition, b0_block, actual_else_block);
b0_block.add_assignment(self.location, result, a);
b0_block.end_with_jump(self.location, after_block);
let shift_value = self.gcc_sub(sixty_four, b);
// NOTE: cast low to its unsigned type in order to perform a logical right shift.
let unsigned_type = native_int_type.to_unsigned(&self.cx);
let casted_low = self.context.new_cast(self.location, self.low(a), unsigned_type);
let shifted_low = casted_low >> self.context.new_cast(self.location, b, unsigned_type);
let shifted_low = self.context.new_cast(self.location, shifted_low, native_int_type);
let array_value =
self.from_low_high_rvalues(a_type, (high << shift_value) | shifted_low, high >> b);
actual_else_block.add_assignment(self.location, result, array_value);
actual_else_block.end_with_jump(self.location, after_block);
// NOTE: since jumps were added in a place rustc does not expect, the current block in the
// state need to be updated.
self.switch_to_block(after_block);
result.to_rvalue()
}
}
fn additive_operation(
&self,
operation: BinaryOp,
a: RValue<'gcc>,
mut b: RValue<'gcc>,
) -> RValue<'gcc> {
let a_type = a.get_type();
let b_type = b.get_type();
if (self.is_native_int_type_or_bool(a_type) && self.is_native_int_type_or_bool(b_type))
|| (a_type.is_vector() && b_type.is_vector())
{
if a_type != b_type {
if a_type.is_vector() {
// Vector types need to be bitcast.
// TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
b = self.context.new_bitcast(self.location, b, a.get_type());
} else {
b = self.context.new_cast(self.location, b, a.get_type());
}
}
self.context.new_binary_op(self.location, operation, a_type, a, b)
} else {
debug_assert!(a_type.dyncast_array().is_some());
debug_assert!(b_type.dyncast_array().is_some());
let signed = a_type.is_compatible_with(self.i128_type);
let func_name = match (operation, signed) {
(BinaryOp::Plus, true) => "__rust_i128_add",
(BinaryOp::Plus, false) => "__rust_u128_add",
(BinaryOp::Minus, true) => "__rust_i128_sub",
(BinaryOp::Minus, false) => "__rust_u128_sub",
_ => unreachable!("unexpected additive operation {:?}", operation),
};
let param_a = self.context.new_parameter(self.location, a_type, "a");
let param_b = self.context.new_parameter(self.location, b_type, "b");
let func = self.context.new_function(
self.location,
FunctionType::Extern,
a_type,
&[param_a, param_b],
func_name,
false,
);
self.context.new_call(self.location, func, &[a, b])
}
}
pub fn gcc_add(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.additive_operation(BinaryOp::Plus, a, b)
}
pub fn gcc_mul(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.multiplicative_operation(BinaryOp::Mult, "mul", true, a, b)
}
pub fn gcc_sub(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.additive_operation(BinaryOp::Minus, a, b)
}
fn multiplicative_operation(
&self,
operation: BinaryOp,
operation_name: &str,
signed: bool,
a: RValue<'gcc>,
b: RValue<'gcc>,
) -> RValue<'gcc> {
let a_type = a.get_type();
let b_type = b.get_type();
if (self.is_native_int_type_or_bool(a_type) && self.is_native_int_type_or_bool(b_type))
|| (a_type.is_vector() && b_type.is_vector())
{
self.context.new_binary_op(self.location, operation, a_type, a, b)
} else {
debug_assert!(a_type.dyncast_array().is_some());
debug_assert!(b_type.dyncast_array().is_some());
let sign = if signed { "" } else { "u" };
let func_name = format!("__{}{}ti3", sign, operation_name);
let param_a = self.context.new_parameter(self.location, a_type, "a");
let param_b = self.context.new_parameter(self.location, b_type, "b");
let func = self.context.new_function(
self.location,
FunctionType::Extern,
a_type,
&[param_a, param_b],
func_name,
false,
);
self.context.new_call(self.location, func, &[a, b])
}
}
pub fn gcc_sdiv(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): check if the types are signed?
// 128-bit, signed: __divti3
// TODO(antoyo): convert the arguments to signed?
self.multiplicative_operation(BinaryOp::Divide, "div", true, a, b)
}
pub fn gcc_udiv(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// 128-bit, unsigned: __udivti3
self.multiplicative_operation(BinaryOp::Divide, "div", false, a, b)
}
pub fn gcc_checked_binop(
&self,
oop: OverflowOp,
typ: Ty<'_>,
lhs: <Self as BackendTypes>::Value,
rhs: <Self as BackendTypes>::Value,
) -> (<Self as BackendTypes>::Value, <Self as BackendTypes>::Value) {
use rustc_middle::ty::{Int, IntTy::*, Uint, UintTy::*};
let new_kind = match typ.kind() {
Int(t @ Isize) => Int(t.normalize(self.tcx.sess.target.pointer_width)),
Uint(t @ Usize) => Uint(t.normalize(self.tcx.sess.target.pointer_width)),
t @ (Uint(_) | Int(_)) => t.clone(),
_ => panic!("tried to get overflow intrinsic for op applied to non-int type"),
};
// TODO(antoyo): remove duplication with intrinsic?
let name = if self.is_native_int_type(lhs.get_type()) {
match oop {
OverflowOp::Add => match new_kind {
Int(I8) => "__builtin_add_overflow",
Int(I16) => "__builtin_add_overflow",
Int(I32) => "__builtin_sadd_overflow",
Int(I64) => "__builtin_saddll_overflow",
Int(I128) => "__builtin_add_overflow",
Uint(U8) => "__builtin_add_overflow",
Uint(U16) => "__builtin_add_overflow",
Uint(U32) => "__builtin_uadd_overflow",
Uint(U64) => "__builtin_uaddll_overflow",
Uint(U128) => "__builtin_add_overflow",
_ => unreachable!(),
},
OverflowOp::Sub => match new_kind {
Int(I8) => "__builtin_sub_overflow",
Int(I16) => "__builtin_sub_overflow",
Int(I32) => "__builtin_ssub_overflow",
Int(I64) => "__builtin_ssubll_overflow",
Int(I128) => "__builtin_sub_overflow",
Uint(U8) => "__builtin_sub_overflow",
Uint(U16) => "__builtin_sub_overflow",
Uint(U32) => "__builtin_usub_overflow",
Uint(U64) => "__builtin_usubll_overflow",
Uint(U128) => "__builtin_sub_overflow",
_ => unreachable!(),
},
OverflowOp::Mul => match new_kind {
Int(I8) => "__builtin_mul_overflow",
Int(I16) => "__builtin_mul_overflow",
Int(I32) => "__builtin_smul_overflow",
Int(I64) => "__builtin_smulll_overflow",
Int(I128) => "__builtin_mul_overflow",
Uint(U8) => "__builtin_mul_overflow",
Uint(U16) => "__builtin_mul_overflow",
Uint(U32) => "__builtin_umul_overflow",
Uint(U64) => "__builtin_umulll_overflow",
Uint(U128) => "__builtin_mul_overflow",
_ => unreachable!(),
},
}
} else {
match new_kind {
Int(I128) | Uint(U128) => {
let func_name = match oop {
OverflowOp::Add => match new_kind {
Int(I128) => "__rust_i128_addo",
Uint(U128) => "__rust_u128_addo",
_ => unreachable!(),
},
OverflowOp::Sub => match new_kind {
Int(I128) => "__rust_i128_subo",
Uint(U128) => "__rust_u128_subo",
_ => unreachable!(),
},
OverflowOp::Mul => match new_kind {
Int(I128) => "__rust_i128_mulo", // TODO(antoyo): use __muloti4d instead?
Uint(U128) => "__rust_u128_mulo",
_ => unreachable!(),
},
};
return self.operation_with_overflow(func_name, lhs, rhs);
}
_ => match oop {
OverflowOp::Mul => match new_kind {
Int(I32) => "__mulosi4",
Int(I64) => "__mulodi4",
_ => unreachable!(),
},
_ => unimplemented!("overflow operation for {:?}", new_kind),
},
}
};
let intrinsic = self.context.get_builtin_function(&name);
let res = self
.current_func()
// TODO(antoyo): is it correct to use rhs type instead of the parameter typ?
.new_local(self.location, rhs.get_type(), "binopResult")
.get_address(self.location);
let overflow = self.overflow_call(intrinsic, &[lhs, rhs, res], None);
(res.dereference(self.location).to_rvalue(), overflow)
}
pub fn operation_with_overflow(
&self,
func_name: &str,
lhs: RValue<'gcc>,
rhs: RValue<'gcc>,
) -> (RValue<'gcc>, RValue<'gcc>) {
let a_type = lhs.get_type();
let b_type = rhs.get_type();
debug_assert!(a_type.dyncast_array().is_some());
debug_assert!(b_type.dyncast_array().is_some());
let param_a = self.context.new_parameter(self.location, a_type, "a");
let param_b = self.context.new_parameter(self.location, b_type, "b");
let result_field = self.context.new_field(self.location, a_type, "result");
let overflow_field = self.context.new_field(self.location, self.bool_type, "overflow");
let ret_ty = Ty::new_tup(self.tcx, &[self.tcx.types.i128, self.tcx.types.bool]);
let layout = self.tcx.layout_of(ParamEnv::reveal_all().and(ret_ty)).unwrap();
let arg_abi = ArgAbi { layout, mode: PassMode::Direct(ArgAttributes::new()) };
let mut fn_abi = FnAbi {
args: vec![arg_abi.clone(), arg_abi.clone()].into_boxed_slice(),
ret: arg_abi,
c_variadic: false,
fixed_count: 2,
conv: Conv::C,
can_unwind: false,
};
fn_abi.adjust_for_foreign_abi(self.cx, spec::abi::Abi::C { unwind: false }).unwrap();
let indirect = matches!(fn_abi.ret.mode, PassMode::Indirect { .. });
let return_type = self.context.new_struct_type(
self.location,
"result_overflow",
&[result_field, overflow_field],
);
let result = if indirect {
let return_value =
self.current_func().new_local(self.location, return_type.as_type(), "return_value");
let return_param_type = return_type.as_type().make_pointer();
let return_param =
self.context.new_parameter(self.location, return_param_type, "return_value");
let func = self.context.new_function(
self.location,
FunctionType::Extern,
self.type_void(),
&[return_param, param_a, param_b],
func_name,
false,
);
self.llbb().add_eval(
self.location,
self.context.new_call(
self.location,
func,
&[return_value.get_address(self.location), lhs, rhs],
),
);
return_value.to_rvalue()
} else {
let func = self.context.new_function(
self.location,
FunctionType::Extern,
return_type.as_type(),
&[param_a, param_b],
func_name,
false,
);
self.context.new_call(self.location, func, &[lhs, rhs])
};
let overflow = result.access_field(self.location, overflow_field);
let int_result = result.access_field(self.location, result_field);
(int_result, overflow)
}
pub fn gcc_icmp(
&mut self,
op: IntPredicate,
mut lhs: RValue<'gcc>,
mut rhs: RValue<'gcc>,
) -> RValue<'gcc> {
let a_type = lhs.get_type();
let b_type = rhs.get_type();
if self.is_non_native_int_type(a_type) || self.is_non_native_int_type(b_type) {
// This algorithm is based on compiler-rt's __cmpti2:
// https://github.com/llvm-mirror/compiler-rt/blob/f0745e8476f069296a7c71accedd061dce4cdf79/lib/builtins/cmpti2.c#L21
let result = self.current_func().new_local(self.location, self.int_type, "icmp_result");
let block1 = self.current_func().new_block("block1");
let block2 = self.current_func().new_block("block2");
let block3 = self.current_func().new_block("block3");
let block4 = self.current_func().new_block("block4");
let block5 = self.current_func().new_block("block5");
let block6 = self.current_func().new_block("block6");
let block7 = self.current_func().new_block("block7");
let block8 = self.current_func().new_block("block8");
let after = self.current_func().new_block("after");
let native_int_type = a_type.dyncast_array().expect("get element type");
// NOTE: cast low to its unsigned type in order to perform a comparison correctly (e.g.
// the sign is only on high).
let unsigned_type = native_int_type.to_unsigned(&self.cx);
let lhs_low = self.context.new_cast(self.location, self.low(lhs), unsigned_type);
let rhs_low = self.context.new_cast(self.location, self.low(rhs), unsigned_type);
let condition = self.context.new_comparison(
self.location,
ComparisonOp::LessThan,
self.high(lhs),
self.high(rhs),
);
self.llbb().end_with_conditional(self.location, condition, block1, block2);
block1.add_assignment(
self.location,
result,
self.context.new_rvalue_zero(self.int_type),
);
block1.end_with_jump(self.location, after);
let condition = self.context.new_comparison(
self.location,
ComparisonOp::GreaterThan,
self.high(lhs),
self.high(rhs),
);
block2.end_with_conditional(self.location, condition, block3, block4);
block3.add_assignment(
self.location,
result,
self.context.new_rvalue_from_int(self.int_type, 2),
);
block3.end_with_jump(self.location, after);
let condition = self.context.new_comparison(
self.location,
ComparisonOp::LessThan,
lhs_low,
rhs_low,
);
block4.end_with_conditional(self.location, condition, block5, block6);
block5.add_assignment(
self.location,
result,
self.context.new_rvalue_zero(self.int_type),
);
block5.end_with_jump(self.location, after);
let condition = self.context.new_comparison(
self.location,
ComparisonOp::GreaterThan,
lhs_low,
rhs_low,
);
block6.end_with_conditional(self.location, condition, block7, block8);
block7.add_assignment(
self.location,
result,
self.context.new_rvalue_from_int(self.int_type, 2),
);
block7.end_with_jump(self.location, after);
block8.add_assignment(
self.location,
result,
self.context.new_rvalue_one(self.int_type),
);
block8.end_with_jump(self.location, after);
// NOTE: since jumps were added in a place rustc does not expect, the current block in the
// state need to be updated.
self.switch_to_block(after);
let cmp = result.to_rvalue();
let (op, limit) = match op {
IntPredicate::IntEQ => {
return self.context.new_comparison(
self.location,
ComparisonOp::Equals,
cmp,
self.context.new_rvalue_one(self.int_type),
);
}
IntPredicate::IntNE => {
return self.context.new_comparison(
self.location,
ComparisonOp::NotEquals,
cmp,
self.context.new_rvalue_one(self.int_type),
);
}
// TODO(antoyo): cast to u128 for unsigned comparison. See below.
IntPredicate::IntUGT => (ComparisonOp::Equals, 2),
IntPredicate::IntUGE => (ComparisonOp::GreaterThanEquals, 1),
IntPredicate::IntULT => (ComparisonOp::Equals, 0),
IntPredicate::IntULE => (ComparisonOp::LessThanEquals, 1),
IntPredicate::IntSGT => (ComparisonOp::Equals, 2),
IntPredicate::IntSGE => (ComparisonOp::GreaterThanEquals, 1),
IntPredicate::IntSLT => (ComparisonOp::Equals, 0),
IntPredicate::IntSLE => (ComparisonOp::LessThanEquals, 1),
};
self.context.new_comparison(
self.location,
op,
cmp,
self.context.new_rvalue_from_int(self.int_type, limit),
)
} else if a_type.get_pointee().is_some() && b_type.get_pointee().is_some() {
// NOTE: gcc cannot compare pointers to different objects, but rustc does that, so cast them to usize.
lhs = self.context.new_bitcast(self.location, lhs, self.usize_type);
rhs = self.context.new_bitcast(self.location, rhs, self.usize_type);
self.context.new_comparison(self.location, op.to_gcc_comparison(), lhs, rhs)
} else {
if a_type != b_type {
// NOTE: because libgccjit cannot compare function pointers.
if a_type.dyncast_function_ptr_type().is_some()
&& b_type.dyncast_function_ptr_type().is_some()
{
lhs = self.context.new_cast(self.location, lhs, self.usize_type.make_pointer());
rhs = self.context.new_cast(self.location, rhs, self.usize_type.make_pointer());
}
// NOTE: hack because we try to cast a vector type to the same vector type.
else if format!("{:?}", a_type) != format!("{:?}", b_type) {
rhs = self.context.new_cast(self.location, rhs, a_type);
}
}
match op {
IntPredicate::IntUGT
| IntPredicate::IntUGE
| IntPredicate::IntULT
| IntPredicate::IntULE => {
if !a_type.is_vector() {
let unsigned_type = a_type.to_unsigned(&self.cx);
lhs = self.context.new_cast(self.location, lhs, unsigned_type);
rhs = self.context.new_cast(self.location, rhs, unsigned_type);
}
}
// TODO(antoyo): we probably need to handle signed comparison for unsigned
// integers.
_ => (),
}
self.context.new_comparison(self.location, op.to_gcc_comparison(), lhs, rhs)
}
}
pub fn gcc_xor(&self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
let a_type = a.get_type();
let b_type = b.get_type();
if a_type.is_vector() && b_type.is_vector() {
let b = self.bitcast_if_needed(b, a_type);
a ^ b
} else if self.is_native_int_type_or_bool(a_type) && self.is_native_int_type_or_bool(b_type)
{
a ^ b
} else {
self.from_low_high_rvalues(
a_type,
self.low(a) ^ self.low(b),
self.high(a) ^ self.high(b),
)
}
}
pub fn gcc_shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
let a_type = a.get_type();
let b_type = b.get_type();
let a_native = self.is_native_int_type(a_type);
let b_native = self.is_native_int_type(b_type);
if a_native && b_native {
// FIXME(antoyo): remove the casts when libgccjit can shift an unsigned number by an unsigned number.
if a_type.is_unsigned(self) && b_type.is_signed(self) {
let a = self.context.new_cast(self.location, a, b_type);
let result = a << b;
self.context.new_cast(self.location, result, a_type)
} else if a_type.is_signed(self) && b_type.is_unsigned(self) {
let b = self.context.new_cast(self.location, b, a_type);
a << b
} else {
a << b
}
} else if a_type.is_vector() && a_type.is_vector() {
a << b
} else if a_native && !b_native {
self.gcc_shl(a, self.gcc_int_cast(b, a_type))
} else {
// NOTE: we cannot use the ashl builtin because it's calling widen_hi() which uses ashl.
let native_int_type = a_type.dyncast_array().expect("get element type");
let func = self.current_func();
let then_block = func.new_block("then");
let else_block = func.new_block("else");
let after_block = func.new_block("after");
let b0_block = func.new_block("b0");
let actual_else_block = func.new_block("actual_else");
let result = func.new_local(self.location, a_type, "shiftResult");
let b = self.gcc_int_cast(b, native_int_type);
let sixty_four = self.gcc_int(native_int_type, 64);
let zero = self.gcc_zero(native_int_type);
let condition = self.gcc_icmp(IntPredicate::IntNE, self.gcc_and(b, sixty_four), zero);
self.llbb().end_with_conditional(self.location, condition, then_block, else_block);
let array_value =
self.from_low_high_rvalues(a_type, zero, self.low(a) << (b - sixty_four));
then_block.add_assignment(self.location, result, array_value);
then_block.end_with_jump(self.location, after_block);
let condition = self.gcc_icmp(IntPredicate::IntEQ, b, zero);
else_block.end_with_conditional(self.location, condition, b0_block, actual_else_block);
b0_block.add_assignment(self.location, result, a);
b0_block.end_with_jump(self.location, after_block);
// NOTE: cast low to its unsigned type in order to perform a logical right shift.
// TODO(antoyo): adjust this ^ comment.
let unsigned_type = native_int_type.to_unsigned(&self.cx);
let casted_low = self.context.new_cast(self.location, self.low(a), unsigned_type);
let shift_value = self.context.new_cast(self.location, sixty_four - b, unsigned_type);
let high_low =
self.context.new_cast(self.location, casted_low >> shift_value, native_int_type);
let array_value = self.from_low_high_rvalues(
a_type,
self.low(a) << b,
(self.high(a) << b) | high_low,
);
actual_else_block.add_assignment(self.location, result, array_value);
actual_else_block.end_with_jump(self.location, after_block);
// NOTE: since jumps were added in a place rustc does not expect, the current block in the
// state need to be updated.
self.switch_to_block(after_block);
result.to_rvalue()
}
}
pub fn gcc_bswap(&mut self, mut arg: RValue<'gcc>, width: u64) -> RValue<'gcc> {
let arg_type = arg.get_type();
if !self.is_native_int_type(arg_type) {
let native_int_type = arg_type.dyncast_array().expect("get element type");
let lsb = self.low(arg);
let swapped_lsb = self.gcc_bswap(lsb, width / 2);
let swapped_lsb = self.context.new_cast(self.location, swapped_lsb, native_int_type);
let msb = self.high(arg);
let swapped_msb = self.gcc_bswap(msb, width / 2);
let swapped_msb = self.context.new_cast(self.location, swapped_msb, native_int_type);
// NOTE: we also need to swap the two elements here, in addition to swapping inside
// the elements themselves like done above.
return self.from_low_high_rvalues(arg_type, swapped_msb, swapped_lsb);
}
// TODO(antoyo): check if it's faster to use string literals and a
// match instead of format!.
let bswap = self.cx.context.get_builtin_function(&format!("__builtin_bswap{}", width));
// FIXME(antoyo): this cast should not be necessary. Remove
// when having proper sized integer types.
let param_type = bswap.get_param(0).to_rvalue().get_type();
if param_type != arg_type {
arg = self.bitcast(arg, param_type);
}
self.cx.context.new_call(self.location, bswap, &[arg])
}
}
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn gcc_int(&self, typ: Type<'gcc>, int: i64) -> RValue<'gcc> {
if self.is_native_int_type_or_bool(typ) {
self.context.new_rvalue_from_long(typ, i64::try_from(int).expect("i64::try_from"))
} else {
// NOTE: set the sign in high.
self.from_low_high(typ, int, -(int.is_negative() as i64))
}
}
pub fn gcc_uint(&self, typ: Type<'gcc>, int: u64) -> RValue<'gcc> {
if typ.is_u128(self) {
// FIXME(antoyo): libgccjit cannot create 128-bit values yet.
let num = self.context.new_rvalue_from_long(self.u64_type, int as i64);
self.gcc_int_cast(num, typ)
} else if self.is_native_int_type_or_bool(typ) {
self.context
.new_rvalue_from_long(typ, u64::try_from(int).expect("u64::try_from") as i64)
} else {
self.from_low_high(typ, int as i64, 0)
}
}
pub fn gcc_uint_big(&self, typ: Type<'gcc>, num: u128) -> RValue<'gcc> {
let low = num as u64;
let high = (num >> 64) as u64;
if num >> 64 != 0 {
// FIXME(antoyo): use a new function new_rvalue_from_unsigned_long()?
if self.is_native_int_type(typ) {
let low = self.context.new_rvalue_from_long(self.u64_type, low as i64);
let high = self.context.new_rvalue_from_long(typ, high as i64);
let sixty_four = self.context.new_rvalue_from_long(typ, 64);
let shift = high << sixty_four;
shift | self.context.new_cast(None, low, typ)
} else {
self.from_low_high(typ, low as i64, high as i64)
}
} else if typ.is_i128(self) {
// FIXME(antoyo): libgccjit cannot create 128-bit values yet.
let num = self.context.new_rvalue_from_long(self.u64_type, num as u64 as i64);
self.gcc_int_cast(num, typ)
} else {
self.gcc_uint(typ, num as u64)
}
}
pub fn gcc_zero(&self, typ: Type<'gcc>) -> RValue<'gcc> {
if self.is_native_int_type_or_bool(typ) {
self.context.new_rvalue_zero(typ)
} else {
self.from_low_high(typ, 0, 0)
}
}
pub fn gcc_int_width(&self, typ: Type<'gcc>) -> u64 {
if self.is_native_int_type_or_bool(typ) {
typ.get_size() as u64 * 8
} else {
// NOTE: the only unsupported types are u128 and i128.
128
}
}
fn bitwise_operation(
&self,
operation: BinaryOp,
a: RValue<'gcc>,
mut b: RValue<'gcc>,
loc: Option<Location<'gcc>>,
) -> RValue<'gcc> {
let a_type = a.get_type();
let b_type = b.get_type();
let a_native = self.is_native_int_type_or_bool(a_type);
let b_native = self.is_native_int_type_or_bool(b_type);
if a_type.is_vector() && b_type.is_vector() {
let b = self.bitcast_if_needed(b, a_type);
self.context.new_binary_op(loc, operation, a_type, a, b)
} else if a_native && b_native {
if a_type != b_type {
b = self.context.new_cast(loc, b, a_type);
}
self.context.new_binary_op(loc, operation, a_type, a, b)
} else {
assert!(
!a_native && !b_native,
"both types should either be native or non-native for or operation"
);
let native_int_type = a_type.dyncast_array().expect("get element type");
self.from_low_high_rvalues(
a_type,
self.context.new_binary_op(
loc,
operation,
native_int_type,
self.low(a),
self.low(b),
),
self.context.new_binary_op(
loc,
operation,
native_int_type,
self.high(a),
self.high(b),
),
)
}
}
pub fn gcc_or(
&self,
a: RValue<'gcc>,
b: RValue<'gcc>,
loc: Option<Location<'gcc>>,
) -> RValue<'gcc> {
self.bitwise_operation(BinaryOp::BitwiseOr, a, b, loc)
}
// TODO(antoyo): can we use https://github.com/rust-lang/compiler-builtins/blob/master/src/int/mod.rs#L379 instead?
pub fn gcc_int_cast(&self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> {
let value_type = value.get_type();
if self.is_native_int_type_or_bool(dest_typ) && self.is_native_int_type_or_bool(value_type)
{
self.context.new_cast(None, value, dest_typ)
} else if self.is_native_int_type_or_bool(dest_typ) {
self.context.new_cast(None, self.low(value), dest_typ)
} else if self.is_native_int_type_or_bool(value_type) {
let dest_element_type = dest_typ.dyncast_array().expect("get element type");
// NOTE: set the sign of the value.
let zero = self.context.new_rvalue_zero(value_type);
let is_negative =
self.context.new_comparison(None, ComparisonOp::LessThan, value, zero);
let is_negative = self.gcc_int_cast(is_negative, dest_element_type);
self.from_low_high_rvalues(
dest_typ,
self.context.new_cast(None, value, dest_element_type),
self.context.new_unary_op(None, UnaryOp::Minus, dest_element_type, is_negative),
)
} else {
// Since u128 and i128 are the only types that can be unsupported, we know the type of
// value and the destination type have the same size, so a bitcast is fine.
// TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
self.context.new_bitcast(None, value, dest_typ)
}
}
fn int_to_float_cast(
&self,
signed: bool,
value: RValue<'gcc>,
dest_typ: Type<'gcc>,
) -> RValue<'gcc> {
let value_type = value.get_type();
if self.is_native_int_type_or_bool(value_type) {
return self.context.new_cast(None, value, dest_typ);
}
debug_assert!(value_type.dyncast_array().is_some());
let name_suffix = match self.type_kind(dest_typ) {
TypeKind::Float => "tisf",
TypeKind::Double => "tidf",
kind => panic!("cannot cast a non-native integer to type {:?}", kind),
};
let sign = if signed { "" } else { "un" };
let func_name = format!("__float{}{}", sign, name_suffix);
let param = self.context.new_parameter(None, value_type, "n");
let func = self.context.new_function(
None,
FunctionType::Extern,
dest_typ,
&[param],
func_name,
false,
);
self.context.new_call(None, func, &[value])
}
pub fn gcc_int_to_float_cast(&self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> {
self.int_to_float_cast(true, value, dest_typ)
}
pub fn gcc_uint_to_float_cast(
&self,
value: RValue<'gcc>,
dest_typ: Type<'gcc>,
) -> RValue<'gcc> {
self.int_to_float_cast(false, value, dest_typ)
}
fn float_to_int_cast(
&self,
signed: bool,
value: RValue<'gcc>,
dest_typ: Type<'gcc>,
) -> RValue<'gcc> {
let value_type = value.get_type();
if self.is_native_int_type_or_bool(dest_typ) {
return self.context.new_cast(None, value, dest_typ);
}
debug_assert!(value_type.dyncast_array().is_some());
let name_suffix = match self.type_kind(value_type) {
TypeKind::Float => "sfti",
TypeKind::Double => "dfti",
kind => panic!("cannot cast a {:?} to non-native integer", kind),
};
let sign = if signed { "" } else { "uns" };
let func_name = format!("__fix{}{}", sign, name_suffix);
let param = self.context.new_parameter(None, value_type, "n");
let func = self.context.new_function(
None,
FunctionType::Extern,
dest_typ,
&[param],
func_name,
false,
);
self.context.new_call(None, func, &[value])
}
pub fn gcc_float_to_int_cast(&self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> {
self.float_to_int_cast(true, value, dest_typ)
}
pub fn gcc_float_to_uint_cast(
&self,
value: RValue<'gcc>,
dest_typ: Type<'gcc>,
) -> RValue<'gcc> {
self.float_to_int_cast(false, value, dest_typ)
}
fn high(&self, value: RValue<'gcc>) -> RValue<'gcc> {
let index = match self.sess().target.options.endian {
Endian::Little => 1,
Endian::Big => 0,
};
self.context
.new_array_access(None, value, self.context.new_rvalue_from_int(self.int_type, index))
.to_rvalue()
}
fn low(&self, value: RValue<'gcc>) -> RValue<'gcc> {
let index = match self.sess().target.options.endian {
Endian::Little => 0,
Endian::Big => 1,
};
self.context
.new_array_access(None, value, self.context.new_rvalue_from_int(self.int_type, index))
.to_rvalue()
}
fn from_low_high_rvalues(
&self,
typ: Type<'gcc>,
low: RValue<'gcc>,
high: RValue<'gcc>,
) -> RValue<'gcc> {
let (first, last) = match self.sess().target.options.endian {
Endian::Little => (low, high),
Endian::Big => (high, low),
};
let values = [first, last];
self.context.new_array_constructor(None, typ, &values)
}
fn from_low_high(&self, typ: Type<'gcc>, low: i64, high: i64) -> RValue<'gcc> {
let (first, last) = match self.sess().target.options.endian {
Endian::Little => (low, high),
Endian::Big => (high, low),
};
let native_int_type = typ.dyncast_array().expect("get element type");
let values = [
self.context.new_rvalue_from_long(native_int_type, first),
self.context.new_rvalue_from_long(native_int_type, last),
];
self.context.new_array_constructor(None, typ, &values)
}
}