blob: 702704d3aa6d7d2c4f0e54473a356966420e47a8 [file] [log] [blame]
//! A "tiny database" and accompanying protocol
//!
//! This example shows the usage of shared state amongst all connected clients,
//! namely a database of key/value pairs. Each connected client can send a
//! series of GET/SET commands to query the current value of a key or set the
//! value of a key.
//!
//! This example has a simple protocol you can use to interact with the server.
//! To run, first run this in one terminal window:
//!
//! cargo run --example tinydb
//!
//! and next in another windows run:
//!
//! cargo run --example connect 127.0.0.1:8080
//!
//! In the `connect` window you can type in commands where when you hit enter
//! you'll get a response from the server for that command. An example session
//! is:
//!
//!
//! $ cargo run --example connect 127.0.0.1:8080
//! GET foo
//! foo = bar
//! GET FOOBAR
//! error: no key FOOBAR
//! SET FOOBAR my awesome string
//! set FOOBAR = `my awesome string`, previous: None
//! SET foo tokio
//! set foo = `tokio`, previous: Some("bar")
//! GET foo
//! foo = tokio
//!
//! Namely you can issue two forms of commands:
//!
//! * `GET $key` - this will fetch the value of `$key` from the database and
//! return it. The server's database is initially populated with the key `foo`
//! set to the value `bar`
//! * `SET $key $value` - this will set the value of `$key` to `$value`,
//! returning the previous value, if any.
#![deny(warnings)]
extern crate tokio;
use std::collections::HashMap;
use std::io::BufReader;
use std::env;
use std::net::SocketAddr;
use std::sync::{Arc, Mutex};
use tokio::io::{lines, write_all};
use tokio::net::TcpListener;
use tokio::prelude::*;
/// The in-memory database shared amongst all clients.
///
/// This database will be shared via `Arc`, so to mutate the internal map we're
/// going to use a `Mutex` for interior mutability.
struct Database {
map: Mutex<HashMap<String, String>>,
}
/// Possible requests our clients can send us
enum Request {
Get { key: String },
Set { key: String, value: String },
}
/// Responses to the `Request` commands above
enum Response {
Value { key: String, value: String },
Set { key: String, value: String, previous: Option<String> },
Error { msg: String },
}
fn main() -> Result<(), Box<std::error::Error>> {
// Parse the address we're going to run this server on
// and set up our TCP listener to accept connections.
let addr = env::args().nth(1).unwrap_or("127.0.0.1:8080".to_string());
let addr = addr.parse::<SocketAddr>()?;
let listener = TcpListener::bind(&addr).map_err(|_| "failed to bind")?;
println!("Listening on: {}", addr);
// Create the shared state of this server that will be shared amongst all
// clients. We populate the initial database and then create the `Database`
// structure. Note the usage of `Arc` here which will be used to ensure that
// each independently spawned client will have a reference to the in-memory
// database.
let mut initial_db = HashMap::new();
initial_db.insert("foo".to_string(), "bar".to_string());
let db = Arc::new(Database {
map: Mutex::new(initial_db),
});
let done = listener.incoming()
.map_err(|e| println!("error accepting socket; error = {:?}", e))
.for_each(move |socket| {
// As with many other small examples, the first thing we'll do is
// *split* this TCP stream into two separately owned halves. This'll
// allow us to work with the read and write halves independently.
let (reader, writer) = socket.split();
// Since our protocol is line-based we use `tokio_io`'s `lines` utility
// to convert our stream of bytes, `reader`, into a `Stream` of lines.
let lines = lines(BufReader::new(reader));
// Here's where the meat of the processing in this server happens. First
// we see a clone of the database being created, which is creating a
// new reference for this connected client to use. Also note the `move`
// keyword on the closure here which moves ownership of the reference
// into the closure, which we'll need for spawning the client below.
//
// The `map` function here means that we'll run some code for all
// requests (lines) we receive from the client. The actual handling here
// is pretty simple, first we parse the request and if it's valid we
// generate a response based on the values in the database.
let db = db.clone();
let responses = lines.map(move |line| {
let request = match Request::parse(&line) {
Ok(req) => req,
Err(e) => return Response::Error { msg: e },
};
let mut db = db.map.lock().unwrap();
match request {
Request::Get { key } => {
match db.get(&key) {
Some(value) => Response::Value { key, value: value.clone() },
None => Response::Error { msg: format!("no key {}", key) },
}
}
Request::Set { key, value } => {
let previous = db.insert(key.clone(), value.clone());
Response::Set { key, value, previous }
}
}
});
// At this point `responses` is a stream of `Response` types which we
// now want to write back out to the client. To do that we use
// `Stream::fold` to perform a loop here, serializing each response and
// then writing it out to the client.
let writes = responses.fold(writer, |writer, response| {
let mut response = response.serialize();
response.push('\n');
write_all(writer, response.into_bytes()).map(|(w, _)| w)
});
// Like with other small servers, we'll `spawn` this client to ensure it
// runs concurrently with all other clients, for now ignoring any errors
// that we see.
let msg = writes.then(move |_| Ok(()));
tokio::spawn(msg)
});
tokio::run(done);
Ok(())
}
impl Request {
fn parse(input: &str) -> Result<Request, String> {
let mut parts = input.splitn(3, " ");
match parts.next() {
Some("GET") => {
let key = match parts.next() {
Some(key) => key,
None => return Err(format!("GET must be followed by a key")),
};
if parts.next().is_some() {
return Err(format!("GET's key must not be followed by anything"))
}
Ok(Request::Get { key: key.to_string() })
}
Some("SET") => {
let key = match parts.next() {
Some(key) => key,
None => return Err(format!("SET must be followed by a key")),
};
let value = match parts.next() {
Some(value) => value,
None => return Err(format!("SET needs a value")),
};
Ok(Request::Set { key: key.to_string(), value: value.to_string() })
}
Some(cmd) => Err(format!("unknown command: {}", cmd)),
None => Err(format!("empty input")),
}
}
}
impl Response {
fn serialize(&self) -> String {
match *self {
Response::Value { ref key, ref value } => {
format!("{} = {}", key, value)
}
Response::Set { ref key, ref value, ref previous } => {
format!("set {} = `{}`, previous: {:?}", key, value, previous)
}
Response::Error { ref msg } => {
format!("error: {}", msg)
}
}
}
}