blob: 2df393e53ab1e0e3f47d4d40ec9ec0b0f63f35f1 [file] [log] [blame]
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The binomial distribution.
use Rng;
use distributions::{Distribution, Bernoulli, Cauchy};
use distributions::utils::log_gamma;
/// The binomial distribution `Binomial(n, p)`.
///
/// This distribution has density function:
/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`.
///
/// # Example
///
/// ```
/// use rand::distributions::{Binomial, Distribution};
///
/// let bin = Binomial::new(20, 0.3);
/// let v = bin.sample(&mut rand::thread_rng());
/// println!("{} is from a binomial distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct Binomial {
/// Number of trials.
n: u64,
/// Probability of success.
p: f64,
}
impl Binomial {
/// Construct a new `Binomial` with the given shape parameters `n` (number
/// of trials) and `p` (probability of success).
///
/// Panics if `p < 0` or `p > 1`.
pub fn new(n: u64, p: f64) -> Binomial {
assert!(p >= 0.0, "Binomial::new called with p < 0");
assert!(p <= 1.0, "Binomial::new called with p > 1");
Binomial { n, p }
}
}
impl Distribution<u64> for Binomial {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
// Handle these values directly.
if self.p == 0.0 {
return 0;
} else if self.p == 1.0 {
return self.n;
}
// For low n, it is faster to sample directly. For both methods,
// performance is independent of p. On Intel Haswell CPU this method
// appears to be faster for approx n < 300.
if self.n < 300 {
let mut result = 0;
let d = Bernoulli::new(self.p);
for _ in 0 .. self.n {
result += rng.sample(d) as u32;
}
return result as u64;
}
// binomial distribution is symmetrical with respect to p -> 1-p, k -> n-k
// switch p so that it is less than 0.5 - this allows for lower expected values
// we will just invert the result at the end
let p = if self.p <= 0.5 {
self.p
} else {
1.0 - self.p
};
// prepare some cached values
let float_n = self.n as f64;
let ln_fact_n = log_gamma(float_n + 1.0);
let pc = 1.0 - p;
let log_p = p.ln();
let log_pc = pc.ln();
let expected = self.n as f64 * p;
let sq = (expected * (2.0 * pc)).sqrt();
let mut lresult;
// we use the Cauchy distribution as the comparison distribution
// f(x) ~ 1/(1+x^2)
let cauchy = Cauchy::new(0.0, 1.0);
loop {
let mut comp_dev: f64;
loop {
// draw from the Cauchy distribution
comp_dev = rng.sample(cauchy);
// shift the peak of the comparison ditribution
lresult = expected + sq * comp_dev;
// repeat the drawing until we are in the range of possible values
if lresult >= 0.0 && lresult < float_n + 1.0 {
break;
}
}
// the result should be discrete
lresult = lresult.floor();
let log_binomial_dist = ln_fact_n - log_gamma(lresult+1.0) -
log_gamma(float_n - lresult + 1.0) + lresult*log_p + (float_n - lresult)*log_pc;
// this is the binomial probability divided by the comparison probability
// we will generate a uniform random value and if it is larger than this,
// we interpret it as a value falling out of the distribution and repeat
let comparison_coeff = (log_binomial_dist.exp() * sq) * (1.2 * (1.0 + comp_dev*comp_dev));
if comparison_coeff >= rng.gen() {
break;
}
}
// invert the result for p < 0.5
if p != self.p {
self.n - lresult as u64
} else {
lresult as u64
}
}
}
#[cfg(test)]
mod test {
use Rng;
use distributions::Distribution;
use super::Binomial;
fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) {
let binomial = Binomial::new(n, p);
let expected_mean = n as f64 * p;
let expected_variance = n as f64 * p * (1.0 - p);
let mut results = [0.0; 1000];
for i in results.iter_mut() { *i = binomial.sample(rng) as f64; }
let mean = results.iter().sum::<f64>() / results.len() as f64;
assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0);
let variance =
results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>()
/ results.len() as f64;
assert!((variance - expected_variance).abs() < expected_variance / 10.0);
}
#[test]
fn test_binomial() {
let mut rng = ::test::rng(351);
test_binomial_mean_and_variance(150, 0.1, &mut rng);
test_binomial_mean_and_variance(70, 0.6, &mut rng);
test_binomial_mean_and_variance(40, 0.5, &mut rng);
test_binomial_mean_and_variance(20, 0.7, &mut rng);
test_binomial_mean_and_variance(20, 0.5, &mut rng);
}
#[test]
fn test_binomial_end_points() {
let mut rng = ::test::rng(352);
assert_eq!(rng.sample(Binomial::new(20, 0.0)), 0);
assert_eq!(rng.sample(Binomial::new(20, 1.0)), 20);
}
#[test]
#[should_panic]
fn test_binomial_invalid_lambda_neg() {
Binomial::new(20, -10.0);
}
}