blob: c5b27110f2d774468cf91918d218d0f2e4ef275e [file] [log] [blame]
//! Implements vertical (lane-wise) floating-point `mul_adde`.
macro_rules! impl_math_float_mul_adde {
([$elem_ty:ident; $elem_count:expr]: $id:ident | $test_tt:tt) => {
impl $id {
/// Fused multiply add estimate: ~= `self * y + z`
///
/// While fused multiply-add (`fma`) has infinite precision,
/// `mul_adde` has _at worst_ the same precision of a multiply followed by an add.
/// This might be more efficient on architectures that do not have an `fma` instruction.
#[inline]
pub fn mul_adde(self, y: Self, z: Self) -> Self {
use crate::codegen::math::float::mul_adde::MulAddE;
MulAddE::mul_adde(self, y, z)
}
}
test_if!{
$test_tt:
paste::item! {
pub mod [<$id _math_mul_adde>] {
use super::*;
#[cfg_attr(not(target_arch = "wasm32"), test)] #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test)]
fn mul_adde() {
let z = $id::splat(0 as $elem_ty);
let o = $id::splat(1 as $elem_ty);
let t = $id::splat(2 as $elem_ty);
let t3 = $id::splat(3 as $elem_ty);
let f = $id::splat(4 as $elem_ty);
assert_eq!(z, z.mul_adde(z, z));
assert_eq!(o, o.mul_adde(o, z));
assert_eq!(o, o.mul_adde(z, o));
assert_eq!(o, z.mul_adde(o, o));
assert_eq!(t, o.mul_adde(o, o));
assert_eq!(t, o.mul_adde(t, z));
assert_eq!(t, t.mul_adde(o, z));
assert_eq!(f, t.mul_adde(t, z));
assert_eq!(f, t.mul_adde(o, t));
assert_eq!(t3, t.mul_adde(o, o));
}
}
}
}
};
}