blob: 1f42a06fbcd3dc768c3781a74abe3aa94a2d64c8 [file] [log] [blame]
use crate::utils::{
implements_trait, in_macro, is_copy, multispan_sugg, snippet, span_lint, span_lint_and_then, SpanlessEq,
};
use rustc::hir::*;
use rustc::lint::{LateContext, LateLintPass, LintArray, LintPass};
use rustc::{declare_tool_lint, lint_array};
use rustc_errors::Applicability;
declare_clippy_lint! {
/// **What it does:** Checks for equal operands to comparison, logical and
/// bitwise, difference and division binary operators (`==`, `>`, etc., `&&`,
/// `||`, `&`, `|`, `^`, `-` and `/`).
///
/// **Why is this bad?** This is usually just a typo or a copy and paste error.
///
/// **Known problems:** False negatives: We had some false positives regarding
/// calls (notably [racer](https://github.com/phildawes/racer) had one instance
/// of `x.pop() && x.pop()`), so we removed matching any function or method
/// calls. We may introduce a whitelist of known pure functions in the future.
///
/// **Example:**
/// ```rust
/// # let x = 1;
/// if x + 1 == x + 1 {}
/// ```
pub EQ_OP,
correctness,
"equal operands on both sides of a comparison or bitwise combination (e.g., `x == x`)"
}
declare_clippy_lint! {
/// **What it does:** Checks for arguments to `==` which have their address
/// taken to satisfy a bound
/// and suggests to dereference the other argument instead
///
/// **Why is this bad?** It is more idiomatic to dereference the other argument.
///
/// **Known problems:** None
///
/// **Example:**
/// ```ignore
/// &x == y
/// ```
pub OP_REF,
style,
"taking a reference to satisfy the type constraints on `==`"
}
#[derive(Copy, Clone)]
pub struct EqOp;
impl LintPass for EqOp {
fn get_lints(&self) -> LintArray {
lint_array!(EQ_OP, OP_REF)
}
fn name(&self) -> &'static str {
"EqOp"
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for EqOp {
#[allow(clippy::similar_names, clippy::too_many_lines)]
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx Expr) {
if let ExprKind::Binary(op, ref left, ref right) = e.node {
if in_macro(e.span) {
return;
}
if is_valid_operator(op) && SpanlessEq::new(cx).ignore_fn().eq_expr(left, right) {
span_lint(
cx,
EQ_OP,
e.span,
&format!("equal expressions as operands to `{}`", op.node.as_str()),
);
return;
}
let (trait_id, requires_ref) = match op.node {
BinOpKind::Add => (cx.tcx.lang_items().add_trait(), false),
BinOpKind::Sub => (cx.tcx.lang_items().sub_trait(), false),
BinOpKind::Mul => (cx.tcx.lang_items().mul_trait(), false),
BinOpKind::Div => (cx.tcx.lang_items().div_trait(), false),
BinOpKind::Rem => (cx.tcx.lang_items().rem_trait(), false),
// don't lint short circuiting ops
BinOpKind::And | BinOpKind::Or => return,
BinOpKind::BitXor => (cx.tcx.lang_items().bitxor_trait(), false),
BinOpKind::BitAnd => (cx.tcx.lang_items().bitand_trait(), false),
BinOpKind::BitOr => (cx.tcx.lang_items().bitor_trait(), false),
BinOpKind::Shl => (cx.tcx.lang_items().shl_trait(), false),
BinOpKind::Shr => (cx.tcx.lang_items().shr_trait(), false),
BinOpKind::Ne | BinOpKind::Eq => (cx.tcx.lang_items().eq_trait(), true),
BinOpKind::Lt | BinOpKind::Le | BinOpKind::Ge | BinOpKind::Gt => {
(cx.tcx.lang_items().ord_trait(), true)
},
};
if let Some(trait_id) = trait_id {
#[allow(clippy::match_same_arms)]
match (&left.node, &right.node) {
// do not suggest to dereference literals
(&ExprKind::Lit(..), _) | (_, &ExprKind::Lit(..)) => {},
// &foo == &bar
(&ExprKind::AddrOf(_, ref l), &ExprKind::AddrOf(_, ref r)) => {
let lty = cx.tables.expr_ty(l);
let rty = cx.tables.expr_ty(r);
let lcpy = is_copy(cx, lty);
let rcpy = is_copy(cx, rty);
// either operator autorefs or both args are copyable
if (requires_ref || (lcpy && rcpy)) && implements_trait(cx, lty, trait_id, &[rty.into()]) {
span_lint_and_then(
cx,
OP_REF,
e.span,
"needlessly taken reference of both operands",
|db| {
let lsnip = snippet(cx, l.span, "...").to_string();
let rsnip = snippet(cx, r.span, "...").to_string();
multispan_sugg(
db,
"use the values directly".to_string(),
vec![(left.span, lsnip), (right.span, rsnip)],
);
},
)
} else if lcpy
&& !rcpy
&& implements_trait(cx, lty, trait_id, &[cx.tables.expr_ty(right).into()])
{
span_lint_and_then(cx, OP_REF, e.span, "needlessly taken reference of left operand", |db| {
let lsnip = snippet(cx, l.span, "...").to_string();
db.span_suggestion(
left.span,
"use the left value directly",
lsnip,
Applicability::MachineApplicable, // snippet
);
})
} else if !lcpy
&& rcpy
&& implements_trait(cx, cx.tables.expr_ty(left), trait_id, &[rty.into()])
{
span_lint_and_then(
cx,
OP_REF,
e.span,
"needlessly taken reference of right operand",
|db| {
let rsnip = snippet(cx, r.span, "...").to_string();
db.span_suggestion(
right.span,
"use the right value directly",
rsnip,
Applicability::MachineApplicable, // snippet
);
},
)
}
},
// &foo == bar
(&ExprKind::AddrOf(_, ref l), _) => {
let lty = cx.tables.expr_ty(l);
let lcpy = is_copy(cx, lty);
if (requires_ref || lcpy)
&& implements_trait(cx, lty, trait_id, &[cx.tables.expr_ty(right).into()])
{
span_lint_and_then(cx, OP_REF, e.span, "needlessly taken reference of left operand", |db| {
let lsnip = snippet(cx, l.span, "...").to_string();
db.span_suggestion(
left.span,
"use the left value directly",
lsnip,
Applicability::MachineApplicable, // snippet
);
})
}
},
// foo == &bar
(_, &ExprKind::AddrOf(_, ref r)) => {
let rty = cx.tables.expr_ty(r);
let rcpy = is_copy(cx, rty);
if (requires_ref || rcpy)
&& implements_trait(cx, cx.tables.expr_ty(left), trait_id, &[rty.into()])
{
span_lint_and_then(cx, OP_REF, e.span, "taken reference of right operand", |db| {
let rsnip = snippet(cx, r.span, "...").to_string();
db.span_suggestion(
right.span,
"use the right value directly",
rsnip,
Applicability::MachineApplicable, // snippet
);
})
}
},
_ => {},
}
}
}
}
}
fn is_valid_operator(op: BinOp) -> bool {
match op.node {
BinOpKind::Sub
| BinOpKind::Div
| BinOpKind::Eq
| BinOpKind::Lt
| BinOpKind::Le
| BinOpKind::Gt
| BinOpKind::Ge
| BinOpKind::Ne
| BinOpKind::And
| BinOpKind::Or
| BinOpKind::BitXor
| BinOpKind::BitAnd
| BinOpKind::BitOr => true,
_ => false,
}
}