blob: 3cf6b32b07c4c0868d6a22e3e053cdd6607f2f8b [file] [log] [blame]
use rustc_lint;
use rustc::session::{self, config};
use rustc::hir::def_id::{DefId, DefIndex, DefIndexAddressSpace, CrateNum, LOCAL_CRATE};
use rustc::hir::def::Def;
use rustc::hir::{self, HirId, HirVec};
use rustc::middle::cstore::CrateStore;
use rustc::middle::privacy::AccessLevels;
use rustc::ty::{self, TyCtxt};
use rustc::lint::{self, LintPass};
use rustc::session::config::ErrorOutputType;
use rustc::session::DiagnosticOutput;
use rustc::util::nodemap::{FxHashMap, FxHashSet};
use rustc_interface::interface;
use rustc_driver::abort_on_err;
use rustc_resolve as resolve;
use rustc_metadata::cstore::CStore;
use rustc_target::spec::TargetTriple;
use syntax::ast::{self, Ident};
use syntax::source_map;
use syntax::feature_gate::UnstableFeatures;
use syntax::json::JsonEmitter;
use syntax::ptr::P;
use syntax::symbol::keywords;
use syntax_pos::DUMMY_SP;
use errors;
use errors::emitter::{Emitter, EmitterWriter};
use parking_lot::ReentrantMutex;
use std::cell::RefCell;
use std::mem;
use rustc_data_structures::sync::{self, Lrc};
use std::sync::Arc;
use std::rc::Rc;
use crate::visit_ast::RustdocVisitor;
use crate::config::{Options as RustdocOptions, RenderOptions};
use crate::clean;
use crate::clean::{get_path_for_type, Clean, MAX_DEF_ID, AttributesExt};
use crate::html::render::RenderInfo;
use crate::passes;
pub use rustc::session::config::{Input, Options, CodegenOptions};
pub use rustc::session::search_paths::SearchPath;
pub type ExternalPaths = FxHashMap<DefId, (Vec<String>, clean::TypeKind)>;
pub struct DocContext<'tcx> {
pub tcx: TyCtxt<'tcx, 'tcx, 'tcx>,
pub resolver: Rc<Option<RefCell<interface::BoxedResolver>>>,
/// The stack of module NodeIds up till this point
pub crate_name: Option<String>,
pub cstore: Lrc<CStore>,
/// Later on moved into `html::render::CACHE_KEY`
pub renderinfo: RefCell<RenderInfo>,
/// Later on moved through `clean::Crate` into `html::render::CACHE_KEY`
pub external_traits: Arc<ReentrantMutex<RefCell<FxHashMap<DefId, clean::Trait>>>>,
/// Used while populating `external_traits` to ensure we don't process the same trait twice at
/// the same time.
pub active_extern_traits: RefCell<Vec<DefId>>,
// The current set of type and lifetime substitutions,
// for expanding type aliases at the HIR level:
/// Table type parameter definition -> substituted type
pub ty_substs: RefCell<FxHashMap<Def, clean::Type>>,
/// Table `NodeId` of lifetime parameter definition -> substituted lifetime
pub lt_substs: RefCell<FxHashMap<DefId, clean::Lifetime>>,
/// Table node id of const parameter definition -> substituted const
pub ct_substs: RefCell<FxHashMap<Def, clean::Constant>>,
/// Table DefId of `impl Trait` in argument position -> bounds
pub impl_trait_bounds: RefCell<FxHashMap<DefId, Vec<clean::GenericBound>>>,
pub send_trait: Option<DefId>,
pub fake_def_ids: RefCell<FxHashMap<CrateNum, DefId>>,
pub all_fake_def_ids: RefCell<FxHashSet<DefId>>,
/// Maps (type_id, trait_id) -> auto trait impl
pub generated_synthetics: RefCell<FxHashSet<(DefId, DefId)>>,
pub all_traits: Vec<DefId>,
}
impl<'tcx> DocContext<'tcx> {
pub fn sess(&self) -> &session::Session {
&self.tcx.sess
}
pub fn enter_resolver<F, R>(&self, f: F) -> R
where F: FnOnce(&mut resolve::Resolver<'_>) -> R {
let resolver = &*self.resolver;
let resolver = resolver.as_ref().unwrap();
resolver.borrow_mut().access(f)
}
/// Call the closure with the given parameters set as
/// the substitutions for a type alias' RHS.
pub fn enter_alias<F, R>(&self,
ty_substs: FxHashMap<Def, clean::Type>,
lt_substs: FxHashMap<DefId, clean::Lifetime>,
ct_substs: FxHashMap<Def, clean::Constant>,
f: F) -> R
where F: FnOnce() -> R {
let (old_tys, old_lts, old_cts) = (
mem::replace(&mut *self.ty_substs.borrow_mut(), ty_substs),
mem::replace(&mut *self.lt_substs.borrow_mut(), lt_substs),
mem::replace(&mut *self.ct_substs.borrow_mut(), ct_substs),
);
let r = f();
*self.ty_substs.borrow_mut() = old_tys;
*self.lt_substs.borrow_mut() = old_lts;
*self.ct_substs.borrow_mut() = old_cts;
r
}
// This is an ugly hack, but it's the simplest way to handle synthetic impls without greatly
// refactoring either librustdoc or librustc. In particular, allowing new DefIds to be
// registered after the AST is constructed would require storing the defid mapping in a
// RefCell, decreasing the performance for normal compilation for very little gain.
//
// Instead, we construct 'fake' def ids, which start immediately after the last DefId in
// DefIndexAddressSpace::Low. In the Debug impl for clean::Item, we explicitly check for fake
// def ids, as we'll end up with a panic if we use the DefId Debug impl for fake DefIds
pub fn next_def_id(&self, crate_num: CrateNum) -> DefId {
let start_def_id = {
let next_id = if crate_num == LOCAL_CRATE {
self.tcx
.hir()
.definitions()
.def_path_table()
.next_id(DefIndexAddressSpace::Low)
} else {
self.cstore
.def_path_table(crate_num)
.next_id(DefIndexAddressSpace::Low)
};
DefId {
krate: crate_num,
index: next_id,
}
};
let mut fake_ids = self.fake_def_ids.borrow_mut();
let def_id = fake_ids.entry(crate_num).or_insert(start_def_id).clone();
fake_ids.insert(
crate_num,
DefId {
krate: crate_num,
index: DefIndex::from_array_index(
def_id.index.as_array_index() + 1,
def_id.index.address_space(),
),
},
);
MAX_DEF_ID.with(|m| {
m.borrow_mut()
.entry(def_id.krate.clone())
.or_insert(start_def_id);
});
self.all_fake_def_ids.borrow_mut().insert(def_id);
def_id.clone()
}
/// Like the function of the same name on the HIR map, but skips calling it on fake DefIds.
/// (This avoids a slice-index-out-of-bounds panic.)
pub fn as_local_node_id(&self, def_id: DefId) -> Option<ast::NodeId> {
if self.all_fake_def_ids.borrow().contains(&def_id) {
None
} else {
self.tcx.hir().as_local_node_id(def_id)
}
}
// FIXME(@ljedrz): remove the NodeId variant
pub fn as_local_hir_id(&self, def_id: DefId) -> Option<HirId> {
if self.all_fake_def_ids.borrow().contains(&def_id) {
None
} else {
self.tcx.hir().as_local_hir_id(def_id)
}
}
pub fn get_real_ty<F>(&self,
def_id: DefId,
def_ctor: &F,
real_name: &Option<Ident>,
generics: &ty::Generics,
) -> hir::Ty
where F: Fn(DefId) -> Def {
let path = get_path_for_type(self.tcx, def_id, def_ctor);
let mut segments = path.segments.into_vec();
let last = segments.pop().expect("segments were empty");
segments.push(hir::PathSegment::new(
real_name.unwrap_or(last.ident),
None,
None,
self.generics_to_path_params(generics.clone()),
false,
));
let new_path = hir::Path {
span: path.span,
def: path.def,
segments: HirVec::from_vec(segments),
};
hir::Ty {
node: hir::TyKind::Path(hir::QPath::Resolved(None, P(new_path))),
span: DUMMY_SP,
hir_id: hir::DUMMY_HIR_ID,
}
}
pub fn generics_to_path_params(&self, generics: ty::Generics) -> hir::GenericArgs {
let mut args = vec![];
for param in generics.params.iter() {
match param.kind {
ty::GenericParamDefKind::Lifetime => {
let name = if param.name == "" {
hir::ParamName::Plain(keywords::StaticLifetime.ident())
} else {
hir::ParamName::Plain(ast::Ident::from_interned_str(param.name))
};
args.push(hir::GenericArg::Lifetime(hir::Lifetime {
hir_id: hir::DUMMY_HIR_ID,
span: DUMMY_SP,
name: hir::LifetimeName::Param(name),
}));
}
ty::GenericParamDefKind::Type { .. } => {
args.push(hir::GenericArg::Type(self.ty_param_to_ty(param.clone())));
}
ty::GenericParamDefKind::Const => {
args.push(hir::GenericArg::Const(hir::ConstArg {
value: hir::AnonConst {
hir_id: hir::DUMMY_HIR_ID,
body: hir::BodyId {
hir_id: hir::DUMMY_HIR_ID,
}
},
span: DUMMY_SP,
}))
}
}
}
hir::GenericArgs {
args: HirVec::from_vec(args),
bindings: HirVec::new(),
parenthesized: false,
}
}
pub fn ty_param_to_ty(&self, param: ty::GenericParamDef) -> hir::Ty {
debug!("ty_param_to_ty({:?}) {:?}", param, param.def_id);
hir::Ty {
node: hir::TyKind::Path(hir::QPath::Resolved(
None,
P(hir::Path {
span: DUMMY_SP,
def: Def::TyParam(param.def_id),
segments: HirVec::from_vec(vec![
hir::PathSegment::from_ident(Ident::from_interned_str(param.name))
]),
}),
)),
span: DUMMY_SP,
hir_id: hir::DUMMY_HIR_ID,
}
}
}
pub trait DocAccessLevels {
fn is_doc_reachable(&self, did: DefId) -> bool;
}
impl DocAccessLevels for AccessLevels<DefId> {
fn is_doc_reachable(&self, did: DefId) -> bool {
self.is_public(did)
}
}
/// Creates a new diagnostic `Handler` that can be used to emit warnings and errors.
///
/// If the given `error_format` is `ErrorOutputType::Json` and no `SourceMap` is given, a new one
/// will be created for the handler.
pub fn new_handler(error_format: ErrorOutputType,
source_map: Option<Lrc<source_map::SourceMap>>,
treat_err_as_bug: Option<usize>,
ui_testing: bool,
) -> errors::Handler {
// rustdoc doesn't override (or allow to override) anything from this that is relevant here, so
// stick to the defaults
let sessopts = Options::default();
let emitter: Box<dyn Emitter + sync::Send> = match error_format {
ErrorOutputType::HumanReadable(color_config) => Box::new(
EmitterWriter::stderr(
color_config,
source_map.map(|cm| cm as _),
false,
sessopts.debugging_opts.teach,
).ui_testing(ui_testing)
),
ErrorOutputType::Json(pretty) => {
let source_map = source_map.unwrap_or_else(
|| Lrc::new(source_map::SourceMap::new(sessopts.file_path_mapping())));
Box::new(
JsonEmitter::stderr(
None,
source_map,
pretty,
).ui_testing(ui_testing)
)
},
ErrorOutputType::Short(color_config) => Box::new(
EmitterWriter::stderr(
color_config,
source_map.map(|cm| cm as _),
true,
false)
),
};
errors::Handler::with_emitter_and_flags(
emitter,
errors::HandlerFlags {
can_emit_warnings: true,
treat_err_as_bug,
report_delayed_bugs: false,
external_macro_backtrace: false,
..Default::default()
},
)
}
pub fn run_core(options: RustdocOptions) -> (clean::Crate, RenderInfo, RenderOptions, Vec<String>) {
// Parse, resolve, and typecheck the given crate.
let RustdocOptions {
input,
crate_name,
error_format,
libs,
externs,
cfgs,
codegen_options,
debugging_options,
target,
edition,
maybe_sysroot,
lint_opts,
describe_lints,
lint_cap,
mut default_passes,
mut manual_passes,
display_warnings,
render_options,
..
} = options;
let cpath = Some(input.clone());
let input = Input::File(input);
let intra_link_resolution_failure_name = lint::builtin::INTRA_DOC_LINK_RESOLUTION_FAILURE.name;
let warnings_lint_name = lint::builtin::WARNINGS.name;
let missing_docs = rustc_lint::builtin::MISSING_DOCS.name;
let missing_doc_example = rustc_lint::builtin::MISSING_DOC_CODE_EXAMPLES.name;
let private_doc_tests = rustc_lint::builtin::PRIVATE_DOC_TESTS.name;
// In addition to those specific lints, we also need to whitelist those given through
// command line, otherwise they'll get ignored and we don't want that.
let mut whitelisted_lints = vec![warnings_lint_name.to_owned(),
intra_link_resolution_failure_name.to_owned(),
missing_docs.to_owned(),
missing_doc_example.to_owned(),
private_doc_tests.to_owned()];
whitelisted_lints.extend(lint_opts.iter().map(|(lint, _)| lint).cloned());
let lints = || {
lint::builtin::HardwiredLints
.get_lints()
.into_iter()
.chain(rustc_lint::SoftLints.get_lints().into_iter())
};
let lint_opts = lints().filter_map(|lint| {
if lint.name == warnings_lint_name ||
lint.name == intra_link_resolution_failure_name {
None
} else {
Some((lint.name_lower(), lint::Allow))
}
}).chain(lint_opts.into_iter()).collect::<Vec<_>>();
let lint_caps = lints().filter_map(|lint| {
// We don't want to whitelist *all* lints so let's
// ignore those ones.
if whitelisted_lints.iter().any(|l| &lint.name == l) {
None
} else {
Some((lint::LintId::of(lint), lint::Allow))
}
}).collect();
let host_triple = TargetTriple::from_triple(config::host_triple());
// plays with error output here!
let sessopts = config::Options {
maybe_sysroot,
search_paths: libs,
crate_types: vec![config::CrateType::Rlib],
lint_opts: if !display_warnings {
lint_opts
} else {
vec![]
},
lint_cap: Some(lint_cap.unwrap_or_else(|| lint::Forbid)),
cg: codegen_options,
externs,
target_triple: target.unwrap_or(host_triple),
// Ensure that rustdoc works even if rustc is feature-staged
unstable_features: UnstableFeatures::Allow,
actually_rustdoc: true,
debugging_opts: debugging_options.clone(),
error_format,
edition,
describe_lints,
..Options::default()
};
let config = interface::Config {
opts: sessopts,
crate_cfg: config::parse_cfgspecs(cfgs),
input,
input_path: cpath,
output_file: None,
output_dir: None,
file_loader: None,
diagnostic_output: DiagnosticOutput::Default,
stderr: None,
crate_name: crate_name.clone(),
lint_caps,
};
interface::run_compiler_in_existing_thread_pool(config, |compiler| {
let sess = compiler.session();
// We need to hold on to the complete resolver, so we cause everything to be
// cloned for the analysis passes to use. Suboptimal, but necessary in the
// current architecture.
let resolver = abort_on_err(compiler.expansion(), sess).peek().1.clone();
if sess.err_count() > 0 {
sess.fatal("Compilation failed, aborting rustdoc");
}
let mut global_ctxt = abort_on_err(compiler.global_ctxt(), sess).take();
global_ctxt.enter(|tcx| {
tcx.analysis(LOCAL_CRATE).ok();
// Abort if there were any errors so far
sess.abort_if_errors();
let access_levels = tcx.privacy_access_levels(LOCAL_CRATE);
// Convert from a HirId set to a DefId set since we don't always have easy access
// to the map from defid -> hirid
let access_levels = AccessLevels {
map: access_levels.map.iter()
.map(|(&k, &v)| (tcx.hir().local_def_id_from_hir_id(k), v))
.collect()
};
let send_trait = if crate_name == Some("core".to_string()) {
clean::path_to_def_local(&tcx, &["marker", "Send"])
} else {
clean::path_to_def(&tcx, &["core", "marker", "Send"])
};
let mut renderinfo = RenderInfo::default();
renderinfo.access_levels = access_levels;
let ctxt = DocContext {
tcx,
resolver,
crate_name,
cstore: compiler.cstore().clone(),
external_traits: Default::default(),
active_extern_traits: Default::default(),
renderinfo: RefCell::new(renderinfo),
ty_substs: Default::default(),
lt_substs: Default::default(),
ct_substs: Default::default(),
impl_trait_bounds: Default::default(),
send_trait: send_trait,
fake_def_ids: Default::default(),
all_fake_def_ids: Default::default(),
generated_synthetics: Default::default(),
all_traits: tcx.all_traits(LOCAL_CRATE).to_vec(),
};
debug!("crate: {:?}", tcx.hir().krate());
let mut krate = {
let mut v = RustdocVisitor::new(&ctxt);
v.visit(tcx.hir().krate());
v.clean(&ctxt)
};
fn report_deprecated_attr(name: &str, diag: &errors::Handler) {
let mut msg = diag.struct_warn(&format!("the `#![doc({})]` attribute is \
considered deprecated", name));
msg.warn("please see https://github.com/rust-lang/rust/issues/44136");
if name == "no_default_passes" {
msg.help("you may want to use `#![doc(document_private_items)]`");
}
msg.emit();
}
// Process all of the crate attributes, extracting plugin metadata along
// with the passes which we are supposed to run.
for attr in krate.module.as_ref().unwrap().attrs.lists("doc") {
let diag = ctxt.sess().diagnostic();
let name = attr.name_or_empty();
if attr.is_word() {
if name == "no_default_passes" {
report_deprecated_attr("no_default_passes", diag);
if default_passes == passes::DefaultPassOption::Default {
default_passes = passes::DefaultPassOption::None;
}
}
} else if let Some(value) = attr.value_str() {
let sink = match name.get() {
"passes" => {
report_deprecated_attr("passes = \"...\"", diag);
&mut manual_passes
},
"plugins" => {
report_deprecated_attr("plugins = \"...\"", diag);
eprintln!("WARNING: #![doc(plugins = \"...\")] no longer functions; \
see CVE-2018-1000622");
continue
},
_ => continue,
};
for p in value.as_str().split_whitespace() {
sink.push(p.to_string());
}
}
if attr.is_word() && name == "document_private_items" {
if default_passes == passes::DefaultPassOption::Default {
default_passes = passes::DefaultPassOption::Private;
}
}
}
let mut passes: Vec<String> =
passes::defaults(default_passes).iter().map(|p| p.to_string()).collect();
passes.extend(manual_passes);
info!("Executing passes");
for pass_name in &passes {
match passes::find_pass(pass_name).map(|p| p.pass) {
Some(pass) => {
debug!("running pass {}", pass_name);
krate = pass(krate, &ctxt);
}
None => error!("unknown pass {}, skipping", *pass_name),
}
}
ctxt.sess().abort_if_errors();
(krate, ctxt.renderinfo.into_inner(), render_options, passes)
})
})
}