blob: e9077d2e6059d048e381348bcb884171c33b523d [file] [log] [blame]
#![deny(rust_2018_idioms)]
use crate::display::sanitize_debug_name;
use crate::rust_ir::*;
use chalk_ir::interner::Interner;
use chalk_ir::*;
use std::fmt::Debug;
use std::sync::Arc;
pub mod clauses;
pub mod coherence;
pub mod coinductive_goal;
pub mod display;
pub mod ext;
pub mod goal_builder;
pub mod infer;
pub mod logging;
pub mod logging_db;
pub mod rust_ir;
pub mod solve;
pub mod split;
pub mod wf;
/// Trait representing access to a database of rust types.
///
/// # `*_name` methods
///
/// This trait has a number of `*_name` methods with default implementations.
/// These are used in the implementation for [`LoggingRustIrDatabase`], so that
/// when printing `.chalk` files equivalent to the data used, we can use real
/// names.
///
/// The default implementations simply fall back to calling [`Interner`] debug
/// methods, and printing `"UnknownN"` (where `N` is the demultiplexing integer)
/// if those methods return `None`.
///
/// The [`display::sanitize_debug_name`] utility is used in the default
/// implementations, and might be useful when providing custom implementations.
///
/// [`LoggingRustIrDatabase`]: crate::logging_db::LoggingRustIrDatabase
/// [`display::sanitize_debug_name`]: crate::display::sanitize_debug_name
/// [`Interner`]: Interner
pub trait RustIrDatabase<I: Interner>: Debug {
/// Returns any "custom program clauses" that do not derive from
/// Rust IR. Used only in testing the underlying solver.
fn custom_clauses(&self) -> Vec<ProgramClause<I>>;
/// Returns the datum for the associated type with the given id.
fn associated_ty_data(&self, ty: AssocTypeId<I>) -> Arc<AssociatedTyDatum<I>>;
/// Returns the datum for the definition with the given id.
fn trait_datum(&self, trait_id: TraitId<I>) -> Arc<TraitDatum<I>>;
/// Returns the datum for the ADT with the given id.
fn adt_datum(&self, adt_id: AdtId<I>) -> Arc<AdtDatum<I>>;
/// Returns the coroutine datum for the coroutine with the given id.
fn coroutine_datum(&self, coroutine_id: CoroutineId<I>) -> Arc<CoroutineDatum<I>>;
/// Returns the coroutine witness datum for the coroutine with the given id.
fn coroutine_witness_datum(
&self,
coroutine_id: CoroutineId<I>,
) -> Arc<CoroutineWitnessDatum<I>>;
/// Returns the representation for the ADT definition with the given id.
fn adt_repr(&self, id: AdtId<I>) -> Arc<AdtRepr<I>>;
/// Returns the siza and alignment of the ADT definition with the given id.
fn adt_size_align(&self, id: AdtId<I>) -> Arc<AdtSizeAlign>;
/// Returns the datum for the fn definition with the given id.
fn fn_def_datum(&self, fn_def_id: FnDefId<I>) -> Arc<FnDefDatum<I>>;
/// Returns the datum for the impl with the given id.
fn impl_datum(&self, impl_id: ImplId<I>) -> Arc<ImplDatum<I>>;
/// Returns the `AssociatedTyValue` with the given id.
fn associated_ty_value(&self, id: AssociatedTyValueId<I>) -> Arc<AssociatedTyValue<I>>;
/// Returns the `OpaqueTyDatum` with the given id.
fn opaque_ty_data(&self, id: OpaqueTyId<I>) -> Arc<OpaqueTyDatum<I>>;
/// Returns the "hidden type" corresponding with the opaque type.
fn hidden_opaque_type(&self, id: OpaqueTyId<I>) -> Ty<I>;
/// Returns a list of potentially relevant impls for a given
/// trait-id; we also supply the type parameters that we are
/// trying to match (if known: these parameters may contain
/// inference variables, for example). The implementor is
/// permitted to return any superset of the applicable impls;
/// chalk will narrow down the list to only those that truly
/// apply. The parameters are provided as a "hint" to help the
/// implementor do less work, but can be completely ignored if
/// desired.
///
/// The `binders` are for the `parameters`; if the recursive solver is used,
/// the parameters can contain bound variables referring to these binders.
fn impls_for_trait(
&self,
trait_id: TraitId<I>,
parameters: &[GenericArg<I>],
binders: &CanonicalVarKinds<I>,
) -> Vec<ImplId<I>>;
/// Returns the impls that require coherence checking. This is not the
/// full set of impls that exist:
///
/// - It can exclude impls not defined in the current crate.
/// - It can exclude "built-in" impls, like those for closures; only the
/// impls actually written by users need to be checked.
fn local_impls_to_coherence_check(&self, trait_id: TraitId<I>) -> Vec<ImplId<I>>;
/// Returns true if there is an explicit impl of the auto trait
/// `auto_trait_id` for the type `ty`. This is part of
/// the auto trait handling -- if there is no explicit impl given
/// by the user for `ty`, then we provide default impls
/// (otherwise, we rely on the impls the user gave).
fn impl_provided_for(&self, auto_trait_id: TraitId<I>, ty: &TyKind<I>) -> bool;
/// Returns id of a trait lang item, if found
fn well_known_trait_id(&self, well_known_trait: WellKnownTrait) -> Option<TraitId<I>>;
/// Calculates program clauses from an env. This is intended to call the
/// `program_clauses_for_env` function and then possibly cache the clauses.
fn program_clauses_for_env(&self, environment: &Environment<I>) -> ProgramClauses<I>;
fn interner(&self) -> I;
/// Check if a trait is object safe
fn is_object_safe(&self, trait_id: TraitId<I>) -> bool;
/// Gets the `ClosureKind` for a given closure and substitution.
fn closure_kind(&self, closure_id: ClosureId<I>, substs: &Substitution<I>) -> ClosureKind;
/// Gets the inputs and output for a given closure id and substitution. We
/// pass both the `ClosureId` and it's `Substituion` to give implementors
/// the freedom to store associated data in the substitution (like rustc) or
/// separately (like chalk-integration).
fn closure_inputs_and_output(
&self,
closure_id: ClosureId<I>,
substs: &Substitution<I>,
) -> Binders<FnDefInputsAndOutputDatum<I>>;
/// Gets the upvars as a `Ty` for a given closure id and substitution. There
/// are no restrictions on the type of upvars.
fn closure_upvars(&self, closure_id: ClosureId<I>, substs: &Substitution<I>) -> Binders<Ty<I>>;
/// Gets the substitution for the closure when used as a function.
/// For example, for the following (not-quite-)rust code:
/// ```ignore
/// let foo = |a: &mut u32| { a += 1; };
/// let c: &'a u32 = &0;
/// foo(c);
/// ```
///
/// This would return a `Substitution` of `[&'a]`. This could either be
/// substituted into the inputs and output, or into the upvars.
fn closure_fn_substitution(
&self,
closure_id: ClosureId<I>,
substs: &Substitution<I>,
) -> Substitution<I>;
fn unification_database(&self) -> &dyn UnificationDatabase<I>;
/// Retrieves a trait's original name. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn trait_name(&self, trait_id: TraitId<I>) -> String {
sanitize_debug_name(|f| I::debug_trait_id(trait_id, f))
}
/// Retrieves a struct's original name. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn adt_name(&self, adt_id: AdtId<I>) -> String {
sanitize_debug_name(|f| I::debug_adt_id(adt_id, f))
}
/// Retrieves the name of an associated type. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn assoc_type_name(&self, assoc_ty_id: AssocTypeId<I>) -> String {
sanitize_debug_name(|f| I::debug_assoc_type_id(assoc_ty_id, f))
}
/// Retrieves the name of an opaque type. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn opaque_type_name(&self, opaque_ty_id: OpaqueTyId<I>) -> String {
sanitize_debug_name(|f| I::debug_opaque_ty_id(opaque_ty_id, f))
}
/// Retrieves the name of a function definition. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn fn_def_name(&self, fn_def_id: FnDefId<I>) -> String {
sanitize_debug_name(|f| I::debug_fn_def_id(fn_def_id, f))
}
// Retrieves the discriminant type for a type (mirror of rustc `Ty::discriminant_ty`)
fn discriminant_type(&self, ty: Ty<I>) -> Ty<I>;
}
pub use clauses::program_clauses_for_env;
pub use solve::Guidance;
pub use solve::Solution;
pub use solve::Solver;
pub use solve::SubstitutionResult;
#[macro_use]
mod debug_macros {
#[macro_export]
macro_rules! debug_span {
($($t: tt)*) => {
let __span = tracing::debug_span!($($t)*);
let __span = __span.enter();
};
}
}