blob: 8dfaba52625d037f95d794262373116010b46196 [file] [log] [blame]
//! Serialization-friendly representation of `tt::Subtree`.
//!
//! It is possible to serialize `Subtree` as is, as a tree, but using
//! arbitrary-nested trees in JSON is problematic, as they can cause the JSON
//! parser to overflow the stack.
//!
//! Additionally, such implementation would be pretty verbose, and we do care
//! about performance here a bit.
//!
//! So what this module does is dumping a `tt::Subtree` into a bunch of flat
//! array of numbers. See the test in the parent module to get an example
//! output.
//!
//! ```json
//! {
//! // Array of subtrees, each subtree is represented by 4 numbers:
//! // id of delimiter, delimiter kind, index of first child in `token_tree`,
//! // index of last child in `token_tree`
//! "subtree":[4294967295,0,0,5,2,2,5,5],
//! // 2 ints per literal: [token id, index into `text`]
//! "literal":[4294967295,1],
//! // 3 ints per punct: [token id, char, spacing]
//! "punct":[4294967295,64,1],
//! // 2 ints per ident: [token id, index into `text`]
//! "ident": [0,0,1,1],
//! // children of all subtrees, concatenated. Each child is represented as `index << 2 | tag`
//! // where tag denotes one of subtree, literal, punct or ident.
//! "token_tree":[3,7,1,4],
//! // Strings shared by idents and literals
//! "text": ["struct","Foo"]
//! }
//! ```
//!
//! We probably should replace most of the code here with bincode someday, but,
//! as we don't have bincode in Cargo.toml yet, lets stick with serde_json for
//! the time being.
use std::collections::{HashMap, VecDeque};
use indexmap::IndexSet;
use la_arena::RawIdx;
use serde::{Deserialize, Serialize};
use span::{ErasedFileAstId, FileId, Span, SpanAnchor, SyntaxContextId};
use text_size::TextRange;
use crate::msg::ENCODE_CLOSE_SPAN_VERSION;
pub type SpanDataIndexMap = IndexSet<Span>;
pub fn serialize_span_data_index_map(map: &SpanDataIndexMap) -> Vec<u32> {
map.iter()
.flat_map(|span| {
[
span.anchor.file_id.index(),
span.anchor.ast_id.into_raw().into_u32(),
span.range.start().into(),
span.range.end().into(),
span.ctx.into_u32(),
]
})
.collect()
}
pub fn deserialize_span_data_index_map(map: &[u32]) -> SpanDataIndexMap {
debug_assert!(map.len() % 5 == 0);
map.chunks_exact(5)
.map(|span| {
let &[file_id, ast_id, start, end, e] = span else { unreachable!() };
Span {
anchor: SpanAnchor {
file_id: FileId::from_raw(file_id),
ast_id: ErasedFileAstId::from_raw(RawIdx::from_u32(ast_id)),
},
range: TextRange::new(start.into(), end.into()),
ctx: SyntaxContextId::from_u32(e),
}
})
.collect()
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct TokenId(pub u32);
impl std::fmt::Debug for TokenId {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.0.fmt(f)
}
}
impl tt::Span for TokenId {}
#[derive(Serialize, Deserialize, Debug)]
pub struct FlatTree {
subtree: Vec<u32>,
literal: Vec<u32>,
punct: Vec<u32>,
ident: Vec<u32>,
token_tree: Vec<u32>,
text: Vec<String>,
}
struct SubtreeRepr {
open: TokenId,
close: TokenId,
kind: tt::DelimiterKind,
tt: [u32; 2],
}
struct LiteralRepr {
id: TokenId,
text: u32,
}
struct PunctRepr {
id: TokenId,
char: char,
spacing: tt::Spacing,
}
struct IdentRepr {
id: TokenId,
text: u32,
}
impl FlatTree {
pub fn new(
subtree: &tt::Subtree<Span>,
version: u32,
span_data_table: &mut SpanDataIndexMap,
) -> FlatTree {
let mut w = Writer {
string_table: HashMap::new(),
work: VecDeque::new(),
span_data_table,
subtree: Vec::new(),
literal: Vec::new(),
punct: Vec::new(),
ident: Vec::new(),
token_tree: Vec::new(),
text: Vec::new(),
};
w.write(subtree);
FlatTree {
subtree: if version >= ENCODE_CLOSE_SPAN_VERSION {
write_vec(w.subtree, SubtreeRepr::write_with_close_span)
} else {
write_vec(w.subtree, SubtreeRepr::write)
},
literal: write_vec(w.literal, LiteralRepr::write),
punct: write_vec(w.punct, PunctRepr::write),
ident: write_vec(w.ident, IdentRepr::write),
token_tree: w.token_tree,
text: w.text,
}
}
pub fn new_raw(subtree: &tt::Subtree<TokenId>, version: u32) -> FlatTree {
let mut w = Writer {
string_table: HashMap::new(),
work: VecDeque::new(),
span_data_table: &mut (),
subtree: Vec::new(),
literal: Vec::new(),
punct: Vec::new(),
ident: Vec::new(),
token_tree: Vec::new(),
text: Vec::new(),
};
w.write(subtree);
FlatTree {
subtree: if version >= ENCODE_CLOSE_SPAN_VERSION {
write_vec(w.subtree, SubtreeRepr::write_with_close_span)
} else {
write_vec(w.subtree, SubtreeRepr::write)
},
literal: write_vec(w.literal, LiteralRepr::write),
punct: write_vec(w.punct, PunctRepr::write),
ident: write_vec(w.ident, IdentRepr::write),
token_tree: w.token_tree,
text: w.text,
}
}
pub fn to_subtree_resolved(
self,
version: u32,
span_data_table: &SpanDataIndexMap,
) -> tt::Subtree<Span> {
Reader {
subtree: if version >= ENCODE_CLOSE_SPAN_VERSION {
read_vec(self.subtree, SubtreeRepr::read_with_close_span)
} else {
read_vec(self.subtree, SubtreeRepr::read)
},
literal: read_vec(self.literal, LiteralRepr::read),
punct: read_vec(self.punct, PunctRepr::read),
ident: read_vec(self.ident, IdentRepr::read),
token_tree: self.token_tree,
text: self.text,
span_data_table,
}
.read()
}
pub fn to_subtree_unresolved(self, version: u32) -> tt::Subtree<TokenId> {
Reader {
subtree: if version >= ENCODE_CLOSE_SPAN_VERSION {
read_vec(self.subtree, SubtreeRepr::read_with_close_span)
} else {
read_vec(self.subtree, SubtreeRepr::read)
},
literal: read_vec(self.literal, LiteralRepr::read),
punct: read_vec(self.punct, PunctRepr::read),
ident: read_vec(self.ident, IdentRepr::read),
token_tree: self.token_tree,
text: self.text,
span_data_table: &(),
}
.read()
}
}
fn read_vec<T, F: Fn([u32; N]) -> T, const N: usize>(xs: Vec<u32>, f: F) -> Vec<T> {
let mut chunks = xs.chunks_exact(N);
let res = chunks.by_ref().map(|chunk| f(chunk.try_into().unwrap())).collect();
assert!(chunks.remainder().is_empty());
res
}
fn write_vec<T, F: Fn(T) -> [u32; N], const N: usize>(xs: Vec<T>, f: F) -> Vec<u32> {
xs.into_iter().flat_map(f).collect()
}
impl SubtreeRepr {
fn write(self) -> [u32; 4] {
let kind = match self.kind {
tt::DelimiterKind::Invisible => 0,
tt::DelimiterKind::Parenthesis => 1,
tt::DelimiterKind::Brace => 2,
tt::DelimiterKind::Bracket => 3,
};
[self.open.0, kind, self.tt[0], self.tt[1]]
}
fn read([open, kind, lo, len]: [u32; 4]) -> SubtreeRepr {
let kind = match kind {
0 => tt::DelimiterKind::Invisible,
1 => tt::DelimiterKind::Parenthesis,
2 => tt::DelimiterKind::Brace,
3 => tt::DelimiterKind::Bracket,
other => panic!("bad kind {other}"),
};
SubtreeRepr { open: TokenId(open), close: TokenId(!0), kind, tt: [lo, len] }
}
fn write_with_close_span(self) -> [u32; 5] {
let kind = match self.kind {
tt::DelimiterKind::Invisible => 0,
tt::DelimiterKind::Parenthesis => 1,
tt::DelimiterKind::Brace => 2,
tt::DelimiterKind::Bracket => 3,
};
[self.open.0, self.close.0, kind, self.tt[0], self.tt[1]]
}
fn read_with_close_span([open, close, kind, lo, len]: [u32; 5]) -> SubtreeRepr {
let kind = match kind {
0 => tt::DelimiterKind::Invisible,
1 => tt::DelimiterKind::Parenthesis,
2 => tt::DelimiterKind::Brace,
3 => tt::DelimiterKind::Bracket,
other => panic!("bad kind {other}"),
};
SubtreeRepr { open: TokenId(open), close: TokenId(close), kind, tt: [lo, len] }
}
}
impl LiteralRepr {
fn write(self) -> [u32; 2] {
[self.id.0, self.text]
}
fn read([id, text]: [u32; 2]) -> LiteralRepr {
LiteralRepr { id: TokenId(id), text }
}
}
impl PunctRepr {
fn write(self) -> [u32; 3] {
let spacing = match self.spacing {
tt::Spacing::Alone => 0,
tt::Spacing::Joint => 1,
};
[self.id.0, self.char as u32, spacing]
}
fn read([id, char, spacing]: [u32; 3]) -> PunctRepr {
let spacing = match spacing {
0 => tt::Spacing::Alone,
1 => tt::Spacing::Joint,
other => panic!("bad spacing {other}"),
};
PunctRepr { id: TokenId(id), char: char.try_into().unwrap(), spacing }
}
}
impl IdentRepr {
fn write(self) -> [u32; 2] {
[self.id.0, self.text]
}
fn read(data: [u32; 2]) -> IdentRepr {
IdentRepr { id: TokenId(data[0]), text: data[1] }
}
}
trait InternableSpan: Copy {
type Table;
fn token_id_of(table: &mut Self::Table, s: Self) -> TokenId;
fn span_for_token_id(table: &Self::Table, id: TokenId) -> Self;
}
impl InternableSpan for TokenId {
type Table = ();
fn token_id_of((): &mut Self::Table, token_id: Self) -> TokenId {
token_id
}
fn span_for_token_id((): &Self::Table, id: TokenId) -> Self {
id
}
}
impl InternableSpan for Span {
type Table = IndexSet<Span>;
fn token_id_of(table: &mut Self::Table, span: Self) -> TokenId {
TokenId(table.insert_full(span).0 as u32)
}
fn span_for_token_id(table: &Self::Table, id: TokenId) -> Self {
*table.get_index(id.0 as usize).unwrap_or_else(|| &table[0])
}
}
struct Writer<'a, 'span, S: InternableSpan> {
work: VecDeque<(usize, &'a tt::Subtree<S>)>,
string_table: HashMap<&'a str, u32>,
span_data_table: &'span mut S::Table,
subtree: Vec<SubtreeRepr>,
literal: Vec<LiteralRepr>,
punct: Vec<PunctRepr>,
ident: Vec<IdentRepr>,
token_tree: Vec<u32>,
text: Vec<String>,
}
impl<'a, 'span, S: InternableSpan> Writer<'a, 'span, S> {
fn write(&mut self, root: &'a tt::Subtree<S>) {
self.enqueue(root);
while let Some((idx, subtree)) = self.work.pop_front() {
self.subtree(idx, subtree);
}
}
fn token_id_of(&mut self, span: S) -> TokenId {
S::token_id_of(self.span_data_table, span)
}
fn subtree(&mut self, idx: usize, subtree: &'a tt::Subtree<S>) {
let mut first_tt = self.token_tree.len();
let n_tt = subtree.token_trees.len();
self.token_tree.resize(first_tt + n_tt, !0);
self.subtree[idx].tt = [first_tt as u32, (first_tt + n_tt) as u32];
for child in &subtree.token_trees {
let idx_tag = match child {
tt::TokenTree::Subtree(it) => {
let idx = self.enqueue(it);
idx << 2
}
tt::TokenTree::Leaf(leaf) => match leaf {
tt::Leaf::Literal(lit) => {
let idx = self.literal.len() as u32;
let text = self.intern(&lit.text);
let id = self.token_id_of(lit.span);
self.literal.push(LiteralRepr { id, text });
idx << 2 | 0b01
}
tt::Leaf::Punct(punct) => {
let idx = self.punct.len() as u32;
let id = self.token_id_of(punct.span);
self.punct.push(PunctRepr { char: punct.char, spacing: punct.spacing, id });
idx << 2 | 0b10
}
tt::Leaf::Ident(ident) => {
let idx = self.ident.len() as u32;
let text = self.intern(&ident.text);
let id = self.token_id_of(ident.span);
self.ident.push(IdentRepr { id, text });
idx << 2 | 0b11
}
},
};
self.token_tree[first_tt] = idx_tag;
first_tt += 1;
}
}
fn enqueue(&mut self, subtree: &'a tt::Subtree<S>) -> u32 {
let idx = self.subtree.len();
let open = self.token_id_of(subtree.delimiter.open);
let close = self.token_id_of(subtree.delimiter.close);
let delimiter_kind = subtree.delimiter.kind;
self.subtree.push(SubtreeRepr { open, close, kind: delimiter_kind, tt: [!0, !0] });
self.work.push_back((idx, subtree));
idx as u32
}
pub(crate) fn intern(&mut self, text: &'a str) -> u32 {
let table = &mut self.text;
*self.string_table.entry(text).or_insert_with(|| {
let idx = table.len();
table.push(text.to_string());
idx as u32
})
}
}
struct Reader<'span, S: InternableSpan> {
subtree: Vec<SubtreeRepr>,
literal: Vec<LiteralRepr>,
punct: Vec<PunctRepr>,
ident: Vec<IdentRepr>,
token_tree: Vec<u32>,
text: Vec<String>,
span_data_table: &'span S::Table,
}
impl<'span, S: InternableSpan> Reader<'span, S> {
pub(crate) fn read(self) -> tt::Subtree<S> {
let mut res: Vec<Option<tt::Subtree<S>>> = vec![None; self.subtree.len()];
let read_span = |id| S::span_for_token_id(self.span_data_table, id);
for i in (0..self.subtree.len()).rev() {
let repr = &self.subtree[i];
let token_trees = &self.token_tree[repr.tt[0] as usize..repr.tt[1] as usize];
let s = tt::Subtree {
delimiter: tt::Delimiter {
open: read_span(repr.open),
close: read_span(repr.close),
kind: repr.kind,
},
token_trees: token_trees
.iter()
.copied()
.map(|idx_tag| {
let tag = idx_tag & 0b11;
let idx = (idx_tag >> 2) as usize;
match tag {
// XXX: we iterate subtrees in reverse to guarantee
// that this unwrap doesn't fire.
0b00 => res[idx].take().unwrap().into(),
0b01 => {
let repr = &self.literal[idx];
tt::Leaf::Literal(tt::Literal {
text: self.text[repr.text as usize].as_str().into(),
span: read_span(repr.id),
})
.into()
}
0b10 => {
let repr = &self.punct[idx];
tt::Leaf::Punct(tt::Punct {
char: repr.char,
spacing: repr.spacing,
span: read_span(repr.id),
})
.into()
}
0b11 => {
let repr = &self.ident[idx];
tt::Leaf::Ident(tt::Ident {
text: self.text[repr.text as usize].as_str().into(),
span: read_span(repr.id),
})
.into()
}
other => panic!("bad tag: {other}"),
}
})
.collect(),
};
res[i] = Some(s);
}
res[0].take().unwrap()
}
}