blob: 37ac912f064239f41a2b5fe268bc2ccd6be1112b [file] [log] [blame]
use either::Either;
use hir::{
db::{ExpandDatabase, HirDatabase},
known, AssocItem, HirDisplay, HirFileIdExt, InFile, Type,
};
use ide_db::{
assists::Assist, famous_defs::FamousDefs, imports::import_assets::item_for_path_search,
source_change::SourceChange, use_trivial_constructor::use_trivial_constructor, FxHashMap,
};
use stdx::format_to;
use syntax::{
algo,
ast::{self, make},
AstNode, SyntaxNode, SyntaxNodePtr,
};
use text_edit::TextEdit;
use crate::{fix, Diagnostic, DiagnosticCode, DiagnosticsContext};
// Diagnostic: missing-fields
//
// This diagnostic is triggered if record lacks some fields that exist in the corresponding structure.
//
// Example:
//
// ```rust
// struct A { a: u8, b: u8 }
//
// let a = A { a: 10 };
// ```
pub(crate) fn missing_fields(ctx: &DiagnosticsContext<'_>, d: &hir::MissingFields) -> Diagnostic {
let mut message = String::from("missing structure fields:\n");
for field in &d.missed_fields {
format_to!(message, "- {}\n", field.display(ctx.sema.db));
}
let ptr = InFile::new(
d.file,
d.field_list_parent_path
.map(SyntaxNodePtr::from)
.unwrap_or_else(|| d.field_list_parent.into()),
);
Diagnostic::new_with_syntax_node_ptr(ctx, DiagnosticCode::RustcHardError("E0063"), message, ptr)
.with_fixes(fixes(ctx, d))
}
fn fixes(ctx: &DiagnosticsContext<'_>, d: &hir::MissingFields) -> Option<Vec<Assist>> {
// Note that although we could add a diagnostics to
// fill the missing tuple field, e.g :
// `struct A(usize);`
// `let a = A { 0: () }`
// but it is uncommon usage and it should not be encouraged.
if d.missed_fields.iter().any(|it| it.as_tuple_index().is_some()) {
return None;
}
let root = ctx.sema.db.parse_or_expand(d.file);
let current_module =
ctx.sema.scope(d.field_list_parent.to_node(&root).syntax()).map(|it| it.module());
let build_text_edit = |parent_syntax, new_syntax: &SyntaxNode, old_syntax| {
let edit = {
let mut builder = TextEdit::builder();
if d.file.is_macro() {
// we can't map the diff up into the macro input unfortunately, as the macro loses all
// whitespace information so the diff wouldn't be applicable no matter what
// This has the downside that the cursor will be moved in macros by doing it without a diff
// but that is a trade off we can make.
// FIXME: this also currently discards a lot of whitespace in the input... we really need a formatter here
let range = ctx.sema.original_range_opt(old_syntax)?;
builder.replace(range.range, new_syntax.to_string());
} else {
algo::diff(old_syntax, new_syntax).into_text_edit(&mut builder);
}
builder.finish()
};
Some(vec![fix(
"fill_missing_fields",
"Fill struct fields",
SourceChange::from_text_edit(d.file.original_file(ctx.sema.db), edit),
ctx.sema.original_range(parent_syntax).range,
)])
};
match &d.field_list_parent.to_node(&root) {
Either::Left(field_list_parent) => {
let missing_fields = ctx.sema.record_literal_missing_fields(field_list_parent);
let mut locals = FxHashMap::default();
ctx.sema.scope(field_list_parent.syntax())?.process_all_names(&mut |name, def| {
if let hir::ScopeDef::Local(local) = def {
locals.insert(name, local);
}
});
let generate_fill_expr = |ty: &Type| match ctx.config.expr_fill_default {
crate::ExprFillDefaultMode::Todo => make::ext::expr_todo(),
crate::ExprFillDefaultMode::Default => {
get_default_constructor(ctx, d, ty).unwrap_or_else(make::ext::expr_todo)
}
};
let old_field_list = field_list_parent.record_expr_field_list()?;
let new_field_list = old_field_list.clone_for_update();
for (f, ty) in missing_fields.iter() {
let field_expr = if let Some(local_candidate) = locals.get(&f.name(ctx.sema.db)) {
cov_mark::hit!(field_shorthand);
let candidate_ty = local_candidate.ty(ctx.sema.db);
if ty.could_unify_with(ctx.sema.db, &candidate_ty) {
None
} else {
Some(generate_fill_expr(ty))
}
} else {
let expr = (|| -> Option<ast::Expr> {
let item_in_ns = hir::ItemInNs::from(hir::ModuleDef::from(ty.as_adt()?));
let type_path = current_module?.find_use_path(
ctx.sema.db,
item_for_path_search(ctx.sema.db, item_in_ns)?,
ctx.config.prefer_no_std,
ctx.config.prefer_prelude,
)?;
use_trivial_constructor(
ctx.sema.db,
ide_db::helpers::mod_path_to_ast(&type_path),
ty,
)
})();
if expr.is_some() {
expr
} else {
Some(generate_fill_expr(ty))
}
};
let field = make::record_expr_field(
make::name_ref(&f.name(ctx.sema.db).to_smol_str()),
field_expr,
);
new_field_list.add_field(field.clone_for_update());
}
build_text_edit(
field_list_parent.syntax(),
new_field_list.syntax(),
old_field_list.syntax(),
)
}
Either::Right(field_list_parent) => {
let missing_fields = ctx.sema.record_pattern_missing_fields(field_list_parent);
let old_field_list = field_list_parent.record_pat_field_list()?;
let new_field_list = old_field_list.clone_for_update();
for (f, _) in missing_fields.iter() {
let field = make::record_pat_field_shorthand(make::name_ref(
&f.name(ctx.sema.db).to_smol_str(),
));
new_field_list.add_field(field.clone_for_update());
}
build_text_edit(
field_list_parent.syntax(),
new_field_list.syntax(),
old_field_list.syntax(),
)
}
}
}
fn make_ty(ty: &hir::Type, db: &dyn HirDatabase, module: hir::Module) -> ast::Type {
let ty_str = match ty.as_adt() {
Some(adt) => adt.name(db).display(db.upcast()).to_string(),
None => {
ty.display_source_code(db, module.into(), false).ok().unwrap_or_else(|| "_".to_string())
}
};
make::ty(&ty_str)
}
fn get_default_constructor(
ctx: &DiagnosticsContext<'_>,
d: &hir::MissingFields,
ty: &Type,
) -> Option<ast::Expr> {
if let Some(builtin_ty) = ty.as_builtin() {
if builtin_ty.is_int() || builtin_ty.is_uint() {
return Some(make::ext::zero_number());
}
if builtin_ty.is_float() {
return Some(make::ext::zero_float());
}
if builtin_ty.is_char() {
return Some(make::ext::empty_char());
}
if builtin_ty.is_str() {
return Some(make::ext::empty_str());
}
if builtin_ty.is_bool() {
return Some(make::ext::default_bool());
}
}
let krate = ctx.sema.to_module_def(d.file.original_file(ctx.sema.db))?.krate();
let module = krate.root_module();
// Look for a ::new() associated function
let has_new_func = ty
.iterate_assoc_items(ctx.sema.db, krate, |assoc_item| {
if let AssocItem::Function(func) = assoc_item {
if func.name(ctx.sema.db) == known::new
&& func.assoc_fn_params(ctx.sema.db).is_empty()
{
return Some(());
}
}
None
})
.is_some();
let famous_defs = FamousDefs(&ctx.sema, krate);
if has_new_func {
Some(make::ext::expr_ty_new(&make_ty(ty, ctx.sema.db, module)))
} else if ty.as_adt() == famous_defs.core_option_Option()?.ty(ctx.sema.db).as_adt() {
Some(make::ext::option_none())
} else if !ty.is_array()
&& ty.impls_trait(ctx.sema.db, famous_defs.core_default_Default()?, &[])
{
Some(make::ext::expr_ty_default(&make_ty(ty, ctx.sema.db, module)))
} else {
None
}
}
#[cfg(test)]
mod tests {
use crate::tests::{check_diagnostics, check_fix};
#[test]
fn missing_record_pat_field_diagnostic() {
check_diagnostics(
r#"
struct S { foo: i32, bar: () }
fn baz(s: S) {
let S { foo: _ } = s;
//^ 💡 error: missing structure fields:
//| - bar
}
"#,
);
}
#[test]
fn missing_record_pat_field_no_diagnostic_if_not_exhaustive() {
check_diagnostics(
r"
struct S { foo: i32, bar: () }
fn baz(s: S) -> i32 {
match s {
S { foo, .. } => foo,
}
}
",
)
}
#[test]
fn missing_record_pat_field_box() {
check_diagnostics(
r"
struct S { s: Box<u32> }
fn x(a: S) {
let S { box s } = a;
}
",
)
}
#[test]
fn missing_record_pat_field_ref() {
check_diagnostics(
r"
struct S { s: u32 }
fn x(a: S) {
let S { ref s } = a;
_ = s;
}
",
)
}
#[test]
fn missing_record_expr_in_assignee_expr() {
check_diagnostics(
r"
struct S { s: usize, t: usize }
struct S2 { s: S, t: () }
struct T(S);
fn regular(a: S) {
let s;
S { s, .. } = a;
}
fn nested(a: S2) {
let s;
S2 { s: S { s, .. }, .. } = a;
}
fn in_tuple(a: (S,)) {
let s;
(S { s, .. },) = a;
}
fn in_array(a: [S;1]) {
let s;
[S { s, .. },] = a;
}
fn in_tuple_struct(a: T) {
let s;
T(S { s, .. }) = a;
}
",
);
}
#[test]
fn range_mapping_out_of_macros() {
check_fix(
r#"
fn some() {}
fn items() {}
fn here() {}
macro_rules! id { ($($tt:tt)*) => { $($tt)*}; }
fn main() {
let _x = id![Foo { a: $042 }];
}
pub struct Foo { pub a: i32, pub b: i32 }
"#,
r#"
fn some() {}
fn items() {}
fn here() {}
macro_rules! id { ($($tt:tt)*) => { $($tt)*}; }
fn main() {
let _x = id![Foo {a:42, b: 0 }];
}
pub struct Foo { pub a: i32, pub b: i32 }
"#,
);
}
#[test]
fn test_fill_struct_fields_empty() {
check_fix(
r#"
//- minicore: option
struct TestStruct { one: i32, two: i64, three: Option<i32>, four: bool }
fn test_fn() {
let s = TestStruct {$0};
}
"#,
r#"
struct TestStruct { one: i32, two: i64, three: Option<i32>, four: bool }
fn test_fn() {
let s = TestStruct { one: 0, two: 0, three: None, four: false };
}
"#,
);
}
#[test]
fn test_fill_struct_zst_fields() {
check_fix(
r#"
struct Empty;
struct TestStruct { one: i32, two: Empty }
fn test_fn() {
let s = TestStruct {$0};
}
"#,
r#"
struct Empty;
struct TestStruct { one: i32, two: Empty }
fn test_fn() {
let s = TestStruct { one: 0, two: Empty };
}
"#,
);
check_fix(
r#"
enum Empty { Foo };
struct TestStruct { one: i32, two: Empty }
fn test_fn() {
let s = TestStruct {$0};
}
"#,
r#"
enum Empty { Foo };
struct TestStruct { one: i32, two: Empty }
fn test_fn() {
let s = TestStruct { one: 0, two: Empty::Foo };
}
"#,
);
// make sure the assist doesn't fill non Unit variants
check_fix(
r#"
struct Empty {};
struct TestStruct { one: i32, two: Empty }
fn test_fn() {
let s = TestStruct {$0};
}
"#,
r#"
struct Empty {};
struct TestStruct { one: i32, two: Empty }
fn test_fn() {
let s = TestStruct { one: 0, two: todo!() };
}
"#,
);
check_fix(
r#"
enum Empty { Foo {} };
struct TestStruct { one: i32, two: Empty }
fn test_fn() {
let s = TestStruct {$0};
}
"#,
r#"
enum Empty { Foo {} };
struct TestStruct { one: i32, two: Empty }
fn test_fn() {
let s = TestStruct { one: 0, two: todo!() };
}
"#,
);
}
#[test]
fn test_fill_struct_fields_self() {
check_fix(
r#"
struct TestStruct { one: i32 }
impl TestStruct {
fn test_fn() { let s = Self {$0}; }
}
"#,
r#"
struct TestStruct { one: i32 }
impl TestStruct {
fn test_fn() { let s = Self { one: 0 }; }
}
"#,
);
}
#[test]
fn test_fill_struct_fields_enum() {
check_fix(
r#"
enum Expr {
Bin { lhs: Box<Expr>, rhs: Box<Expr> }
}
impl Expr {
fn new_bin(lhs: Box<Expr>, rhs: Box<Expr>) -> Expr {
Expr::Bin {$0 }
}
}
"#,
r#"
enum Expr {
Bin { lhs: Box<Expr>, rhs: Box<Expr> }
}
impl Expr {
fn new_bin(lhs: Box<Expr>, rhs: Box<Expr>) -> Expr {
Expr::Bin { lhs, rhs }
}
}
"#,
);
}
#[test]
fn test_fill_struct_fields_partial() {
check_fix(
r#"
struct TestStruct { one: i32, two: i64 }
fn test_fn() {
let s = TestStruct{ two: 2$0 };
}
"#,
r"
struct TestStruct { one: i32, two: i64 }
fn test_fn() {
let s = TestStruct{ two: 2, one: 0 };
}
",
);
}
#[test]
fn test_fill_struct_fields_new() {
check_fix(
r#"
struct TestWithNew(usize);
impl TestWithNew {
pub fn new() -> Self {
Self(0)
}
}
struct TestStruct { one: i32, two: TestWithNew }
fn test_fn() {
let s = TestStruct{ $0 };
}
"#,
r"
struct TestWithNew(usize);
impl TestWithNew {
pub fn new() -> Self {
Self(0)
}
}
struct TestStruct { one: i32, two: TestWithNew }
fn test_fn() {
let s = TestStruct{ one: 0, two: TestWithNew::new() };
}
",
);
}
#[test]
fn test_fill_struct_fields_default() {
check_fix(
r#"
//- minicore: default, option
struct TestWithDefault(usize);
impl Default for TestWithDefault {
pub fn default() -> Self {
Self(0)
}
}
struct TestStruct { one: i32, two: TestWithDefault }
fn test_fn() {
let s = TestStruct{ $0 };
}
"#,
r"
struct TestWithDefault(usize);
impl Default for TestWithDefault {
pub fn default() -> Self {
Self(0)
}
}
struct TestStruct { one: i32, two: TestWithDefault }
fn test_fn() {
let s = TestStruct{ one: 0, two: TestWithDefault::default() };
}
",
);
}
#[test]
fn test_fill_struct_fields_raw_ident() {
check_fix(
r#"
struct TestStruct { r#type: u8 }
fn test_fn() {
TestStruct { $0 };
}
"#,
r"
struct TestStruct { r#type: u8 }
fn test_fn() {
TestStruct { r#type: 0 };
}
",
);
}
#[test]
fn test_fill_struct_fields_no_diagnostic() {
check_diagnostics(
r#"
struct TestStruct { one: i32, two: i64 }
fn test_fn() {
let one = 1;
let _s = TestStruct{ one, two: 2 };
}
"#,
);
}
#[test]
fn test_fill_struct_fields_no_diagnostic_on_spread() {
check_diagnostics(
r#"
struct TestStruct { one: i32, two: i64 }
fn test_fn() {
let one = 1;
let s = TestStruct{ ..a };
}
"#,
);
}
#[test]
fn test_fill_struct_fields_blank_line() {
check_fix(
r#"
struct S { a: (), b: () }
fn f() {
S {
$0
};
}
"#,
r#"
struct S { a: (), b: () }
fn f() {
S {
a: todo!(),
b: todo!(),
};
}
"#,
);
}
#[test]
fn test_fill_struct_fields_shorthand() {
cov_mark::check!(field_shorthand);
check_fix(
r#"
struct S { a: &'static str, b: i32 }
fn f() {
let a = "hello";
let b = 1i32;
S {
$0
};
}
"#,
r#"
struct S { a: &'static str, b: i32 }
fn f() {
let a = "hello";
let b = 1i32;
S {
a,
b,
};
}
"#,
);
}
#[test]
fn test_fill_struct_fields_shorthand_ty_mismatch() {
check_fix(
r#"
struct S { a: &'static str, b: i32 }
fn f() {
let a = "hello";
let b = 1usize;
S {
$0
};
}
"#,
r#"
struct S { a: &'static str, b: i32 }
fn f() {
let a = "hello";
let b = 1usize;
S {
a,
b: 0,
};
}
"#,
);
}
#[test]
fn test_fill_struct_fields_shorthand_unifies() {
check_fix(
r#"
struct S<T> { a: &'static str, b: T }
fn f() {
let a = "hello";
let b = 1i32;
S {
$0
};
}
"#,
r#"
struct S<T> { a: &'static str, b: T }
fn f() {
let a = "hello";
let b = 1i32;
S {
a,
b,
};
}
"#,
);
}
#[test]
fn test_fill_struct_pat_fields() {
check_fix(
r#"
struct S { a: &'static str, b: i32 }
fn f() {
let S {
$0
};
}
"#,
r#"
struct S { a: &'static str, b: i32 }
fn f() {
let S {
a,
b,
};
}
"#,
);
}
#[test]
fn test_fill_struct_pat_fields_partial() {
check_fix(
r#"
struct S { a: &'static str, b: i32 }
fn f() {
let S {
a,$0
};
}
"#,
r#"
struct S { a: &'static str, b: i32 }
fn f() {
let S {
a,
b,
};
}
"#,
);
}
#[test]
fn import_extern_crate_clash_with_inner_item() {
// This is more of a resolver test, but doesn't really work with the hir_def testsuite.
check_diagnostics(
r#"
//- /lib.rs crate:lib deps:jwt
mod permissions;
use permissions::jwt;
fn f() {
fn inner() {}
jwt::Claims {}; // should resolve to the local one with 0 fields, and not get a diagnostic
}
//- /permissions.rs
pub mod jwt {
pub struct Claims {}
}
//- /jwt/lib.rs crate:jwt
pub struct Claims {
field: u8,
}
"#,
);
}
}