blob: 61638c43d9ced7e22763dce808b2d68e6f3ff12c [file] [log] [blame]
//! Coercion logic. Coercions are certain type conversions that can implicitly
//! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions
//! like going from `&Vec<T>` to `&[T]`.
//!
//! See <https://doc.rust-lang.org/nomicon/coercions.html> and
//! `rustc_hir_analysis/check/coercion.rs`.
use std::iter;
use chalk_ir::{cast::Cast, BoundVar, Goal, Mutability, TyKind, TyVariableKind};
use hir_def::{
hir::ExprId,
lang_item::{LangItem, LangItemTarget},
};
use stdx::always;
use triomphe::Arc;
use crate::{
autoderef::{Autoderef, AutoderefKind},
db::HirDatabase,
infer::{
Adjust, Adjustment, AutoBorrow, InferOk, InferenceContext, OverloadedDeref, PointerCast,
TypeError, TypeMismatch,
},
static_lifetime,
utils::ClosureSubst,
Canonical, DomainGoal, FnAbi, FnPointer, FnSig, Guidance, InEnvironment, Interner, Solution,
Substitution, TraitEnvironment, Ty, TyBuilder, TyExt,
};
use super::unify::InferenceTable;
pub(crate) type CoerceResult = Result<InferOk<(Vec<Adjustment>, Ty)>, TypeError>;
/// Do not require any adjustments, i.e. coerce `x -> x`.
fn identity(_: Ty) -> Vec<Adjustment> {
vec![]
}
fn simple(kind: Adjust) -> impl FnOnce(Ty) -> Vec<Adjustment> {
move |target| vec![Adjustment { kind, target }]
}
/// This always returns `Ok(...)`.
fn success(
adj: Vec<Adjustment>,
target: Ty,
goals: Vec<InEnvironment<Goal<Interner>>>,
) -> CoerceResult {
Ok(InferOk { goals, value: (adj, target) })
}
pub(super) enum CoercionCause {
// FIXME: Make better use of this. Right now things like return and break without a value
// use it to point to themselves, causing us to report a mismatch on those expressions even
// though technically they themselves are `!`
Expr(ExprId),
}
#[derive(Clone, Debug)]
pub(super) struct CoerceMany {
expected_ty: Ty,
final_ty: Option<Ty>,
expressions: Vec<ExprId>,
}
impl CoerceMany {
pub(super) fn new(expected: Ty) -> Self {
CoerceMany { expected_ty: expected, final_ty: None, expressions: vec![] }
}
/// Returns the "expected type" with which this coercion was
/// constructed. This represents the "downward propagated" type
/// that was given to us at the start of typing whatever construct
/// we are typing (e.g., the match expression).
///
/// Typically, this is used as the expected type when
/// type-checking each of the alternative expressions whose types
/// we are trying to merge.
pub(super) fn expected_ty(&self) -> Ty {
self.expected_ty.clone()
}
/// Returns the current "merged type", representing our best-guess
/// at the LUB of the expressions we've seen so far (if any). This
/// isn't *final* until you call `self.complete()`, which will return
/// the merged type.
pub(super) fn merged_ty(&self) -> Ty {
self.final_ty.clone().unwrap_or_else(|| self.expected_ty.clone())
}
pub(super) fn complete(self, ctx: &mut InferenceContext<'_>) -> Ty {
if let Some(final_ty) = self.final_ty {
final_ty
} else {
ctx.result.standard_types.never.clone()
}
}
pub(super) fn coerce_forced_unit(
&mut self,
ctx: &mut InferenceContext<'_>,
cause: CoercionCause,
) {
self.coerce(ctx, None, &ctx.result.standard_types.unit.clone(), cause)
}
/// Merge two types from different branches, with possible coercion.
///
/// Mostly this means trying to coerce one to the other, but
/// - if we have two function types for different functions or closures, we need to
/// coerce both to function pointers;
/// - if we were concerned with lifetime subtyping, we'd need to look for a
/// least upper bound.
pub(super) fn coerce(
&mut self,
ctx: &mut InferenceContext<'_>,
expr: Option<ExprId>,
expr_ty: &Ty,
cause: CoercionCause,
) {
let expr_ty = ctx.resolve_ty_shallow(expr_ty);
self.expected_ty = ctx.resolve_ty_shallow(&self.expected_ty);
// Special case: two function types. Try to coerce both to
// pointers to have a chance at getting a match. See
// https://github.com/rust-lang/rust/blob/7b805396bf46dce972692a6846ce2ad8481c5f85/src/librustc_typeck/check/coercion.rs#L877-L916
let sig = match (self.merged_ty().kind(Interner), expr_ty.kind(Interner)) {
(TyKind::FnDef(x, _), TyKind::FnDef(y, _)) if x == y => None,
(TyKind::Closure(x, _), TyKind::Closure(y, _)) if x == y => None,
(TyKind::FnDef(..) | TyKind::Closure(..), TyKind::FnDef(..) | TyKind::Closure(..)) => {
// FIXME: we're ignoring safety here. To be more correct, if we have one FnDef and one Closure,
// we should be coercing the closure to a fn pointer of the safety of the FnDef
cov_mark::hit!(coerce_fn_reification);
let sig =
self.merged_ty().callable_sig(ctx.db).expect("FnDef without callable sig");
Some(sig)
}
_ => None,
};
if let Some(sig) = sig {
let target_ty = TyKind::Function(sig.to_fn_ptr()).intern(Interner);
let result1 = ctx.table.coerce_inner(self.merged_ty(), &target_ty);
let result2 = ctx.table.coerce_inner(expr_ty.clone(), &target_ty);
if let (Ok(result1), Ok(result2)) = (result1, result2) {
ctx.table.register_infer_ok(InferOk { value: (), goals: result1.goals });
for &e in &self.expressions {
ctx.write_expr_adj(e, result1.value.0.clone());
}
ctx.table.register_infer_ok(InferOk { value: (), goals: result2.goals });
if let Some(expr) = expr {
ctx.write_expr_adj(expr, result2.value.0);
self.expressions.push(expr);
}
return self.final_ty = Some(target_ty);
}
}
// It might not seem like it, but order is important here: If the expected
// type is a type variable and the new one is `!`, trying it the other
// way around first would mean we make the type variable `!`, instead of
// just marking it as possibly diverging.
if let Ok(res) = ctx.coerce(expr, &expr_ty, &self.merged_ty()) {
self.final_ty = Some(res);
} else if let Ok(res) = ctx.coerce(expr, &self.merged_ty(), &expr_ty) {
self.final_ty = Some(res);
} else {
match cause {
CoercionCause::Expr(id) => {
ctx.result.type_mismatches.insert(
id.into(),
TypeMismatch { expected: self.merged_ty(), actual: expr_ty.clone() },
);
}
}
cov_mark::hit!(coerce_merge_fail_fallback);
}
if let Some(expr) = expr {
self.expressions.push(expr);
}
}
}
pub fn could_coerce(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
coerce(db, env, tys).is_ok()
}
pub(crate) fn coerce(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> Result<(Vec<Adjustment>, Ty), TypeError> {
let mut table = InferenceTable::new(db, env);
let vars = table.fresh_subst(tys.binders.as_slice(Interner));
let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner);
let (adjustments, ty) = table.coerce(&ty1_with_vars, &ty2_with_vars)?;
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
let find_var = |iv| {
vars.iter(Interner).position(|v| match v.interned() {
chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(Interner),
chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(Interner),
chalk_ir::GenericArgData::Const(c) => c.inference_var(Interner),
} == Some(iv))
};
let fallback = |iv, kind, default, binder| match kind {
chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)),
chalk_ir::VariableKind::Lifetime => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)),
chalk_ir::VariableKind::Const(ty) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)),
};
// FIXME also map the types in the adjustments
Ok((adjustments, table.resolve_with_fallback(ty, &fallback)))
}
impl InferenceContext<'_> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(super) fn coerce(
&mut self,
expr: Option<ExprId>,
from_ty: &Ty,
to_ty: &Ty,
) -> Result<Ty, TypeError> {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
let (adjustments, ty) = self.table.coerce(&from_ty, &to_ty)?;
if let Some(expr) = expr {
self.write_expr_adj(expr, adjustments);
}
Ok(ty)
}
}
impl InferenceTable<'_> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(crate) fn coerce(
&mut self,
from_ty: &Ty,
to_ty: &Ty,
) -> Result<(Vec<Adjustment>, Ty), TypeError> {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
match self.coerce_inner(from_ty, &to_ty) {
Ok(InferOk { value: (adjustments, ty), goals }) => {
self.register_infer_ok(InferOk { value: (), goals });
Ok((adjustments, ty))
}
Err(e) => {
// FIXME deal with error
Err(e)
}
}
}
fn coerce_inner(&mut self, from_ty: Ty, to_ty: &Ty) -> CoerceResult {
if from_ty.is_never() {
// Subtle: If we are coercing from `!` to `?T`, where `?T` is an unbound
// type variable, we want `?T` to fallback to `!` if not
// otherwise constrained. An example where this arises:
//
// let _: Option<?T> = Some({ return; });
//
// here, we would coerce from `!` to `?T`.
if let TyKind::InferenceVar(tv, TyVariableKind::General) = to_ty.kind(Interner) {
self.set_diverging(*tv, true);
}
return success(simple(Adjust::NeverToAny)(to_ty.clone()), to_ty.clone(), vec![]);
}
// Consider coercing the subtype to a DST
if let Ok(ret) = self.try_coerce_unsized(&from_ty, to_ty) {
return Ok(ret);
}
// Examine the supertype and consider auto-borrowing.
match to_ty.kind(Interner) {
TyKind::Raw(mt, _) => return self.coerce_ptr(from_ty, to_ty, *mt),
TyKind::Ref(mt, _, _) => return self.coerce_ref(from_ty, to_ty, *mt),
_ => {}
}
match from_ty.kind(Interner) {
TyKind::FnDef(..) => {
// Function items are coercible to any closure
// type; function pointers are not (that would
// require double indirection).
// Additionally, we permit coercion of function
// items to drop the unsafe qualifier.
self.coerce_from_fn_item(from_ty, to_ty)
}
TyKind::Function(from_fn_ptr) => {
// We permit coercion of fn pointers to drop the
// unsafe qualifier.
self.coerce_from_fn_pointer(from_ty.clone(), from_fn_ptr, to_ty)
}
TyKind::Closure(_, from_substs) => {
// Non-capturing closures are coercible to
// function pointers or unsafe function pointers.
// It cannot convert closures that require unsafe.
self.coerce_closure_to_fn(from_ty.clone(), from_substs, to_ty)
}
_ => {
// Otherwise, just use unification rules.
self.unify_and(&from_ty, to_ty, identity)
}
}
}
/// Unify two types (using sub or lub) and produce a specific coercion.
fn unify_and<F>(&mut self, t1: &Ty, t2: &Ty, f: F) -> CoerceResult
where
F: FnOnce(Ty) -> Vec<Adjustment>,
{
self.try_unify(t1, t2)
.and_then(|InferOk { goals, .. }| success(f(t1.clone()), t1.clone(), goals))
}
fn coerce_ptr(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> CoerceResult {
let (is_ref, from_mt, from_inner) = match from_ty.kind(Interner) {
TyKind::Ref(mt, _, ty) => (true, mt, ty),
TyKind::Raw(mt, ty) => (false, mt, ty),
_ => return self.unify_and(&from_ty, to_ty, identity),
};
coerce_mutabilities(*from_mt, to_mt)?;
// Check that the types which they point at are compatible.
let from_raw = TyKind::Raw(to_mt, from_inner.clone()).intern(Interner);
// Although references and unsafe ptrs have the same
// representation, we still register an Adjust::DerefRef so that
// regionck knows that the region for `a` must be valid here.
if is_ref {
self.unify_and(&from_raw, to_ty, |target| {
vec![
Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() },
Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(to_mt)), target },
]
})
} else if *from_mt != to_mt {
self.unify_and(
&from_raw,
to_ty,
simple(Adjust::Pointer(PointerCast::MutToConstPointer)),
)
} else {
self.unify_and(&from_raw, to_ty, identity)
}
}
/// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
/// To match `A` with `B`, autoderef will be performed,
/// calling `deref`/`deref_mut` where necessary.
fn coerce_ref(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> CoerceResult {
let from_mt = match from_ty.kind(Interner) {
&TyKind::Ref(mt, _, _) => {
coerce_mutabilities(mt, to_mt)?;
mt
}
_ => return self.unify_and(&from_ty, to_ty, identity),
};
// NOTE: this code is mostly copied and adapted from rustc, and
// currently more complicated than necessary, carrying errors around
// etc.. This complication will become necessary when we actually track
// details of coercion errors though, so I think it's useful to leave
// the structure like it is.
let snapshot = self.snapshot();
let mut autoderef = Autoderef::new(self, from_ty.clone(), false);
let mut first_error = None;
let mut found = None;
while let Some((referent_ty, autoderefs)) = autoderef.next() {
if autoderefs == 0 {
// Don't let this pass, otherwise it would cause
// &T to autoref to &&T.
continue;
}
// At this point, we have deref'd `a` to `referent_ty`. So
// imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
// In the autoderef loop for `&'a mut Vec<T>`, we would get
// three callbacks:
//
// - `&'a mut Vec<T>` -- 0 derefs, just ignore it
// - `Vec<T>` -- 1 deref
// - `[T]` -- 2 deref
//
// At each point after the first callback, we want to
// check to see whether this would match out target type
// (`&'b mut [T]`) if we autoref'd it. We can't just
// compare the referent types, though, because we still
// have to consider the mutability. E.g., in the case
// we've been considering, we have an `&mut` reference, so
// the `T` in `[T]` needs to be unified with equality.
//
// Therefore, we construct reference types reflecting what
// the types will be after we do the final auto-ref and
// compare those. Note that this means we use the target
// mutability [1], since it may be that we are coercing
// from `&mut T` to `&U`.
let lt = static_lifetime(); // FIXME: handle lifetimes correctly, see rustc
let derefd_from_ty = TyKind::Ref(to_mt, lt, referent_ty).intern(Interner);
match autoderef.table.try_unify(&derefd_from_ty, to_ty) {
Ok(result) => {
found = Some(result.map(|()| derefd_from_ty));
break;
}
Err(err) => {
if first_error.is_none() {
first_error = Some(err);
}
}
}
}
// Extract type or return an error. We return the first error
// we got, which should be from relating the "base" type
// (e.g., in example above, the failure from relating `Vec<T>`
// to the target type), since that should be the least
// confusing.
let InferOk { value: ty, goals } = match found {
Some(d) => d,
None => {
self.rollback_to(snapshot);
let err = first_error.expect("coerce_borrowed_pointer had no error");
return Err(err);
}
};
if ty == from_ty && from_mt == Mutability::Not && autoderef.step_count() == 1 {
// As a special case, if we would produce `&'a *x`, that's
// a total no-op. We end up with the type `&'a T` just as
// we started with. In that case, just skip it
// altogether. This is just an optimization.
//
// Note that for `&mut`, we DO want to reborrow --
// otherwise, this would be a move, which might be an
// error. For example `foo(self.x)` where `self` and
// `self.x` both have `&mut `type would be a move of
// `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
// which is a borrow.
always!(to_mt == Mutability::Not); // can only coerce &T -> &U
return success(vec![], ty, goals);
}
let mut adjustments = auto_deref_adjust_steps(&autoderef);
adjustments
.push(Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(to_mt)), target: ty.clone() });
success(adjustments, ty, goals)
}
/// Attempts to coerce from the type of a Rust function item into a function pointer.
fn coerce_from_fn_item(&mut self, from_ty: Ty, to_ty: &Ty) -> CoerceResult {
match to_ty.kind(Interner) {
TyKind::Function(_) => {
let from_sig = from_ty.callable_sig(self.db).expect("FnDef had no sig");
// FIXME check ABI: Intrinsics are not coercible to function pointers
// FIXME Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396)
// FIXME rustc normalizes assoc types in the sig here, not sure if necessary
let from_sig = from_sig.to_fn_ptr();
let from_fn_pointer = TyKind::Function(from_sig.clone()).intern(Interner);
let ok = self.coerce_from_safe_fn(
from_fn_pointer.clone(),
&from_sig,
to_ty,
|unsafe_ty| {
vec![
Adjustment {
kind: Adjust::Pointer(PointerCast::ReifyFnPointer),
target: from_fn_pointer,
},
Adjustment {
kind: Adjust::Pointer(PointerCast::UnsafeFnPointer),
target: unsafe_ty,
},
]
},
simple(Adjust::Pointer(PointerCast::ReifyFnPointer)),
)?;
Ok(ok)
}
_ => self.unify_and(&from_ty, to_ty, identity),
}
}
fn coerce_from_fn_pointer(
&mut self,
from_ty: Ty,
from_f: &FnPointer,
to_ty: &Ty,
) -> CoerceResult {
self.coerce_from_safe_fn(
from_ty,
from_f,
to_ty,
simple(Adjust::Pointer(PointerCast::UnsafeFnPointer)),
identity,
)
}
fn coerce_from_safe_fn<F, G>(
&mut self,
from_ty: Ty,
from_fn_ptr: &FnPointer,
to_ty: &Ty,
to_unsafe: F,
normal: G,
) -> CoerceResult
where
F: FnOnce(Ty) -> Vec<Adjustment>,
G: FnOnce(Ty) -> Vec<Adjustment>,
{
if let TyKind::Function(to_fn_ptr) = to_ty.kind(Interner) {
if let (chalk_ir::Safety::Safe, chalk_ir::Safety::Unsafe) =
(from_fn_ptr.sig.safety, to_fn_ptr.sig.safety)
{
let from_unsafe =
TyKind::Function(safe_to_unsafe_fn_ty(from_fn_ptr.clone())).intern(Interner);
return self.unify_and(&from_unsafe, to_ty, to_unsafe);
}
}
self.unify_and(&from_ty, to_ty, normal)
}
/// Attempts to coerce from the type of a non-capturing closure into a
/// function pointer.
fn coerce_closure_to_fn(
&mut self,
from_ty: Ty,
from_substs: &Substitution,
to_ty: &Ty,
) -> CoerceResult {
match to_ty.kind(Interner) {
// if from_substs is non-capturing (FIXME)
TyKind::Function(fn_ty) => {
// We coerce the closure, which has fn type
// `extern "rust-call" fn((arg0,arg1,...)) -> _`
// to
// `fn(arg0,arg1,...) -> _`
// or
// `unsafe fn(arg0,arg1,...) -> _`
let safety = fn_ty.sig.safety;
let pointer_ty = coerce_closure_fn_ty(from_substs, safety);
self.unify_and(
&pointer_ty,
to_ty,
simple(Adjust::Pointer(PointerCast::ClosureFnPointer(safety))),
)
}
_ => self.unify_and(&from_ty, to_ty, identity),
}
}
/// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
///
/// See: <https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html>
fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> CoerceResult {
// These 'if' statements require some explanation.
// The `CoerceUnsized` trait is special - it is only
// possible to write `impl CoerceUnsized<B> for A` where
// A and B have 'matching' fields. This rules out the following
// two types of blanket impls:
//
// `impl<T> CoerceUnsized<T> for SomeType`
// `impl<T> CoerceUnsized<SomeType> for T`
//
// Both of these trigger a special `CoerceUnsized`-related error (E0376)
//
// We can take advantage of this fact to avoid performing unnecessary work.
// If either `source` or `target` is a type variable, then any applicable impl
// would need to be generic over the self-type (`impl<T> CoerceUnsized<SomeType> for T`)
// or generic over the `CoerceUnsized` type parameter (`impl<T> CoerceUnsized<T> for
// SomeType`).
//
// However, these are exactly the kinds of impls which are forbidden by
// the compiler! Therefore, we can be sure that coercion will always fail
// when either the source or target type is a type variable. This allows us
// to skip performing any trait selection, and immediately bail out.
if from_ty.is_ty_var() {
return Err(TypeError);
}
if to_ty.is_ty_var() {
return Err(TypeError);
}
// Handle reborrows before trying to solve `Source: CoerceUnsized<Target>`.
let reborrow = match (from_ty.kind(Interner), to_ty.kind(Interner)) {
(TyKind::Ref(from_mt, _, from_inner), &TyKind::Ref(to_mt, _, _)) => {
coerce_mutabilities(*from_mt, to_mt)?;
let lt = static_lifetime();
Some((
Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() },
Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(to_mt)),
target: TyKind::Ref(to_mt, lt, from_inner.clone()).intern(Interner),
},
))
}
(TyKind::Ref(from_mt, _, from_inner), &TyKind::Raw(to_mt, _)) => {
coerce_mutabilities(*from_mt, to_mt)?;
Some((
Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() },
Adjustment {
kind: Adjust::Borrow(AutoBorrow::RawPtr(to_mt)),
target: TyKind::Raw(to_mt, from_inner.clone()).intern(Interner),
},
))
}
_ => None,
};
let coerce_from =
reborrow.as_ref().map_or_else(|| from_ty.clone(), |(_, adj)| adj.target.clone());
let krate = self.trait_env.krate;
let coerce_unsized_trait = match self.db.lang_item(krate, LangItem::CoerceUnsized) {
Some(LangItemTarget::Trait(trait_)) => trait_,
_ => return Err(TypeError),
};
let coerce_unsized_tref = {
let b = TyBuilder::trait_ref(self.db, coerce_unsized_trait);
if b.remaining() != 2 {
// The CoerceUnsized trait should have two generic params: Self and T.
return Err(TypeError);
}
b.push(coerce_from).push(to_ty.clone()).build()
};
let goal: InEnvironment<DomainGoal> =
InEnvironment::new(&self.trait_env.env, coerce_unsized_tref.cast(Interner));
let canonicalized = self.canonicalize(goal);
// FIXME: rustc's coerce_unsized is more specialized -- it only tries to
// solve `CoerceUnsized` and `Unsize` goals at this point and leaves the
// rest for later. Also, there's some logic about sized type variables.
// Need to find out in what cases this is necessary
let solution = self
.db
.trait_solve(krate, self.trait_env.block, canonicalized.value.clone().cast(Interner))
.ok_or(TypeError)?;
match solution {
Solution::Unique(v) => {
canonicalized.apply_solution(
self,
Canonical {
binders: v.binders,
// FIXME handle constraints
value: v.value.subst,
},
);
}
Solution::Ambig(Guidance::Definite(subst)) => {
// FIXME need to record an obligation here
canonicalized.apply_solution(self, subst)
}
// FIXME actually we maybe should also accept unknown guidance here
_ => return Err(TypeError),
};
let unsize =
Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target: to_ty.clone() };
let adjustments = match reborrow {
None => vec![unsize],
Some((deref, autoref)) => vec![deref, autoref, unsize],
};
success(adjustments, to_ty.clone(), vec![])
}
}
fn coerce_closure_fn_ty(closure_substs: &Substitution, safety: chalk_ir::Safety) -> Ty {
let closure_sig = ClosureSubst(closure_substs).sig_ty().clone();
match closure_sig.kind(Interner) {
TyKind::Function(fn_ty) => TyKind::Function(FnPointer {
num_binders: fn_ty.num_binders,
sig: FnSig { safety, abi: FnAbi::Rust, variadic: fn_ty.sig.variadic },
substitution: fn_ty.substitution.clone(),
})
.intern(Interner),
_ => TyKind::Error.intern(Interner),
}
}
fn safe_to_unsafe_fn_ty(fn_ty: FnPointer) -> FnPointer {
FnPointer {
num_binders: fn_ty.num_binders,
sig: FnSig { safety: chalk_ir::Safety::Unsafe, ..fn_ty.sig },
substitution: fn_ty.substitution,
}
}
fn coerce_mutabilities(from: Mutability, to: Mutability) -> Result<(), TypeError> {
match (from, to) {
(Mutability::Mut, Mutability::Mut | Mutability::Not)
| (Mutability::Not, Mutability::Not) => Ok(()),
(Mutability::Not, Mutability::Mut) => Err(TypeError),
}
}
pub(super) fn auto_deref_adjust_steps(autoderef: &Autoderef<'_, '_>) -> Vec<Adjustment> {
let steps = autoderef.steps();
let targets =
steps.iter().skip(1).map(|(_, ty)| ty.clone()).chain(iter::once(autoderef.final_ty()));
steps
.iter()
.map(|(kind, _source)| match kind {
// We do not know what kind of deref we require at this point yet
AutoderefKind::Overloaded => Some(OverloadedDeref(None)),
AutoderefKind::Builtin => None,
})
.zip(targets)
.map(|(autoderef, target)| Adjustment { kind: Adjust::Deref(autoderef), target })
.collect()
}