blob: 6984f0ba6947302074a1b3f6d264d8732d5ecd75 [file] [log] [blame]
//! The next-generation trait solver, currently still WIP.
//!
//! As a user of rust, you can use `-Znext-solver` to enable the new trait solver.
//!
//! As a developer of rustc, you shouldn't be using the new trait
//! solver without asking the trait-system-refactor-initiative, but it can
//! be enabled with `InferCtxtBuilder::with_next_trait_solver`. This will
//! ensure that trait solving using that inference context will be routed
//! to the new trait solver.
//!
//! For a high-level overview of how this solver works, check out the relevant
//! section of the rustc-dev-guide.
//!
//! FIXME(@lcnr): Write that section. If you read this before then ask me
//! about it on zulip.
use rustc_hir::def_id::DefId;
use rustc_infer::infer::canonical::{Canonical, CanonicalVarValues};
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_infer::traits::query::NoSolution;
use rustc_middle::infer::canonical::CanonicalVarInfos;
use rustc_middle::traits::solve::{
CanonicalResponse, Certainty, ExternalConstraintsData, Goal, GoalSource, IsNormalizesToHack,
QueryResult, Response,
};
use rustc_middle::traits::Reveal;
use rustc_middle::ty::{self, OpaqueTypeKey, Ty, TyCtxt, UniverseIndex};
use rustc_middle::ty::{
CoercePredicate, RegionOutlivesPredicate, SubtypePredicate, TypeOutlivesPredicate,
};
mod alias_relate;
mod assembly;
mod eval_ctxt;
mod fulfill;
pub mod inspect;
mod normalize;
mod normalizes_to;
mod project_goals;
mod search_graph;
mod trait_goals;
pub use eval_ctxt::{EvalCtxt, GenerateProofTree, InferCtxtEvalExt, InferCtxtSelectExt};
pub use fulfill::FulfillmentCtxt;
pub(crate) use normalize::deeply_normalize_for_diagnostics;
pub use normalize::{deeply_normalize, deeply_normalize_with_skipped_universes};
#[derive(Debug, Clone, Copy)]
enum SolverMode {
/// Ordinary trait solving, using everywhere except for coherence.
Normal,
/// Trait solving during coherence. There are a few notable differences
/// between coherence and ordinary trait solving.
///
/// Most importantly, trait solving during coherence must not be incomplete,
/// i.e. return `Err(NoSolution)` for goals for which a solution exists.
/// This means that we must not make any guesses or arbitrary choices.
Coherence,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum GoalEvaluationKind {
Root,
Nested { is_normalizes_to_hack: IsNormalizesToHack },
}
trait CanonicalResponseExt {
fn has_no_inference_or_external_constraints(&self) -> bool;
}
impl<'tcx> CanonicalResponseExt for Canonical<'tcx, Response<'tcx>> {
fn has_no_inference_or_external_constraints(&self) -> bool {
self.value.external_constraints.region_constraints.is_empty()
&& self.value.var_values.is_identity()
&& self.value.external_constraints.opaque_types.is_empty()
}
}
impl<'a, 'tcx> EvalCtxt<'a, 'tcx> {
#[instrument(level = "debug", skip(self))]
fn compute_type_outlives_goal(
&mut self,
goal: Goal<'tcx, TypeOutlivesPredicate<'tcx>>,
) -> QueryResult<'tcx> {
let ty::OutlivesPredicate(ty, lt) = goal.predicate;
self.register_ty_outlives(ty, lt);
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
#[instrument(level = "debug", skip(self))]
fn compute_region_outlives_goal(
&mut self,
goal: Goal<'tcx, RegionOutlivesPredicate<'tcx>>,
) -> QueryResult<'tcx> {
let ty::OutlivesPredicate(a, b) = goal.predicate;
self.register_region_outlives(a, b);
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
#[instrument(level = "debug", skip(self))]
fn compute_coerce_goal(
&mut self,
goal: Goal<'tcx, CoercePredicate<'tcx>>,
) -> QueryResult<'tcx> {
self.compute_subtype_goal(Goal {
param_env: goal.param_env,
predicate: SubtypePredicate {
a_is_expected: false,
a: goal.predicate.a,
b: goal.predicate.b,
},
})
}
#[instrument(level = "debug", skip(self))]
fn compute_subtype_goal(
&mut self,
goal: Goal<'tcx, SubtypePredicate<'tcx>>,
) -> QueryResult<'tcx> {
if goal.predicate.a.is_ty_var() && goal.predicate.b.is_ty_var() {
self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
} else {
self.sub(goal.param_env, goal.predicate.a, goal.predicate.b)?;
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
}
#[instrument(level = "debug", skip(self))]
fn compute_closure_kind_goal(
&mut self,
goal: Goal<'tcx, (DefId, ty::GenericArgsRef<'tcx>, ty::ClosureKind)>,
) -> QueryResult<'tcx> {
let (_, args, expected_kind) = goal.predicate;
let found_kind = args.as_closure().kind_ty().to_opt_closure_kind();
let Some(found_kind) = found_kind else {
return self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS);
};
if found_kind.extends(expected_kind) {
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
Err(NoSolution)
}
}
#[instrument(level = "debug", skip(self))]
fn compute_object_safe_goal(&mut self, trait_def_id: DefId) -> QueryResult<'tcx> {
if self.tcx().check_is_object_safe(trait_def_id) {
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
Err(NoSolution)
}
}
#[instrument(level = "debug", skip(self))]
fn compute_well_formed_goal(
&mut self,
goal: Goal<'tcx, ty::GenericArg<'tcx>>,
) -> QueryResult<'tcx> {
match self.well_formed_goals(goal.param_env, goal.predicate) {
Some(goals) => {
self.add_goals(GoalSource::Misc, goals);
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
None => self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS),
}
}
#[instrument(level = "debug", skip(self))]
fn compute_const_evaluatable_goal(
&mut self,
Goal { param_env, predicate: ct }: Goal<'tcx, ty::Const<'tcx>>,
) -> QueryResult<'tcx> {
match ct.kind() {
ty::ConstKind::Unevaluated(uv) => {
// We never return `NoSolution` here as `try_const_eval_resolve` emits an
// error itself when failing to evaluate, so emitting an additional fulfillment
// error in that case is unnecessary noise. This may change in the future once
// evaluation failures are allowed to impact selection, e.g. generic const
// expressions in impl headers or `where`-clauses.
// FIXME(generic_const_exprs): Implement handling for generic
// const expressions here.
if let Some(_normalized) = self.try_const_eval_resolve(param_env, uv, ct.ty()) {
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
}
}
ty::ConstKind::Infer(_) => {
self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
}
ty::ConstKind::Placeholder(_) | ty::ConstKind::Value(_) | ty::ConstKind::Error(_) => {
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
// We can freely ICE here as:
// - `Param` gets replaced with a placeholder during canonicalization
// - `Bound` cannot exist as we don't have a binder around the self Type
// - `Expr` is part of `feature(generic_const_exprs)` and is not implemented yet
ty::ConstKind::Param(_) | ty::ConstKind::Bound(_, _) | ty::ConstKind::Expr(_) => {
bug!("unexpect const kind: {:?}", ct)
}
}
}
#[instrument(level = "debug", skip(self), ret)]
fn compute_const_arg_has_type_goal(
&mut self,
goal: Goal<'tcx, (ty::Const<'tcx>, Ty<'tcx>)>,
) -> QueryResult<'tcx> {
let (ct, ty) = goal.predicate;
self.eq(goal.param_env, ct.ty(), ty)?;
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
}
impl<'tcx> EvalCtxt<'_, 'tcx> {
#[instrument(level = "debug", skip(self))]
fn set_normalizes_to_hack_goal(&mut self, goal: Goal<'tcx, ty::NormalizesTo<'tcx>>) {
assert!(
self.nested_goals.normalizes_to_hack_goal.is_none(),
"attempted to set the projection eq hack goal when one already exists"
);
self.nested_goals.normalizes_to_hack_goal = Some(goal);
}
#[instrument(level = "debug", skip(self))]
fn add_goal(&mut self, source: GoalSource, goal: Goal<'tcx, ty::Predicate<'tcx>>) {
inspect::ProofTreeBuilder::add_goal(self, source, goal);
self.nested_goals.goals.push((source, goal));
}
#[instrument(level = "debug", skip(self, goals))]
fn add_goals(
&mut self,
source: GoalSource,
goals: impl IntoIterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>,
) {
for goal in goals {
self.add_goal(source, goal);
}
}
/// Try to merge multiple possible ways to prove a goal, if that is not possible returns `None`.
///
/// In this case we tend to flounder and return ambiguity by calling `[EvalCtxt::flounder]`.
#[instrument(level = "debug", skip(self), ret)]
fn try_merge_responses(
&mut self,
responses: &[CanonicalResponse<'tcx>],
) -> Option<CanonicalResponse<'tcx>> {
if responses.is_empty() {
return None;
}
// FIXME(-Znext-solver): We should instead try to find a `Certainty::Yes` response with
// a subset of the constraints that all the other responses have.
let one = responses[0];
if responses[1..].iter().all(|&resp| resp == one) {
return Some(one);
}
responses
.iter()
.find(|response| {
response.value.certainty == Certainty::Yes
&& response.has_no_inference_or_external_constraints()
})
.copied()
}
/// If we fail to merge responses we flounder and return overflow or ambiguity.
#[instrument(level = "debug", skip(self), ret)]
fn flounder(&mut self, responses: &[CanonicalResponse<'tcx>]) -> QueryResult<'tcx> {
if responses.is_empty() {
return Err(NoSolution);
}
let Certainty::Maybe(maybe_cause) =
responses.iter().fold(Certainty::AMBIGUOUS, |certainty, response| {
certainty.unify_with(response.value.certainty)
})
else {
bug!("expected flounder response to be ambiguous")
};
Ok(self.make_ambiguous_response_no_constraints(maybe_cause))
}
/// Normalize a type when it is structually matched on.
///
/// In nearly all cases this function must be used before matching on a type.
/// Not doing so is likely to be incomplete and therefore unsound during
/// coherence.
#[instrument(level = "debug", skip(self), ret)]
fn try_normalize_ty(
&mut self,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
) -> Option<Ty<'tcx>> {
self.try_normalize_ty_recur(param_env, DefineOpaqueTypes::Yes, 0, ty)
}
fn try_normalize_ty_recur(
&mut self,
param_env: ty::ParamEnv<'tcx>,
define_opaque_types: DefineOpaqueTypes,
depth: usize,
ty: Ty<'tcx>,
) -> Option<Ty<'tcx>> {
if !self.tcx().recursion_limit().value_within_limit(depth) {
return None;
}
let ty::Alias(kind, alias) = *ty.kind() else {
return Some(ty);
};
// We do no always define opaque types eagerly to allow non-defining uses
// in the defining scope. However, if we can unify this opaque to an existing
// opaque, then we should attempt to eagerly reveal the opaque, and we fall
// through.
if let DefineOpaqueTypes::No = define_opaque_types
&& let Reveal::UserFacing = param_env.reveal()
&& let ty::Opaque = kind
&& let Some(def_id) = alias.def_id.as_local()
&& self.can_define_opaque_ty(def_id)
{
if self
.unify_existing_opaque_tys(
param_env,
OpaqueTypeKey { def_id, args: alias.args },
self.next_ty_infer(),
)
.is_empty()
{
return Some(ty);
}
}
match self.commit_if_ok(|this| {
let normalized_ty = this.next_ty_infer();
let normalizes_to_goal = Goal::new(
this.tcx(),
param_env,
ty::NormalizesTo { alias, term: normalized_ty.into() },
);
this.add_goal(GoalSource::Misc, normalizes_to_goal);
this.try_evaluate_added_goals()?;
let ty = this.resolve_vars_if_possible(normalized_ty);
Ok(this.try_normalize_ty_recur(param_env, define_opaque_types, depth + 1, ty))
}) {
Ok(ty) => ty,
Err(NoSolution) => Some(ty),
}
}
}
fn response_no_constraints_raw<'tcx>(
tcx: TyCtxt<'tcx>,
max_universe: UniverseIndex,
variables: CanonicalVarInfos<'tcx>,
certainty: Certainty,
) -> CanonicalResponse<'tcx> {
Canonical {
max_universe,
variables,
value: Response {
var_values: CanonicalVarValues::make_identity(tcx, variables),
// FIXME: maybe we should store the "no response" version in tcx, like
// we do for tcx.types and stuff.
external_constraints: tcx.mk_external_constraints(ExternalConstraintsData::default()),
certainty,
},
}
}