blob: 79cb384c5bded30994d3f8f6ec47da0ae55d6774 [file] [log] [blame]
use rustc_errors::StashKey;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{LocalDefId, CRATE_DEF_ID};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{self as hir, def, Expr, ImplItem, Item, Node, TraitItem};
use rustc_middle::hir::nested_filter;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::{sym, ErrorGuaranteed, DUMMY_SP};
use crate::errors::{TaitForwardCompat, TypeOf, UnconstrainedOpaqueType};
pub fn test_opaque_hidden_types(tcx: TyCtxt<'_>) -> Result<(), ErrorGuaranteed> {
let mut res = Ok(());
if tcx.has_attr(CRATE_DEF_ID, sym::rustc_hidden_type_of_opaques) {
for id in tcx.hir().items() {
if matches!(tcx.def_kind(id.owner_id), DefKind::OpaqueTy) {
let type_of = tcx.type_of(id.owner_id).instantiate_identity();
res = Err(tcx.dcx().emit_err(TypeOf { span: tcx.def_span(id.owner_id), type_of }));
}
}
}
res
}
/// Checks "defining uses" of opaque `impl Trait` in associated types.
/// These can only be defined by associated items of the same trait.
#[instrument(skip(tcx), level = "debug")]
pub(super) fn find_opaque_ty_constraints_for_impl_trait_in_assoc_type(
tcx: TyCtxt<'_>,
def_id: LocalDefId,
) -> Ty<'_> {
let mut parent_def_id = def_id;
while tcx.def_kind(parent_def_id) == def::DefKind::OpaqueTy {
// Account for `type Alias = impl Trait<Foo = impl Trait>;` (#116031)
parent_def_id = tcx.local_parent(parent_def_id);
}
let impl_def_id = tcx.local_parent(parent_def_id);
match tcx.def_kind(impl_def_id) {
DefKind::Impl { .. } => {}
other => bug!("invalid impl trait in assoc type parent: {other:?}"),
}
let mut locator = TaitConstraintLocator { def_id, tcx, found: None, typeck_types: vec![] };
for &assoc_id in tcx.associated_item_def_ids(impl_def_id) {
let assoc = tcx.associated_item(assoc_id);
match assoc.kind {
ty::AssocKind::Const | ty::AssocKind::Fn => {
locator.check(assoc_id.expect_local(), ImplTraitSource::AssocTy)
}
// Associated types don't have bodies, so they can't constrain hidden types
ty::AssocKind::Type => {}
}
}
if let Some(hidden) = locator.found {
// Only check against typeck if we didn't already error
if !hidden.ty.references_error() {
for concrete_type in locator.typeck_types {
if concrete_type.ty != tcx.erase_regions(hidden.ty)
&& !(concrete_type, hidden).references_error()
{
hidden.report_mismatch(&concrete_type, def_id, tcx).emit();
}
}
}
hidden.ty
} else {
let reported = tcx.dcx().emit_err(UnconstrainedOpaqueType {
span: tcx.def_span(def_id),
name: tcx.item_name(parent_def_id.to_def_id()),
what: "impl",
});
Ty::new_error(tcx, reported)
}
}
/// Checks "defining uses" of opaque `impl Trait` types to ensure that they meet the restrictions
/// laid for "higher-order pattern unification".
/// This ensures that inference is tractable.
/// In particular, definitions of opaque types can only use other generics as arguments,
/// and they cannot repeat an argument. Example:
///
/// ```ignore (illustrative)
/// type Foo<A, B> = impl Bar<A, B>;
///
/// // Okay -- `Foo` is applied to two distinct, generic types.
/// fn a<T, U>() -> Foo<T, U> { .. }
///
/// // Not okay -- `Foo` is applied to `T` twice.
/// fn b<T>() -> Foo<T, T> { .. }
///
/// // Not okay -- `Foo` is applied to a non-generic type.
/// fn b<T>() -> Foo<T, u32> { .. }
/// ```
#[instrument(skip(tcx), level = "debug")]
pub(super) fn find_opaque_ty_constraints_for_tait(tcx: TyCtxt<'_>, def_id: LocalDefId) -> Ty<'_> {
let hir_id = tcx.local_def_id_to_hir_id(def_id);
let scope = tcx.hir().get_defining_scope(hir_id);
let mut locator = TaitConstraintLocator { def_id, tcx, found: None, typeck_types: vec![] };
debug!(?scope);
if scope == hir::CRATE_HIR_ID {
tcx.hir().walk_toplevel_module(&mut locator);
} else {
trace!("scope={:#?}", tcx.hir_node(scope));
match tcx.hir_node(scope) {
// We explicitly call `visit_*` methods, instead of using `intravisit::walk_*` methods
// This allows our visitor to process the defining item itself, causing
// it to pick up any 'sibling' defining uses.
//
// For example, this code:
// ```
// fn foo() {
// type Blah = impl Debug;
// let my_closure = || -> Blah { true };
// }
// ```
//
// requires us to explicitly process `foo()` in order
// to notice the defining usage of `Blah`.
Node::Item(it) => locator.visit_item(it),
Node::ImplItem(it) => locator.visit_impl_item(it),
Node::TraitItem(it) => locator.visit_trait_item(it),
Node::ForeignItem(it) => locator.visit_foreign_item(it),
other => bug!("{:?} is not a valid scope for an opaque type item", other),
}
}
if let Some(hidden) = locator.found {
// Only check against typeck if we didn't already error
if !hidden.ty.references_error() {
for concrete_type in locator.typeck_types {
if concrete_type.ty != tcx.erase_regions(hidden.ty)
&& !(concrete_type, hidden).references_error()
{
hidden.report_mismatch(&concrete_type, def_id, tcx).emit();
}
}
}
hidden.ty
} else {
let mut parent_def_id = def_id;
while tcx.def_kind(parent_def_id) == def::DefKind::OpaqueTy {
// Account for `type Alias = impl Trait<Foo = impl Trait>;` (#116031)
parent_def_id = tcx.local_parent(parent_def_id);
}
let reported = tcx.dcx().emit_err(UnconstrainedOpaqueType {
span: tcx.def_span(def_id),
name: tcx.item_name(parent_def_id.to_def_id()),
what: match tcx.hir_node(scope) {
_ if scope == hir::CRATE_HIR_ID => "module",
Node::Item(hir::Item { kind: hir::ItemKind::Mod(_), .. }) => "module",
Node::Item(hir::Item { kind: hir::ItemKind::Impl(_), .. }) => "impl",
_ => "item",
},
});
Ty::new_error(tcx, reported)
}
}
struct TaitConstraintLocator<'tcx> {
tcx: TyCtxt<'tcx>,
/// def_id of the opaque type whose defining uses are being checked
def_id: LocalDefId,
/// as we walk the defining uses, we are checking that all of them
/// define the same hidden type. This variable is set to `Some`
/// with the first type that we find, and then later types are
/// checked against it (we also carry the span of that first
/// type).
found: Option<ty::OpaqueHiddenType<'tcx>>,
/// In the presence of dead code, typeck may figure out a hidden type
/// while borrowck will not. We collect these cases here and check at
/// the end that we actually found a type that matches (modulo regions).
typeck_types: Vec<ty::OpaqueHiddenType<'tcx>>,
}
#[derive(Debug)]
enum ImplTraitSource {
AssocTy,
TyAlias,
}
impl TaitConstraintLocator<'_> {
#[instrument(skip(self), level = "debug")]
fn check(&mut self, item_def_id: LocalDefId, source: ImplTraitSource) {
// Don't try to check items that cannot possibly constrain the type.
if !self.tcx.has_typeck_results(item_def_id) {
debug!("no constraint: no typeck results");
return;
}
// Function items with `_` in their return type already emit an error, skip any
// "non-defining use" errors for them.
// Note that we use `Node::fn_sig` instead of `Node::fn_decl` here, because the former
// excludes closures, which are allowed to have `_` in their return type.
let hir_node = self.tcx.hir_node_by_def_id(item_def_id);
debug_assert!(
!matches!(hir_node, Node::ForeignItem(..)),
"foreign items cannot constrain opaque types",
);
if let Some(hir_sig) = hir_node.fn_sig()
&& hir_sig.decl.output.get_infer_ret_ty().is_some()
{
let guar = self.tcx.dcx().span_delayed_bug(
hir_sig.decl.output.span(),
"inferring return types and opaque types do not mix well",
);
self.found =
Some(ty::OpaqueHiddenType { span: DUMMY_SP, ty: Ty::new_error(self.tcx, guar) });
return;
}
// Calling `mir_borrowck` can lead to cycle errors through
// const-checking, avoid calling it if we don't have to.
// ```rust
// type Foo = impl Fn() -> usize; // when computing type for this
// const fn bar() -> Foo {
// || 0usize
// }
// const BAZR: Foo = bar(); // we would mir-borrowck this, causing cycles
// // because we again need to reveal `Foo` so we can check whether the
// // constant does not contain interior mutability.
// ```
let tables = self.tcx.typeck(item_def_id);
if let Some(guar) = tables.tainted_by_errors {
self.found =
Some(ty::OpaqueHiddenType { span: DUMMY_SP, ty: Ty::new_error(self.tcx, guar) });
return;
}
let mut constrained = false;
for (&opaque_type_key, &hidden_type) in &tables.concrete_opaque_types {
if opaque_type_key.def_id != self.def_id {
continue;
}
constrained = true;
let opaque_types_defined_by = match source {
ImplTraitSource::AssocTy => {
self.tcx.impl_trait_in_assoc_types_defined_by(item_def_id)
}
ImplTraitSource::TyAlias => self.tcx.opaque_types_defined_by(item_def_id),
};
if !opaque_types_defined_by.contains(&self.def_id) {
self.tcx.dcx().emit_err(TaitForwardCompat {
span: hidden_type.span,
item_span: self
.tcx
.def_ident_span(item_def_id)
.unwrap_or_else(|| self.tcx.def_span(item_def_id)),
});
}
let concrete_type =
self.tcx.erase_regions(hidden_type.remap_generic_params_to_declaration_params(
opaque_type_key,
self.tcx,
true,
));
if self.typeck_types.iter().all(|prev| prev.ty != concrete_type.ty) {
self.typeck_types.push(concrete_type);
}
}
if !constrained {
debug!("no constraints in typeck results");
return;
};
// Use borrowck to get the type with unerased regions.
let borrowck_results = &self.tcx.mir_borrowck(item_def_id);
// If the body was tainted, then assume the opaque may have been constrained and just set it to error.
if let Some(guar) = borrowck_results.tainted_by_errors {
self.found =
Some(ty::OpaqueHiddenType { span: DUMMY_SP, ty: Ty::new_error(self.tcx, guar) });
return;
}
debug!(?borrowck_results.concrete_opaque_types);
if let Some(&concrete_type) = borrowck_results.concrete_opaque_types.get(&self.def_id) {
debug!(?concrete_type, "found constraint");
if let Some(prev) = &mut self.found {
if concrete_type.ty != prev.ty && !(concrete_type, prev.ty).references_error() {
let guar = prev.report_mismatch(&concrete_type, self.def_id, self.tcx).emit();
prev.ty = Ty::new_error(self.tcx, guar);
}
} else {
self.found = Some(concrete_type);
}
}
}
}
impl<'tcx> intravisit::Visitor<'tcx> for TaitConstraintLocator<'tcx> {
type NestedFilter = nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
if let hir::ExprKind::Closure(closure) = ex.kind {
self.check(closure.def_id, ImplTraitSource::TyAlias);
}
intravisit::walk_expr(self, ex);
}
fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
trace!(?it.owner_id);
// The opaque type itself or its children are not within its reveal scope.
if it.owner_id.def_id != self.def_id {
self.check(it.owner_id.def_id, ImplTraitSource::TyAlias);
intravisit::walk_item(self, it);
}
}
fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
trace!(?it.owner_id);
// The opaque type itself or its children are not within its reveal scope.
if it.owner_id.def_id != self.def_id {
self.check(it.owner_id.def_id, ImplTraitSource::TyAlias);
intravisit::walk_impl_item(self, it);
}
}
fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
trace!(?it.owner_id);
self.check(it.owner_id.def_id, ImplTraitSource::TyAlias);
intravisit::walk_trait_item(self, it);
}
fn visit_foreign_item(&mut self, it: &'tcx hir::ForeignItem<'tcx>) {
trace!(?it.owner_id);
assert_ne!(it.owner_id.def_id, self.def_id);
// No need to call `check`, as we do not run borrowck on foreign items.
intravisit::walk_foreign_item(self, it);
}
}
pub(super) fn find_opaque_ty_constraints_for_rpit<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: LocalDefId,
owner_def_id: LocalDefId,
) -> Ty<'_> {
let tables = tcx.typeck(owner_def_id);
// Check that all of the opaques we inferred during HIR are compatible.
// FIXME: We explicitly don't check that the types inferred during HIR
// typeck are compatible with the one that we infer during borrowck,
// because that one actually sometimes has consts evaluated eagerly so
// using strict type equality will fail.
let mut hir_opaque_ty: Option<ty::OpaqueHiddenType<'tcx>> = None;
if tables.tainted_by_errors.is_none() {
for (&opaque_type_key, &hidden_type) in &tables.concrete_opaque_types {
if opaque_type_key.def_id != def_id {
continue;
}
let concrete_type = tcx.erase_regions(
hidden_type.remap_generic_params_to_declaration_params(opaque_type_key, tcx, true),
);
if let Some(prev) = &mut hir_opaque_ty {
if concrete_type.ty != prev.ty && !(concrete_type, prev.ty).references_error() {
prev.report_mismatch(&concrete_type, def_id, tcx).stash(
tcx.def_span(opaque_type_key.def_id),
StashKey::OpaqueHiddenTypeMismatch,
);
}
} else {
hir_opaque_ty = Some(concrete_type);
}
}
}
let mir_opaque_ty = tcx.mir_borrowck(owner_def_id).concrete_opaque_types.get(&def_id).copied();
if let Some(mir_opaque_ty) = mir_opaque_ty {
if mir_opaque_ty.references_error() {
return mir_opaque_ty.ty;
}
let scope = tcx.local_def_id_to_hir_id(owner_def_id);
debug!(?scope);
let mut locator = RpitConstraintChecker { def_id, tcx, found: mir_opaque_ty };
match tcx.hir_node(scope) {
Node::Item(it) => intravisit::walk_item(&mut locator, it),
Node::ImplItem(it) => intravisit::walk_impl_item(&mut locator, it),
Node::TraitItem(it) => intravisit::walk_trait_item(&mut locator, it),
other => bug!("{:?} is not a valid scope for an opaque type item", other),
}
mir_opaque_ty.ty
} else {
if let Some(guar) = tables.tainted_by_errors {
// Some error in the owner fn prevented us from populating
// the `concrete_opaque_types` table.
Ty::new_error(tcx, guar)
} else {
// Fall back to the RPIT we inferred during HIR typeck
if let Some(hir_opaque_ty) = hir_opaque_ty {
hir_opaque_ty.ty
} else {
// We failed to resolve the opaque type or it
// resolves to itself. We interpret this as the
// no values of the hidden type ever being constructed,
// so we can just make the hidden type be `!`.
// For backwards compatibility reasons, we fall back to
// `()` until we the diverging default is changed.
Ty::new_diverging_default(tcx)
}
}
}
}
struct RpitConstraintChecker<'tcx> {
tcx: TyCtxt<'tcx>,
/// def_id of the opaque type whose defining uses are being checked
def_id: LocalDefId,
found: ty::OpaqueHiddenType<'tcx>,
}
impl RpitConstraintChecker<'_> {
#[instrument(skip(self), level = "debug")]
fn check(&self, def_id: LocalDefId) {
// Use borrowck to get the type with unerased regions.
let concrete_opaque_types = &self.tcx.mir_borrowck(def_id).concrete_opaque_types;
debug!(?concrete_opaque_types);
for (&def_id, &concrete_type) in concrete_opaque_types {
if def_id != self.def_id {
// Ignore constraints for other opaque types.
continue;
}
debug!(?concrete_type, "found constraint");
if concrete_type.ty != self.found.ty && !(concrete_type, self.found).references_error()
{
self.found.report_mismatch(&concrete_type, self.def_id, self.tcx).emit();
}
}
}
}
impl<'tcx> intravisit::Visitor<'tcx> for RpitConstraintChecker<'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
if let hir::ExprKind::Closure(closure) = ex.kind {
self.check(closure.def_id);
}
intravisit::walk_expr(self, ex);
}
fn visit_item(&mut self, it: &'tcx Item<'tcx>) {
trace!(?it.owner_id);
// The opaque type itself or its children are not within its reveal scope.
if it.owner_id.def_id != self.def_id {
self.check(it.owner_id.def_id);
intravisit::walk_item(self, it);
}
}
fn visit_impl_item(&mut self, it: &'tcx ImplItem<'tcx>) {
trace!(?it.owner_id);
// The opaque type itself or its children are not within its reveal scope.
if it.owner_id.def_id != self.def_id {
self.check(it.owner_id.def_id);
intravisit::walk_impl_item(self, it);
}
}
fn visit_trait_item(&mut self, it: &'tcx TraitItem<'tcx>) {
trace!(?it.owner_id);
self.check(it.owner_id.def_id);
intravisit::walk_trait_item(self, it);
}
}