blob: 6a92ed9717de57a3293bd39999a43ac18da70927 [file] [log] [blame]
use std::mem;
use either::{Left, Right};
use rustc_hir::def::DefKind;
use rustc_middle::mir::interpret::{AllocId, ErrorHandled, InterpErrorInfo};
use rustc_middle::mir::pretty::write_allocation_bytes;
use rustc_middle::mir::{self, ConstAlloc, ConstValue};
use rustc_middle::traits::Reveal;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::Span;
use rustc_target::abi::{self, Abi};
use super::{CanAccessStatics, CompileTimeEvalContext, CompileTimeInterpreter};
use crate::const_eval::CheckAlignment;
use crate::errors;
use crate::errors::ConstEvalError;
use crate::interpret::eval_nullary_intrinsic;
use crate::interpret::{
intern_const_alloc_recursive, CtfeValidationMode, GlobalId, Immediate, InternKind, InterpCx,
InterpError, InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, StackPopCleanup,
};
// Returns a pointer to where the result lives
fn eval_body_using_ecx<'mir, 'tcx>(
ecx: &mut CompileTimeEvalContext<'mir, 'tcx>,
cid: GlobalId<'tcx>,
body: &'mir mir::Body<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
debug!("eval_body_using_ecx: {:?}, {:?}", cid, ecx.param_env);
let tcx = *ecx.tcx;
assert!(
cid.promoted.is_some()
|| matches!(
ecx.tcx.def_kind(cid.instance.def_id()),
DefKind::Const
| DefKind::Static(_)
| DefKind::ConstParam
| DefKind::AnonConst
| DefKind::InlineConst
| DefKind::AssocConst
),
"Unexpected DefKind: {:?}",
ecx.tcx.def_kind(cid.instance.def_id())
);
let layout = ecx.layout_of(body.bound_return_ty().instantiate(tcx, cid.instance.args))?;
assert!(layout.is_sized());
let ret = ecx.allocate(layout, MemoryKind::Stack)?;
trace!(
"eval_body_using_ecx: pushing stack frame for global: {}{}",
with_no_trimmed_paths!(ecx.tcx.def_path_str(cid.instance.def_id())),
cid.promoted.map_or_else(String::new, |p| format!("::promoted[{p:?}]"))
);
ecx.push_stack_frame(
cid.instance,
body,
&ret.clone().into(),
StackPopCleanup::Root { cleanup: false },
)?;
ecx.storage_live_for_always_live_locals()?;
// The main interpreter loop.
while ecx.step()? {}
// Intern the result
let intern_kind = if cid.promoted.is_some() {
InternKind::Promoted
} else {
match tcx.static_mutability(cid.instance.def_id()) {
Some(m) => InternKind::Static(m),
None => InternKind::Constant,
}
};
let check_alignment = mem::replace(&mut ecx.machine.check_alignment, CheckAlignment::No); // interning doesn't need to respect alignment
intern_const_alloc_recursive(ecx, intern_kind, &ret)?;
ecx.machine.check_alignment = check_alignment;
debug!("eval_body_using_ecx done: {:?}", ret);
Ok(ret)
}
/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms. It never performs alignment checks.
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
pub(crate) fn mk_eval_cx<'mir, 'tcx>(
tcx: TyCtxt<'tcx>,
root_span: Span,
param_env: ty::ParamEnv<'tcx>,
can_access_statics: CanAccessStatics,
) -> CompileTimeEvalContext<'mir, 'tcx> {
debug!("mk_eval_cx: {:?}", param_env);
InterpCx::new(
tcx,
root_span,
param_env,
CompileTimeInterpreter::new(can_access_statics, CheckAlignment::No),
)
}
/// This function converts an interpreter value into a MIR constant.
///
/// The `for_diagnostics` flag turns the usual rules for returning `ConstValue::Scalar` into a
/// best-effort attempt. This is not okay for use in const-eval sine it breaks invariants rustc
/// relies on, but it is okay for diagnostics which will just give up gracefully when they
/// encounter an `Indirect` they cannot handle.
#[instrument(skip(ecx), level = "debug")]
pub(super) fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, 'tcx>,
op: &OpTy<'tcx>,
for_diagnostics: bool,
) -> ConstValue<'tcx> {
// Handle ZST consistently and early.
if op.layout.is_zst() {
return ConstValue::ZeroSized;
}
// All scalar types should be stored as `ConstValue::Scalar`. This is needed to make
// `ConstValue::try_to_scalar` efficient; we want that to work for *all* constants of scalar
// type (it's used throughout the compiler and having it work just on literals is not enough)
// and we want it to be fast (i.e., don't go to an `Allocation` and reconstruct the `Scalar`
// from its byte-serialized form).
let force_as_immediate = match op.layout.abi {
Abi::Scalar(abi::Scalar::Initialized { .. }) => true,
// We don't *force* `ConstValue::Slice` for `ScalarPair`. This has the advantage that if the
// input `op` is a place, then turning it into a `ConstValue` and back into a `OpTy` will
// not have to generate any duplicate allocations (we preserve the original `AllocId` in
// `ConstValue::Indirect`). It means accessing the contents of a slice can be slow (since
// they can be stored as `ConstValue::Indirect`), but that's not relevant since we barely
// ever have to do this. (`try_get_slice_bytes_for_diagnostics` exists to provide this
// functionality.)
_ => false,
};
let immediate = if force_as_immediate {
match ecx.read_immediate(op) {
Ok(imm) => Right(imm),
Err(err) if !for_diagnostics => {
panic!("normalization works on validated constants: {err:?}")
}
_ => op.as_mplace_or_imm(),
}
} else {
op.as_mplace_or_imm()
};
debug!(?immediate);
match immediate {
Left(ref mplace) => {
// We know `offset` is relative to the allocation, so we can use `into_parts`.
let (prov, offset) = mplace.ptr().into_parts();
let alloc_id = prov.expect("cannot have `fake` place for non-ZST type").alloc_id();
ConstValue::Indirect { alloc_id, offset }
}
// see comment on `let force_as_immediate` above
Right(imm) => match *imm {
Immediate::Scalar(x) => ConstValue::Scalar(x),
Immediate::ScalarPair(a, b) => {
debug!("ScalarPair(a: {:?}, b: {:?})", a, b);
// This codepath solely exists for `valtree_to_const_value` to not need to generate
// a `ConstValue::Indirect` for wide references, so it is tightly restricted to just
// that case.
let pointee_ty = imm.layout.ty.builtin_deref(false).unwrap().ty; // `false` = no raw ptrs
debug_assert!(
matches!(
ecx.tcx.struct_tail_without_normalization(pointee_ty).kind(),
ty::Str | ty::Slice(..),
),
"`ConstValue::Slice` is for slice-tailed types only, but got {}",
imm.layout.ty,
);
let msg = "`op_to_const` on an immediate scalar pair must only be used on slice references to the beginning of an actual allocation";
// We know `offset` is relative to the allocation, so we can use `into_parts`.
let (prov, offset) = a.to_pointer(ecx).expect(msg).into_parts();
let alloc_id = prov.expect(msg).alloc_id();
let data = ecx.tcx.global_alloc(alloc_id).unwrap_memory();
assert!(offset == abi::Size::ZERO, "{}", msg);
let meta = b.to_target_usize(ecx).expect(msg);
ConstValue::Slice { data, meta }
}
Immediate::Uninit => bug!("`Uninit` is not a valid value for {}", op.layout.ty),
},
}
}
#[instrument(skip(tcx), level = "debug", ret)]
pub(crate) fn turn_into_const_value<'tcx>(
tcx: TyCtxt<'tcx>,
constant: ConstAlloc<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ConstValue<'tcx> {
let cid = key.value;
let def_id = cid.instance.def.def_id();
let is_static = tcx.is_static(def_id);
// This is just accessing an already computed constant, so no need to check alignment here.
let ecx = mk_eval_cx(
tcx,
tcx.def_span(key.value.instance.def_id()),
key.param_env,
CanAccessStatics::from(is_static),
);
let mplace = ecx.raw_const_to_mplace(constant).expect(
"can only fail if layout computation failed, \
which should have given a good error before ever invoking this function",
);
assert!(
!is_static || cid.promoted.is_some(),
"the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead"
);
// Turn this into a proper constant.
op_to_const(&ecx, &mplace.into(), /* for diagnostics */ false)
}
#[instrument(skip(tcx), level = "debug")]
pub fn eval_to_const_value_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> {
// Const eval always happens in Reveal::All mode in order to be able to use the hidden types of
// opaque types. This is needed for trivial things like `size_of`, but also for using associated
// types that are not specified in the opaque type.
assert_eq!(key.param_env.reveal(), Reveal::All);
// We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
// Catch such calls and evaluate them instead of trying to load a constant's MIR.
if let ty::InstanceDef::Intrinsic(def_id) = key.value.instance.def {
let ty = key.value.instance.ty(tcx, key.param_env);
let ty::FnDef(_, args) = ty.kind() else {
bug!("intrinsic with type {:?}", ty);
};
return eval_nullary_intrinsic(tcx, key.param_env, def_id, args).map_err(|error| {
let span = tcx.def_span(def_id);
super::report(
tcx,
error.into_kind(),
Some(span),
|| (span, vec![]),
|span, _| errors::NullaryIntrinsicError { span },
)
});
}
tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key))
}
#[instrument(skip(tcx), level = "debug")]
pub fn eval_to_allocation_raw_provider<'tcx>(
tcx: TyCtxt<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
// Const eval always happens in Reveal::All mode in order to be able to use the hidden types of
// opaque types. This is needed for trivial things like `size_of`, but also for using associated
// types that are not specified in the opaque type.
assert_eq!(key.param_env.reveal(), Reveal::All);
if cfg!(debug_assertions) {
// Make sure we format the instance even if we do not print it.
// This serves as a regression test against an ICE on printing.
// The next two lines concatenated contain some discussion:
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
// subject/anon_const_instance_printing/near/135980032
let instance = with_no_trimmed_paths!(key.value.instance.to_string());
trace!("const eval: {:?} ({})", key, instance);
}
let cid = key.value;
let def = cid.instance.def.def_id();
let is_static = tcx.is_static(def);
let ecx = InterpCx::new(
tcx,
tcx.def_span(def),
key.param_env,
// Statics (and promoteds inside statics) may access other statics, because unlike consts
// they do not have to behave "as if" they were evaluated at runtime.
CompileTimeInterpreter::new(CanAccessStatics::from(is_static), CheckAlignment::Error),
);
eval_in_interpreter(ecx, cid, is_static)
}
pub fn eval_in_interpreter<'mir, 'tcx>(
mut ecx: InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>,
cid: GlobalId<'tcx>,
is_static: bool,
) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
// `is_static` just means "in static", it could still be a promoted!
debug_assert_eq!(is_static, ecx.tcx.static_mutability(cid.instance.def_id()).is_some());
let res = ecx.load_mir(cid.instance.def, cid.promoted);
match res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, body)) {
Err(error) => {
let (error, backtrace) = error.into_parts();
backtrace.print_backtrace();
let (kind, instance) = if is_static {
("static", String::new())
} else {
// If the current item has generics, we'd like to enrich the message with the
// instance and its args: to show the actual compile-time values, in addition to
// the expression, leading to the const eval error.
let instance = &cid.instance;
if !instance.args.is_empty() {
let instance = with_no_trimmed_paths!(instance.to_string());
("const_with_path", instance)
} else {
("const", String::new())
}
};
Err(super::report(
*ecx.tcx,
error,
None,
|| super::get_span_and_frames(ecx.tcx, &ecx.machine),
|span, frames| ConstEvalError {
span,
error_kind: kind,
instance,
frame_notes: frames,
},
))
}
Ok(mplace) => {
// Since evaluation had no errors, validate the resulting constant.
// This is a separate `try` block to provide more targeted error reporting.
let validation = const_validate_mplace(&ecx, &mplace, cid);
let alloc_id = mplace.ptr().provenance.unwrap().alloc_id();
// Validation failed, report an error.
if let Err(error) = validation {
Err(const_report_error(&ecx, error, alloc_id))
} else {
// Convert to raw constant
Ok(ConstAlloc { alloc_id, ty: mplace.layout.ty })
}
}
}
}
#[inline(always)]
pub fn const_validate_mplace<'mir, 'tcx>(
ecx: &InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>,
mplace: &MPlaceTy<'tcx>,
cid: GlobalId<'tcx>,
) -> InterpResult<'tcx> {
let mut ref_tracking = RefTracking::new(mplace.clone());
let mut inner = false;
while let Some((mplace, path)) = ref_tracking.todo.pop() {
let mode = match ecx.tcx.static_mutability(cid.instance.def_id()) {
Some(_) if cid.promoted.is_some() => {
// Promoteds in statics are consts that re allowed to point to statics.
CtfeValidationMode::Const {
allow_immutable_unsafe_cell: false,
allow_static_ptrs: true,
}
}
Some(mutbl) => CtfeValidationMode::Static { mutbl }, // a `static`
None => {
// In normal `const` (not promoted), the outermost allocation is always only copied,
// so having `UnsafeCell` in there is okay despite them being in immutable memory.
let allow_immutable_unsafe_cell = cid.promoted.is_none() && !inner;
CtfeValidationMode::Const { allow_immutable_unsafe_cell, allow_static_ptrs: false }
}
};
ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode)?;
inner = true;
}
Ok(())
}
#[inline(always)]
pub fn const_report_error<'mir, 'tcx>(
ecx: &InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>,
error: InterpErrorInfo<'tcx>,
alloc_id: AllocId,
) -> ErrorHandled {
let (error, backtrace) = error.into_parts();
backtrace.print_backtrace();
let ub_note = matches!(error, InterpError::UndefinedBehavior(_)).then(|| {});
let alloc = ecx.tcx.global_alloc(alloc_id).unwrap_memory().inner();
let mut bytes = String::new();
if alloc.size() != abi::Size::ZERO {
bytes = "\n".into();
// FIXME(translation) there might be pieces that are translatable.
write_allocation_bytes(*ecx.tcx, alloc, &mut bytes, " ").unwrap();
}
let raw_bytes =
errors::RawBytesNote { size: alloc.size().bytes(), align: alloc.align.bytes(), bytes };
crate::const_eval::report(
*ecx.tcx,
error,
None,
|| crate::const_eval::get_span_and_frames(ecx.tcx, &ecx.machine),
move |span, frames| errors::UndefinedBehavior { span, ub_note, frames, raw_bytes },
)
}