blob: 3c335acb4d3a74952f97e5f46f6d54789145718f [file] [log] [blame]
//! lint on manually implemented checked conversions that could be transformed into `try_from`
use if_chain::if_chain;
use rustc::hir::*;
use rustc::lint::{in_external_macro, LateContext, LateLintPass, LintArray, LintContext, LintPass};
use rustc::{declare_lint_pass, declare_tool_lint};
use rustc_errors::Applicability;
use syntax::ast::LitKind;
use crate::utils::{snippet_with_applicability, span_lint_and_sugg, SpanlessEq};
declare_clippy_lint! {
/// **What it does:** Checks for explicit bounds checking when casting.
///
/// **Why is this bad?** Reduces the readability of statements & is error prone.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// # let foo: u32 = 5;
/// # let _ =
/// foo <= i32::max_value() as u32
/// # ;
/// ```
///
/// Could be written:
///
/// ```rust
/// # let _ =
/// i32::try_from(foo).is_ok()
/// # ;
/// ```
pub CHECKED_CONVERSIONS,
pedantic,
"`try_from` could replace manual bounds checking when casting"
}
declare_lint_pass!(CheckedConversions => [CHECKED_CONVERSIONS]);
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for CheckedConversions {
fn check_expr(&mut self, cx: &LateContext<'_, '_>, item: &Expr) {
let result = if_chain! {
if !in_external_macro(cx.sess(), item.span);
if let ExprKind::Binary(op, ref left, ref right) = &item.node;
then {
match op.node {
BinOpKind::Ge | BinOpKind::Le => single_check(item),
BinOpKind::And => double_check(cx, left, right),
_ => None,
}
} else {
None
}
};
if_chain! {
if let Some(cv) = result;
if let Some(to_type) = cv.to_type;
then {
let mut applicability = Applicability::MachineApplicable;
let snippet = snippet_with_applicability(cx, cv.expr_to_cast.span, "_", &mut
applicability);
span_lint_and_sugg(
cx,
CHECKED_CONVERSIONS,
item.span,
"Checked cast can be simplified.",
"try",
format!("{}::try_from({}).is_ok()",
to_type,
snippet),
applicability
);
}
}
}
}
/// Searches for a single check from unsigned to _ is done
/// todo: check for case signed -> larger unsigned == only x >= 0
fn single_check(expr: &Expr) -> Option<Conversion<'_>> {
check_upper_bound(expr).filter(|cv| cv.cvt == ConversionType::FromUnsigned)
}
/// Searches for a combination of upper & lower bound checks
fn double_check<'a>(cx: &LateContext<'_, '_>, left: &'a Expr, right: &'a Expr) -> Option<Conversion<'a>> {
let upper_lower = |l, r| {
let upper = check_upper_bound(l);
let lower = check_lower_bound(r);
transpose(upper, lower).and_then(|(l, r)| l.combine(r, cx))
};
upper_lower(left, right).or_else(|| upper_lower(right, left))
}
/// Contains the result of a tried conversion check
#[derive(Clone, Debug)]
struct Conversion<'a> {
cvt: ConversionType,
expr_to_cast: &'a Expr,
to_type: Option<&'a str>,
}
/// The kind of conversion that is checked
#[derive(Copy, Clone, Debug, PartialEq)]
enum ConversionType {
SignedToUnsigned,
SignedToSigned,
FromUnsigned,
}
impl<'a> Conversion<'a> {
/// Combine multiple conversions if the are compatible
pub fn combine(self, other: Self, cx: &LateContext<'_, '_>) -> Option<Conversion<'a>> {
if self.is_compatible(&other, cx) {
// Prefer a Conversion that contains a type-constraint
Some(if self.to_type.is_some() { self } else { other })
} else {
None
}
}
/// Checks if two conversions are compatible
/// same type of conversion, same 'castee' and same 'to type'
pub fn is_compatible(&self, other: &Self, cx: &LateContext<'_, '_>) -> bool {
(self.cvt == other.cvt)
&& (SpanlessEq::new(cx).eq_expr(self.expr_to_cast, other.expr_to_cast))
&& (self.has_compatible_to_type(other))
}
/// Checks if the to-type is the same (if there is a type constraint)
fn has_compatible_to_type(&self, other: &Self) -> bool {
transpose(self.to_type.as_ref(), other.to_type.as_ref()).map_or(true, |(l, r)| l == r)
}
/// Try to construct a new conversion if the conversion type is valid
fn try_new(expr_to_cast: &'a Expr, from_type: &str, to_type: &'a str) -> Option<Conversion<'a>> {
ConversionType::try_new(from_type, to_type).map(|cvt| Conversion {
cvt,
expr_to_cast,
to_type: Some(to_type),
})
}
/// Construct a new conversion without type constraint
fn new_any(expr_to_cast: &'a Expr) -> Conversion<'a> {
Conversion {
cvt: ConversionType::SignedToUnsigned,
expr_to_cast,
to_type: None,
}
}
}
impl ConversionType {
/// Creates a conversion type if the type is allowed & conversion is valid
fn try_new(from: &str, to: &str) -> Option<Self> {
if UINTS.contains(&from) {
Some(ConversionType::FromUnsigned)
} else if SINTS.contains(&from) {
if UINTS.contains(&to) {
Some(ConversionType::SignedToUnsigned)
} else if SINTS.contains(&to) {
Some(ConversionType::SignedToSigned)
} else {
None
}
} else {
None
}
}
}
/// Check for `expr <= (to_type::max_value() as from_type)`
fn check_upper_bound(expr: &Expr) -> Option<Conversion<'_>> {
if_chain! {
if let ExprKind::Binary(ref op, ref left, ref right) = &expr.node;
if let Some((candidate, check)) = normalize_le_ge(op, left, right);
if let Some((from, to)) = get_types_from_cast(check, MAX_VALUE, INTS);
then {
Conversion::try_new(candidate, from, to)
} else {
None
}
}
}
/// Check for `expr >= 0|(to_type::min_value() as from_type)`
fn check_lower_bound(expr: &Expr) -> Option<Conversion<'_>> {
fn check_function<'a>(candidate: &'a Expr, check: &'a Expr) -> Option<Conversion<'a>> {
(check_lower_bound_zero(candidate, check)).or_else(|| (check_lower_bound_min(candidate, check)))
}
// First of we need a binary containing the expression & the cast
if let ExprKind::Binary(ref op, ref left, ref right) = &expr.node {
normalize_le_ge(op, right, left).and_then(|(l, r)| check_function(l, r))
} else {
None
}
}
/// Check for `expr >= 0`
fn check_lower_bound_zero<'a>(candidate: &'a Expr, check: &'a Expr) -> Option<Conversion<'a>> {
if_chain! {
if let ExprKind::Lit(ref lit) = &check.node;
if let LitKind::Int(0, _) = &lit.node;
then {
Some(Conversion::new_any(candidate))
} else {
None
}
}
}
/// Check for `expr >= (to_type::min_value() as from_type)`
fn check_lower_bound_min<'a>(candidate: &'a Expr, check: &'a Expr) -> Option<Conversion<'a>> {
if let Some((from, to)) = get_types_from_cast(check, MIN_VALUE, SINTS) {
Conversion::try_new(candidate, from, to)
} else {
None
}
}
/// Tries to extract the from- and to-type from a cast expression
fn get_types_from_cast<'a>(expr: &'a Expr, func: &'a str, types: &'a [&str]) -> Option<(&'a str, &'a str)> {
// `to_type::maxmin_value() as from_type`
let call_from_cast: Option<(&Expr, &str)> = if_chain! {
// to_type::maxmin_value(), from_type
if let ExprKind::Cast(ref limit, ref from_type) = &expr.node;
if let TyKind::Path(ref from_type_path) = &from_type.node;
if let Some(from_sym) = int_ty_to_sym(from_type_path);
then {
Some((limit, from_sym))
} else {
None
}
};
// `from_type::from(to_type::maxmin_value())`
let limit_from: Option<(&Expr, &str)> = call_from_cast.or_else(|| {
if_chain! {
// `from_type::from, to_type::maxmin_value()`
if let ExprKind::Call(ref from_func, ref args) = &expr.node;
// `to_type::maxmin_value()`
if args.len() == 1;
if let limit = &args[0];
// `from_type::from`
if let ExprKind::Path(ref path) = &from_func.node;
if let Some(from_sym) = get_implementing_type(path, INTS, FROM);
then {
Some((limit, from_sym))
} else {
None
}
}
});
if let Some((limit, from_type)) = limit_from {
if_chain! {
if let ExprKind::Call(ref fun_name, _) = &limit.node;
// `to_type, maxmin_value`
if let ExprKind::Path(ref path) = &fun_name.node;
// `to_type`
if let Some(to_type) = get_implementing_type(path, types, func);
then {
Some((from_type, to_type))
} else {
None
}
}
} else {
None
}
}
/// Gets the type which implements the called function
fn get_implementing_type<'a>(path: &QPath, candidates: &'a [&str], function: &str) -> Option<&'a str> {
if_chain! {
if let QPath::TypeRelative(ref ty, ref path) = &path;
if path.ident.name.as_str() == function;
if let TyKind::Path(QPath::Resolved(None, ref tp)) = &ty.node;
if let [int] = &*tp.segments;
let name = &int.ident.name.as_str();
then {
candidates.iter().find(|c| name == *c).cloned()
} else {
None
}
}
}
/// Gets the type as a string, if it is a supported integer
fn int_ty_to_sym(path: &QPath) -> Option<&str> {
if_chain! {
if let QPath::Resolved(_, ref path) = *path;
if let [ty] = &*path.segments;
let name = &ty.ident.name.as_str();
then {
INTS.iter().find(|c| name == *c).cloned()
} else {
None
}
}
}
/// (Option<T>, Option<U>) -> Option<(T, U)>
fn transpose<T, U>(lhs: Option<T>, rhs: Option<U>) -> Option<(T, U)> {
match (lhs, rhs) {
(Some(l), Some(r)) => Some((l, r)),
_ => None,
}
}
/// Will return the expressions as if they were expr1 <= expr2
fn normalize_le_ge<'a>(op: &BinOp, left: &'a Expr, right: &'a Expr) -> Option<(&'a Expr, &'a Expr)> {
match op.node {
BinOpKind::Le => Some((left, right)),
BinOpKind::Ge => Some((right, left)),
_ => None,
}
}
// Constants
const FROM: &str = "from";
const MAX_VALUE: &str = "max_value";
const MIN_VALUE: &str = "min_value";
const UINTS: &[&str] = &["u8", "u16", "u32", "u64", "usize"];
const SINTS: &[&str] = &["i8", "i16", "i32", "i64", "isize"];
const INTS: &[&str] = &["u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", "isize"];